Topics:
e Convolutional Neural Networks

CS 4644-DL / 7643-A
ZSOLT KIRA

* Assignment 2 — Due June 22
* Implement convolutional neural networks

* Resources (in addition to lectures):

* DL book: Convolutional Networks
. CNN notes https://www.cc.gatech.edu/classes/AY2022/cs7643 spring/assets/L10 cnns notes.pdf

* Backprop notes
https://www.cc.gatech.edu/classes/AY2023/cs7643 spring/assets/L10 cnns backprop notes.pdf

* HW2 Tutorial, Conv backward Coming Soon

* Slower OMSCS lectures on dropbox: Module 2 Lessons 5-6 (M2L5/M2L6)
(https://www.dropbox.com/sh/iviro188gq0b4vs/AADdHxX Uy1TkpF yvlzX0OnPa?dI=0)

* Project

* Proposal planning session Wed.
* Proposal due June 15%

 Reminder: Please do readings announced for discussions!

https://www.deeplearningbook.org/contents/convnets.html
https://www.cc.gatech.edu/classes/AY2022/cs7643_spring/assets/L10_cnns_notes.pdf
https://www.cc.gatech.edu/classes/AY2023/cs7643_spring/assets/L10_cnns_backprop_notes.pdf
https://www.dropbox.com/sh/iviro188gq0b4vs/AADdHxX_Uy1TkpF_yvIzX0nPa?dl=0

200 150 150 1 0 -1
X(0:2,0:2) =100 50 100 K =2 0 =2 |:> X(0:2,0:2) - K' = 65 + bias
25 25 10

Dot product
(element-wise multiply and sum)

. || 0
- | fd |
NS ESR
PARTN

y(r,¢) = (x* k)(r,c) = Z Z x(r + a,c + b) k(a, b)

a=0 b=0

) Cross-Correlation Geo 1 S

Number of parameters with N filters is: N x (kq*x ko, *3 + 1)

Example:
ki =3k, =3, N=4input channels = 3,then (3*3*3+1)*4 =112

w ﬂ = W—k,+1
3 4

Kernels
Image Feature Maps

Number of Parameters

Need to incorporate all upstream
gradients:

|

oL oL

dy(0,0)'dy(0,1)" "’

oL

dy(H, W)

}

Chain Rule;

H-1W-1
dL dy(r,c)
ak(a b) TZ) Z dy(r,c) dk(a, b)

Sum over Upstream We will
all output gradient compute
pixels (known)

ady(r,c)

—— - =x(r+a,c+b)
dk(a,b)

H-1W-1

ak(a b) Z 2 ay(r, c)x(’”r a,¢+b)

r=0 c=0

M T

SN r4a, B
H B
ST

w

) Gradients and Cross-Correlation

Does this look familiar?
M =x(r +a,c+ b)
dk(a, b)

He1W—1 Cross-correlation

oL oL between upstream
— = +ac+b _ :
0k(a, b) z Z) dy(r,c) Hr+act+b) gradient and input!

r=0 c=

(until k; X k, output)

Gradients and Cross-Correlation

dL JdL 0y What does this input pixel

dx dy ox affect at the output?
Gradient for input (to pass to prior layer)
oL Neighborhood around it
Calculate one pixel at a time ———— (where part of the kernel
dx(r,c’) :
touches it)

NS
A5

H=5

Chain rule for affected pixels (sum gradients):

x(r',c") «k(0,0) = y(',c)
L — oL ay(p) x(r',c)«k(1,1)) >y —1,c'—1)
ax(r',c’ d ax(r',c'
() Pixelsp y(p) () x(r',c") «k(a,b) = y(r' —a,c’ — b)
ki-1k,-1

oL dy(?,?)
(’)x(r c) z Z ay(?,?7)dx(r',c')

Q--I@

Summing Gradient Contributions

Chain rule for affected pixels (sum gradients): Let’s derive it

aL dL dy(p) analytically this time (as

ax(r',c") it dy(p) ax(r’,c") opposed to visually)

ki-1ky—1

dy(r' —a,c’ — b)
ax(r c) Z Z dy(r' —a,c’' — b) ax(r',c’)

Q--I@

Summing Gradient Contributions

Plugging in to earlier equation:

ki—1ky—

dy(r' —a,c’' — b)
6x(r c) Z z dy(r' —a,c’' — b) ax(r',c’)

Does this look familiar?

ki—1ky—

z Z dy(r' —a,c’ — b)k(aL b) Convolution between
upstream gradient and
kernel!

Again, all operations can be
implemented via matrix
multiplications (same as FC layer)!

