
Machine Learning Applications

CS 4644-DL / 7643-A
ZSOLT KIRA

Topics:

• Convolutional Neural Networks

Administrivia

• Assignment 2 – Due June 22nd

• Implement convolutional neural networks

• Resources (in addition to lectures):

• DL book: Convolutional Networks
• CNN notes https://www.cc.gatech.edu/classes/AY2022/cs7643_spring/assets/L10_cnns_notes.pdf

• Backprop notes
https://www.cc.gatech.edu/classes/AY2023/cs7643_spring/assets/L10_cnns_backprop_notes.pdf

• HW2 Tutorial, Conv backward Coming Soon

• Slower OMSCS lectures on dropbox: Module 2 Lessons 5-6 (M2L5/M2L6)
(https://www.dropbox.com/sh/iviro188gq0b4vs/AADdHxX_Uy1TkpF_yvIzX0nPa?dl=0)

• Project

• Proposal planning session Wed.

• Proposal due June 15th

• Reminder: Please do readings announced for discussions!

https://www.deeplearningbook.org/contents/convnets.html
https://www.cc.gatech.edu/classes/AY2022/cs7643_spring/assets/L10_cnns_notes.pdf
https://www.cc.gatech.edu/classes/AY2023/cs7643_spring/assets/L10_cnns_backprop_notes.pdf
https://www.dropbox.com/sh/iviro188gq0b4vs/AADdHxX_