(can implement by
flipping kernel and
cross- correlation)

) Backwards is Convolution

Convolutions are mathematical descriptions of striding linear operation

In practice, we implement cross-correlation neural networks! (still called
convolutional neural networks due to history)

« Can connect to convolutions via duality (flipping kernel)

» Convolution formulation has mathematical properties explored in ECE

Duality for forwards and backwards:
* Forward: Cross-correlation
« Backwards w.r.t. K: Cross-correlation b/w upstream gradient and input
« Backwards w.r.t. X: Convolution b/w upstream gradient and kernel
* In practice implement via cross-correlation and flipped kernel

All operations still implemented via efficient linear algebra (e.g. matrix-
matrix multiplication)

) Summary Geqath)

Pooling

Layers

machine learning

Can we make a layer to
explicitly down-sample
image or feature maps?

/]
—
1%

Dimensionality reduction
IS an important aspect of

Parameters

Yes! We call one class of
* kernel_size - the size of the window to take a max over

th ese Operatlons pOOI i ng » stride - the stride of the window. Default value is kernel _size
Ope ratlons » padding - implicit zero padding to be added on both sides

From: https://pytorch.org/docs/stable/generated/torch.nn.MaxPool2d.html#torch.nn.MaxPoo!2:!

) Pooling Layers

Example: Max pooling

Stride window across image but perform per-patch max operation
200 150 150
X(0:2,0:2) = (100 50 100 EZ) max(0:20:2) = 200
25 25 10
How many learned
parameters does
this layer have?

None!

) Max Pooling

- makes the representations spatially smaller
- saves computation (GPU mem & speed), allows go deeper

- operates over each activation map independently:

224x224x64
112x112x64

pool

R

|

— 112
downsampling
112

Pooling with Tensors

Since the output of convolution and pooling layers are (multi-channel) images,
we can sequence them just as any other layer

Convolution Pooling
Layer Layer

Image

Geo

ch=

Combining Convolution & Pooling Layers

This combination adds some invariance to translation of the features

If feature (such as beak) translated a little bit, output values still
remain the same

N

Convolution Pooling
Layer Layer

) Invariance

Convolution by itself has the property of equivariance

If feature (such as beak) translated a little bit, output values move by the

same translation

» Invariance vs. Equivariance

Simple
Convolutional

Neural
Networks

Since the output of convolution and pooling layers are (multi-channel) images,
we can sequence them just as any other layer

Convolution Pooling
Layer Layer

Convolutional Neural Networks (CNNs)

| |
: ' Useful,
' ' lower-
: : dimensional
| |
| |
/ j 1’4
| B |
| |
| |
| |
| |
| |

features

‘S%____

)

Convolution +
Non-Linear
Layer

Convolution +
Non-Linear
Layer

Pooling
Layer

Alternating Convolution and Pooling

[[[l

[[[|

[[[l

[[[|

[42%7 [[[Vo |

[[[|

I I | /7 /4 | Loss
[[[’ |

j _/ |) j

| T | | |

|) | T

I Convolution + | _ I Convolution + | Fully

| Non-Linear ! FPo°lind | Non.Linear | Connected
| Layer | Layer Layer : Layers

l [l

Adding a Fully Connected Layer

Fully
Connected

Layers

Convolution +
Non-Linear
Layer

- e e e e e o)) e e G G G G @G &

‘MI“WV g

NE S 5

N Po -
0
lllllllllllllll m
— — + [o
A c 2
S8 5. I
I - [} QO
mm ST > 2
—— O 1+ @® g
) > C o
ﬁ 2s- I
o O
IIIIIIIIIIIIIIIIII 14

Input -

=—> Predictions
Image

Convolutional Neural
Networks

/

Input

Image CNN —» Predictions

Typical Depiction of CNNs

These architectures have existed since 1980s

C3: f. maps 16@10x10
INPUT C1: feature maps S4: f. maps 16@5x5

6@28x28
32x32 @28x S2: f. maps
6@14x14

©2:1ayer Fe: layer OUTPUT
120 ar Y 40

‘ Full coanection ‘ Gaussian connections
Convolutions Subsampling Convolutions Subsampling Full connection

Image Credit: Yann LeCun, Kevin Murrhy

LeNet Architecture

Handwriting Recognition

m

™M

m

Image Credit:
Yann LeCun

-@nm

Translation Equivariance (Conv Layers) & Invariance (Output)

Ladii

=

[
i

TR

"
.

Image Credit:

|

(Some) Rotation Invariance

Image Credit:
Yann LeCun

(Some) Scale Invariance

RESEARCH

Image Credit:

Yann LeCun

RELU RELU RELU RELU RELU RELU
CONV lCONVl CONV lCONVl CONV lCONVl
R by b v

; IBE =

truck

airplane

ship

horse

= =
= =
, =
- =
= |
5 a|=
= =
= =
= -

BEAYANGYNE

3
i

i

AEESEEEE

A More Modern Canonical CNN

Advanced

Convolutional
Networks

The ImageNet dataset contams 14 197, 122 annotated |mages accordmg to the
WordNet hierarchy. ImageNet Large Scale Visual Recognition Challenge (ILSVRC)
is a benchmark for image classification and object detection based on the dataset.

Benchmarking Models

The Importance of

VCGG-16

AlexMet

TOP 1 ACCURACY

From: https://paperswithcode.com

Benchmarks

Top 1 Accuracy

NASMET-AlG)
ResMet-152

FixResNeXt-101 32x48d

All models

VIT-G/14

CoiCa (finetuned)

30 282

Case Studies
- AlexNet

- VGG

- GoogLeNet

First CNN-based winner [1521ayers| [152 tayers| [152 ayers|

16.4

11.7 | 19 layers ‘ | 22 layers i

- ResNet o 57
5.1
I BN N H B =
2010 2011 2012 2013 2014 2014 2015 2016 2017 Human
Linetal Sanchez & | Krizhevskyetal| Zeiler & Simonyan & Szegedy et al He etal Shaoetal Hu et al Russakowvsky et al
Perronnin (AlexNet) Fergus Zisserman (VGG) (GoogleNet) (ResNet) {SENet)

Also.... - DenseNet
- SENet - MobileNets
- Wide ResNet - NASNet
- ResNeXT - EfficientNet
- ConvNeXt v1/v2

) The Space of CNN Architectures

AlexNet - Architecture

dense | [dense)

h 128 Max 1|
l<trige Max Max pooling 2048
Uof a pooling pooling

From: Krizhevsky et al., ImageNet Classification with Deep ConvolutionalNeural Networks, 2012.

%lia
[]
Geor §°

Tech

Case Study: AlexNet

[Krizhevsky et al. 2012]

Architecture:
CONV1
MAX POOL1
NORM1
CONV2
MAX POOL2
NORM2
CONV3
CONV4
CONV5

Max POOL3

Figure copyright Alex Krizhevsky, llya Sutskever, and Geoffrey Hinton, 2012. Reproduced with permission.

) AlexNet — Layers and Key Aspects

204 2048

1 N
ZZR Stride Max 128 Max

of 4 pooling pooling

Input: 227x227x3 images
First layer (CONV1): 96 11x11 filters applied at stride 4 W=W-Fraris~i
==

Q: what is the output volume size? Hint: (227-11)/4+1 =55

From: Slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231r,

) AlexNet — Layers and Key Aspects

192 192 128 Max

pooling 2%4 2048

1 N\~
222& Stride Max 128 Max
“of 4 pooling pooling

Input: 227x227x3 images
First layer (CONV1): 96 11x11 filters applied at stride 4 W=W-F+2P)/S+1
==

Qutput volume [55x55x96] 227

— - F 55 X 55
227 I Ij
96

3

From: Slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231r

) AlexNet — Layers and Key Aspects

\< b 192 192 128 Max
: 204
2248\0liStride Max 128 Max pooling

Usf 4 pooling pooling

Input: 227x227x3 images

First layer (CONV1): 96 11x11 filters applied at stride 4
==

Output volume [55x55x96]

— MM xMN

4
i

Q: What is the total number of parameters in this layer? /

&

From: Slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231r

) AlexNet — Layers and Key Aspects

1 X X LI
ing 204 2048
22:& Stride Max 128 Max poolin
“of 4 pooling pooling

Input: 227x227x3 images

First layer (CONV1): 96 11x11 filters applied at stride 4 /

= [D 1x 11
Output volume [55x55x96]

Parameters: (11113 + 1)"96 = 35K /

3

From: Slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231r,

) AlexNet — Layers and Key Aspects

Full (simplified) AlexNet architecture:

[224%224x3] INPUT

[55x55x96) CONV1: 96 11x11 filters at stride 4, pad 0
[27x27x96]) MAX POOL1: 3x3 filters at stride 2
[27x27x96] NORM1: Normalization layer
[27x27x256] CONV2: 256 5x5 filters at stride 1, pad 2
[13x13x256] MAX POOL2: 3x3 filters at stride 2
[13x13x256] NORM2: Normalization layer
[13x13x384] CONV3: 384 3x3 filters at stride 1, pad 1
[13x13x384] CONV4: 384 3x3 filters at stride 1, pad 1
[13x13x256] CONVS5: 256 3x3 filters at stride 1, pad 1
[6x6x256] MAX POOL3: 3x3 filters at stride 2

[4096) 4096 neurons

[4096] 4096 neurons

[1000] 1000 neurons (class scores)

78 \dense

128 204

Ny
=]

dense dense)

AN\ 000

\s 128 Max
28\\listride Max 128 Max pooling
“of 4 pooling pooling

204 2048

Key aspects:
RelLU instead of sigmoid or tanh
Specialized normalization layers
PCA-based data augmentation
Dropout
Ensembling

From: Slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231r

AlexNet — Layers and Key Aspects

— =
s] | Foo]
=1
Small filters, Deeper networks
81 (AlexNet) — e w—]
ayers (AlexNe ___
-> 16 - 19 layers (VGG16Net)
[i] [R]
Only 3x3 CONYV stride 1, pad 1
and 2x2 MAX POOL stride 2 —= | = .
11.7% top 5 error in ILSVRC'13 (ZFNet) — | SN
-> 7.3% top 5 error in ILSVRC'14 —
AlexNet VGG16 VGG19

From: Slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231r,

) VGGNet Ge%=

O

1 Softmas] | FC 4006 |
[FC 1000] I T aoE]
CEE=E—1 | Foo]
=1
Q: Why use smaller filters? (3x3 conv)
——
=1
Stack of three 3.*{3 conv (str_lde 1_) layers e
has same effective receptive field as = [——
one 7x7 conv layer =
| 1 1 o |
_ _ o : :
Q: What is the eﬁep‘cwe receptive field of = — e
three 3x3 conv (stride 1) layers?
C e] [ot] []
AlexNet VGG16 VGG19

From: Slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231r

Sofmas

I SR] | FC 4006 |
1 FC 1000 |]]
| FC 4096 1 | Pl |
Q: What is the effective receptive field
of three 3x3 conv (stride 1) layers?
— e —
 — s —
Input Al A2 A3
M T 1711]
| == [[T | Ted]
AT D 1
|| | L1+ |
-—--—-_-.__Jl_ N T [P 1 [P]
..-—--""""'T'_'
o o e [I S W—
Conv1 (3x3) Conv2 (3x3) Conva (3x3) Lo] [b]

: .\ VGG16 VGG19
But deeper, more non-linearities

And fewer parameters: 3 * (32C2) vs.
72C2 for C channels per layer

From: Slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231r

INPUT: [224x224x3] memory: 224224*3=150K params:0 (Notcounting biases)| X T ONer Configuation -
CONV3-64: [224x224x64] memory. 2247224°64=3.2M params: (3"3"3)°64 = 1,728 ITweight | 11 weight | 13 weight | 16weight | 16 weight | 19 weight
CONV3-64: [224x224x64] memory: 224*224*64=3.2M params: (3*3'64)"64 = 36,864 layers layers | layers layers layers layers
POOL2: [1 12)(112)(64] memory. 1 127112764=800K params. 0 convi-64 | conv3-64 mpl:oii'ziﬁz 224&;1}‘2116131@&) conv3-64 conv3-64
CONV3-128: [112x112x128] memory: 112*112*128=1.6M params: (3*3"64)"128 = 73,728 LRN comv3.64 | comv3-64 | comv3-64 ‘ conv3-64
CONV3-128: [112x112x128] memory: 112*112*128=1.6M params: (3*3"128)*128 = 147 456 maxpool
POOL2: [56)(55)(128] memory: 56*56"128=400K params: 0 conv3-128 ‘ conv3-128 ‘ con\:s;-igg con\ig-gg ‘ con\j-}sg ‘ comig-gg
CONV3-256: [56x56x256] memory: 56°56°256=800K params: (3*3*128)"256 = 294,912 e e
CONV3-256: [56}(56)(256] memory. 56%56%256=800K params: (3*3*256)*256 = 589,824 conv3-256 | conv3-2356 [conv3-256 | conv3-236 | conv3-256 | conv3-236
CONV3-256: [56x56x256] memory: 56°56*256=800K params: (3*3*256)*256 = 589,824 conv3-256 | conv3-256 | conv3-256 | convi-256 | conv3-256 | comv3-236
POOL2: [28x28x256] memory: 28°28256=200K params: 0 convi-256 | com3-256 | com 230
CONV3-512: [28x28x512] memory: 28°28°512=400K params: (3"3*256)*512 = 1,179,648 maxpool
CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*512)*512 = 2,359,296 Egﬁ“g:g zgﬁ:;:%g 2211232}3 Egiﬁzg zgﬁ:::%g Egﬁ:gzg
CONV3-512: [28x28x512] memory: 28°28*512=400K params: (3*3*512)*512 = 2,359,296 ; T : convl512 | conva5i2 | com3-512
POOL2: [14x14x512] memory: 14*14*512=100K params: 0 conv3-512
CONV3-512: [14x14x512] memory: 14"14"512=100K params: (3"3"512)*512 = 2,359,296 S =D . illgaxpool s D _——
CONV3-512: [14x14x512] memory: 14*14°512=100K params: (3*3*512)*512 = 2,359,296 ovasls | comasir | comasis | comasia | comasiz | comasia
CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3"3*512)*512 = 2,359,296 convl-512 | conv3-512 | conv3-512
POOLZ: [Tx7x512] memory: 7*7*512=25K params: 0 conv3-512
FC: [1x1x4096] memory: 4096 params: 7*7*512*4096 = 102,760,448 ?gxfg;’é
FC: [1x1x4096] memory: 4096 params: 4096*4096 = 16,777,216 FC4006
FC: [1x1x1000] memory: 1000 params: 4096*1000 = 4,096,000 F(;;IOOO

SoIt-max

Table 2: Number of parameters (in millions).
[Network [AAIRN[B | C [D [E |
| Number of parameters | 133 | 133 | 134 [138 | 144 |

From: Simonyan & Zimmerman, Very Deep Convolutional Networks for Large-Scale Image Recognition
From: Slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231

INPUT: [224x224x3] memory: 224224*3=150K params:0 (Notcounting biases)|
CONV3-64: [224x224x64] memory. 2247224°64=3.2M params: (3*3*3)"64 = 1,728
CONV3-64. [224x224x64] memory: 224°224°64=3.2M params: (3"3"64)"64 = 36,864
POOLZ: [112x112x64] memory: 112*112°64=800K params: 0

CONV3-128: [112x112x128] memory: 112*112*128=1.6M params: (3"3"64)*128 = 73,728
CONV3-128: [112x112x128] memory: 112*112*128=1.6M params: (3"3"128)"128 = 147 456]
POOLZ2: [56x56x128] memory: 56*56*128=400K params: 0

CONV3-256: [56x56x256] memory: 56756"256=800K params: (3"3"128)"256 = 294,912
CONV3-256: [56x56x256] memory: 56°56256=800K params: (3"3*256)*256 = 589,824
CONV3-256: [56x56x256] memory: 56°56*256=800K params: (3*3*256)*256 = 589,824
POOL2: [28x28x256] memory: 28°28°256=200K params: 0

CONV3-512: [28x28x512] memory: 28°28°512=400K params: (3"3*256)*512 = 1,179,648
CONV3-512: [28x28x512] memory: 28"28"512=400K params: (3"3"512)"512 = 2,359,296
CONV3-512: [28x28x512] memory: 28"28"512=400K params: (3"3"512)*512 = 2,359,296
POOL2: [14x14x512] memory: 14*14*512=100K params: 0

CONV3-512: [14x14x512] memory: 14"14"512=100K params: (3"3*512)*512 = 2,359,296
CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512 = 2,359,296
CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3"3*512)*512 = 2,359,296
POOL2: [Tx7x512] memory: 7*7"512=25K params: 0

FC: [1x1x4096] memory: 4096 params: 7*7*512*4096 = 102,760,448

FC: [1x1x4096] memory: 4096 params: 4096*4096 = 16,777,216

FC: [1x1x1000] memory: 1000 params: 4096*1000 = 4,096,000

Most memory usage in
convolution layers

Most parameters in FC
layers

From: Simonyan & Zimmerman, Very Deep Convolutional Networks for Large-Scale Image Recognition
From: Slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231

Parameters and Memory

Case Study: VGGNet

FC
L Softmax 1 1| 4006 | |
[Simonyan and Zisserman, 2014] w o 1 =)
fe7 | FL 4008 1 | Pogi 1
Details: o8
- ILSVRC'14 2nd in classification, 1st in o
localization com5-2
- Similar training procedure as Krizhevsky e
2012 conmed-3
- No Local Response Normalisation (LRN) o o
- Use VGG16 or VGG19 (VGG19 only feo /== =
slightly better, more memory) e
- Use ensembles for best results conve - Ce 1 =1
- FC7 features generalize well to other e o2
tasks C—1 C—
Still very expensive! " M
TOTAL memory: 24M * 4 bytes ~= 96MB / image AlexNet VGG16 VGG19

(only forward! ~*2 for bwd)
TOTAL params: 138M parameters

But have become deeper and more complex

Conv MaxPool
1x1+1(S) 3x3+1(S)

From: Szegedy et al. Going deeper with convolutions

Georg l:

DY Inception Architecture

Case Study: GooglLeNet =
[Szegedy et al., 2014] _":’
Deeper networks, focus on %
computational efficiency T E

- ILSVRC’14 classification winner j =
(6.7% top 5 error) 3 =

- 22 layers S

- Only 5 million parameters! “£5E
12x less than AlexNet e
27X less than VGG-16 B

- Efficient “Inception” module ﬁ’

- No FC layers ::.

) Inception Architecture

Case Study: GooglLeNet >
[Szegedy et al., 2014] _“ =
_”':" ==
Deeper networks, focus on - -
computational efficiency E 0 o
Stem Network: aggressively reduce u =
- |ILSVRC'14 classification winner the input feature volume T
(6.7% top 5 error) - Conv 7 x 7 x 64 with stride 2 -
- 22 |ayer5 - MaxPool ‘ ,bi-?ﬂ_ﬂ
- Only 5 million parameters! -Conv1x1x64 ==l
-Conv3x3x192
12x less than AlexNet - MaxPool TEET
27x less than VGG-16 B
- Efficient “Inception” module Reduce 224 x 224 spatial solution ;ﬁﬂ
- No FC layers to 28 x 28 with just 418 MFLOP! 2
(Comparing to 7485 MFLOP of VGG) &

Inception Architecture

Key idea: Repeated blocks and multi-scale features

Filter
concatenation

Previous layer

From: Szegedy et al. Going deeper with convolutions

Inception Module

Case Study: GoogLeNet ES

[Szegedy et al., 2014] I "" =
“Inception module™: design a | \—::“— -
good local network topology : ——
(network within a network) and =5
then stack these modules on sr=mle
top of each other =
| | _ Inception module “RED
Multiple conv filter size =
diversifies learned features ﬁ“
=5

From: slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

) Inception Module Geordh

Tech]

Case Study: GooglLeNet

[Szegedy et al., 2014]

Inception module topme S
Filter B]
concatenation e 1=
Previous Layer ==
Uses 1x1 “Bottleneck” layers to reduce e
. - - Lo]
channel dimension before expensive :
x H S : . =
conv (we will revisit this with ResNet!) .

From: slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Inception Module

1x1 CONV

o6 with 32 filters 56

>

(each filter has size
1x1x64, and performs a
64-dimensional dot

56 product)

o6

64 32

From: slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Geo S

) 1x1 Convolutions Tech|)

Alternatively, interpret it as applying
the same FC layer on each input pixel

| i fC
1x1x64 1x1x32

1x1 CONV
56 with 32 filters

-
-

(each filter has size
1x1x64, and performs a
64-dimensional dot

56 product)

o6

56

64 32

From: slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Geo S

) 1x1 Convolutions Tech|)

Case Study: GooglLeNet

[Szegedy et al., 2014]

Hx W AvgPool

1x1xc

Full GoogLeNet
architecture

FHE

M}ﬂ(
+

E-;&tﬂaxz

Note: after the last convolutional layer, a global
average pooling layer is used that spatially averages
across each feature map, before final FC layer. No
longer multiple expensive FC layers!

(Also used in ResNet)

Classifier output mﬂm

From: slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

1x1 Convolutions

Case Study: GooglLeNet

[Szegedy et al., 2014]

Full GoogLeNet
architecture

u*ﬂ*ﬂé :

A —
N

Auxiliary classification outputs to inject additional gradient at lower layers (AvgPool-
1x1Conv-FC-FC-Softmax)

Why?

From: slides by Fei-Fei Li, Justin Johnson, Serena Yeung ‘
> 1x1 Convolutions Georgh:

Case Study: GooglLeNet

[Szegedy et al., 2014]

Deeper networks, with computational
efficiency

- 22 layers

- Efficient “Inception” module

- Avoids expensive FC layers

- 12x less params than AlexNet

- 27x less params than VGG-16 Inception module \"‘
- ILSVRC'14 classification winner .
(6.7% top 5 error) w—.J

=

From: slides by Fei-Fei Li, Justin Johnson, Serena Yeung

1x1 Convolutions

ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners

“‘Revolution of Depth”

30 282
152 layers| |152 layers| [152 layers
25
20
16.4
15
11.7 |19 layers| |22 layers
10
7.3
5.1
5 3.6
HEm =B
2010 2011 2012 2013 2014 2014 2015 2016 2017 Human
Lin et al Sanchez & Krizhevskyetal Zeiler & Simonyan & Szegedy et a He et al Shao et al Hu et al Russakovsky et al

Perronnin (AlexNet) Fergus Zisserman (VGG) (GoogleNet (ResNet) (SENet)

Revolution of Depth

The Challenge of Depth

S6-layer

20-layer

—
[=]
T

56-layer

test error (%)

—
=
o~

S
o
=
D

20
o
=
<
=

20-layer

3 4 5 6 2 3

p
iter. (1e4) iter. (led)
From: He et al., Deep Residual Learning for Image Recognition

Optimizing very deep networks is challenging! ﬂ
Geor

'&
[]
Techﬁb

[He et al., 2015]

A deeper model can emulate a shallower model: copy
layers from shallower model, set extra layers to identity

Thus deeper models should do at least as good as shallow H(x)
models

Deeper models are harder to optimize. They don’t learn
identity functions (no-op) to emulate shallow models

T
relu T relu

f

X

Solution: Change the network so learning identity 1
functions (no-op) as extra layers is easy X

) Skip Conections

[He et al., 2015]

Solution: Change the network so learning identity functions as extra layers is easy

HX) = FQ) + T | |dentity mapping:
— X)= X X relu = ¥ | =
o) m: F00 + x H(x) = xif F(x) =0
T Use layers to
X fit residual
[relu ") Jrt dentity F(x) = H(x) - X
instead of
$ H(x) directly
X X
“Plain” layers Residual block

) Skip Connections

Case Study: ResNet

[He et al., 2015]

Full ResNet architecture:
Stack residual blocks
Every residual block has
two 3x3 conv layers

F(x) AIrelu

X
Residual block

) ResNet Details

X
identity

Case Study: ResNet

[He et al., 2015]

L_3x3 cony _b12

— _3x3 cony, 512
O

Full ResNet architecture:
- Stack residual blocks
- Every residual block has
two 3x3 conv layers
- Periodically, double # of

3x3 conv, 128

filters and downsample F(x) Trelu - X fiters, /2
spatially using stride 2 identity Spaialy with
(/2 in each dimension)

3x3 conv, 64

Reduce the activation
volume by half.

filters

Residual block

) ResNet Details

Case Study: ResNet

[He et al., 2015]

Full ResNet architecture:

- Stack residual blocks

- Every residual block has
two 3x3 conv layers

- Periodically, double # of
filters and downsample F(x) Trelu X
spatially using stride 2 identity
(/2 in each dimension)
Reduce the activation
volume by half.

- Additional conv layer at Residual block
the beginning (stem)

‘«——— Beginning

 —err— conv layer

Geo S

) Skip Conections Tech))

[He et al., 2015]

28x28x256
output

For deeper networks (ResNet-
50+), use “bottleneck” layer to
improve efficiency (similar to
GoogLeNet)

28x28x256
input

Bottleneck Layers

>>> import torch

>>> from torchvision.models import resnetl8

>>> model = resnet18()

>>> summary(model2, (3, 224, 224), device="cpu')

layer name | output size 18-layer 34-layer Layer (type) Output Shape e
convl 2 ST e e e
Conv2d-1 [-1, 64, 112, 112] 9,408

BatchNorm2d-2 [-1, 64, 112, 112] 128

ReLU-3 [-1, 64, 112, 112])

conv2_x 5656 3% 3, 64 33, 64 MaxPool2d-4 [-1, 64, 56, 56] 0
e) ’ Conv2d-5 [-1, 64, 56, 56] 36,864

BatchNorm2d-6 [-1, 64, 56, 56] 128

ReLU-7 [-1, 64, 56, 56] %)

Conv2d-8 [-1, 64, 56, 56] 36,864

BatchNorm2d-9 [-1, 64, 56, 56] 128

ReLU-10 [-1, 64, 56, 56])

BasicBlock-11 [-1, 64, 56, 56] (%]

Conv2d-12 [-1, 64, 56, 56] 36,864

w3 9 %3, 2 BatchNorm2d-13 [-1, 64, 56, 56] 128

conv4_x x 14 IO P IO 3 RelLU-14 [-1, 64, 56, 56])
Y X3 YX 3, 2D Conv2d-15 [-1, 64, 56, 56] 36,864

BatchNorm2d-16 [-1, 64, 56, 56] 128

RelU-17 [-1, 64, 56, 56])

BasicBlock-18 [-1, 64, 56, 56] (7]

Conv2d-19 [-1, 128, 28, 28] 73,728

BatchNorm2d-20 [-1, 128, 28, 28] 256

RelU-21 [-1, 128, 28, 28] %)

Conv2d-22 [-1

, 128, 28, 28] 147,456

.

- av
FLOPs 3.6x10°
ResNet Details

Training ResNet in practice:

- Batch Normalization after every CONV layer

- Xawvier initialization from He et al.

- SGD + Momentum

- Learning rate: 0.1, divided by 10 when validation error plateaus
- Mini-batch size 256

- Weight decay of 1e-5

- No dropout used

) Training ResNets

Computational Complexity

Inception-v4
Inception-v3
ResNet-50

ResNet-101
. ResNet-34
ﬂ ResNet-18

GoogLeNet
ENet

° BN-NIN

ResNet-152
VGG-16

g
>
9
©
“
3
V)
V)
]
—
o
(o]
=

>
=
>
o
[
[
=
=
o
1]
—
o
o
fit

125M ---155M

BN-AlexNet

et W et e »\fb A0 A9 o
\34* +$ AW e G AlexNet

e >
o° Q\eﬁ NC \‘Q\e$@ee

15 20 25
Operations [G-Ops]

From: An Analysis Of Deep Neural Network Models For Practical Applicati 0'

(=]

Geor §
Tech|]

Wide Residual Networks

[Zagoruyko et al. 2016]

- Argues that residuals are the
important factor, not depth
- Use wider residual blocks (F x k filters
instead of F filters in each layer) 1 1
- 50-layer wide ResNet outperforms
152-layer original ResNet
- Increasing width instead of depth
more computationally efficient Basic residual block Wide residual block
(parallelizable)

) Wide Residual Networks

Densely Connected Convolutional Networks (DenseNet)———
[Huang et al. 2017] 4 | FC

I Pool

- Dense blocks where each layer is
connected to every other layer in
feedforward fashion

- Alleviates vanishing gradient,
strengthens feature propagation,
encourages feature reuse

- Showed that shallow 50-layer
network can outperform deeper
152 layer ResNet

| DenseBlock 3

I Pool I

| Dense Block 2 |

| Pool |

| Dense Block 1 |

| Input |

Dense Block

) DenseNet Geordy \

ConvNeXt (2022)

* Do the reading for discussion!

202401)

Several ways to learn
architectures:

Evolutionary learning
and reinforcement
learning

test accuracy (%)

Prune over-
parameterized
networks

Learning of
repeated blocks
typical

wall ime (hours)

From: https://ai.googleblog.com/2018/03/using-evolutionary-automl-to-discover.html

) Evolving Architectures and AutoML

Learning Transferable Architectures for Scalable Image

Recognition
[Zoph et al. 2017]

Applying neural architecture search (NAS) to
a large dataset like ImageNet is expensive
Design a search space of building blocks
(“cells”) that can be flexibly stacked

- NASNet: Use NAS to find best cell structure
on smaller CIFAR-10 dataset, then transfer Normal Cel
architecture to ImageNet

Many follow-up works in this gﬁ%\ et \| e]\‘lmmﬂmmnmu oot g e
space e.g. AmoebaNet (Real et & _\ e B s B s B O
al. 2019) and ENAS (Pham, S L N S N
Guan et al. 2018) : [epest B mes

) Evolving Architectures and AutoML

Convolutional neural networks (CNNs) stack pooling, convolution, non-
linearities, and fully connected (FC) layers

Feature engineering => architecture engineering!
Tons of small details and tips/tricks

Considerations: Memory, compute/FLO, dimensionality reduction,
diversity of features, number of parameters/capacity, etc.

) Summary

Transfer

Learning &
Generalization

Georgia
groia |

Reality

Multi-class Logistic
Regression

| Softmax |

horse “person

| FC HxWx3 |

From: slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

) Generalization Gegrgia |

=

AlexNet Reality

Softmax |

FC 1000 |

FC 4096 |

- horse “person
Fcaose —— Mmodel class —__ ‘ ‘

Pool I

)~ -

Pool I

Pool I

Input |

From: slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Generalization Gegrgia |

=

VGG19 R
.
Qzﬁ‘/ Reality
model class —
Q horse perﬂ
;\\O
<L
Qx§ o
N
o
S %
—T— %%
(9,;.
()
>

From: slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Generalization Gegrgia |

=

What if we don’t have
enough data?

INESgE I T Eia™

Step 1: Train on large-scale

dataset
%ll =—» Predictions

Convolutional Neural
Networks

|y

Input
Image

Transfer Learning — Training on Large Dataset Seg%ia|

=

Step 2: Take your custom data and initialize the network with weights

trained in Step 1
. ||¢
| %

Replace last layer with new fully-connected for
output nodes per new category

Initializing with Pre-Trained Network Ge°’9'aQ

Step 3: (Continue to) train on new dataset
Finetune: Update all parameters

Freeze feature layer: Update only last layer weights (used when not

enough data)

ol

Replace last layer with new fully-connected for
output nodes per new category

Finetuning on New Dataset Gograla |

=

This works
extremely well! It

was surprising upon
discovery. ‘UU Best state of the art 00 CNN off-the-shelf 00 CNN off-the-shelf + augmentation 00 Specialized CNN
100}
Features learned 0 GEEE
for 1000 object H HHIH HIH
categories will O H
work well for Py e it g1 o
1001st s i e
C-‘ab.o " & .
Generalizes even
across tasks From: Razavian et al., CNN Features off-the-shelf: an Astounding
(classification to Baseline for Recognition

object detection)

Surprising Effectiveness of Transfer Learning Seg2ia/

=

Learning with Less Labels

But it doesn’t always work that
well!

If the source dataset you train on
is very different from the target
dataset, transfer learning is not as
effective

If you have enough data for the
target domain, it just results in
faster convergence

See He et al., “Rethinking
ImageNet Pre-training”

Georgia I&
Tech

Effectiveness of More Data

@—@ Fine-tuning
@—@ No Fine-tuning

10 30 100 300

Number of examples (in millions) —

From: Revisiting the Unreasonable
Effectiveness of Data
https://ai.googleblog.com/2017/07/revisiting-
unreasonable-effectiveness.html

)
©
o
i
o
s]
=
=
—
e
P
w
c
o
o
©
-
©
P
1]
c
(T}
&)

Small Data P | Redi Irreducible
. ower-law Region o
Region J Error

Region
Best Guess Error

Irreducible Error

Training Data Set Size (Log-scale)

Figure 6: Sketch of power-law learning curves

From: Hestness et al., Deep Learning Scaling Is
Predictable

Georgla I&

There is a large number of different low-labeled settings in DL research

Setting Source Target Shift Type
Semi-supervised Single labeled Single unlabeled None
Domain Adaptation Single labeled Single unlabeled | Non-semantic
Domain Generalization Multiple labeled Unknown Non-semantic
Cross-Task Transfer Single labeled Single unlabeled Semantic
Few-Shot Learning Single labeled Single few-labeled Semantic
Un/Self-Supervised Single unlabeled Many labeled Both/Task

Non-Semantic Shift Semantic Shift
@ ;'\ i 51 <
g |

) Dealing with Low-Labeled Situations Ge°r9-a@

	Slide 1: CS 4644-DL / 7643-A Zsolt Kira
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73: ConvNeXt (2022)
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87

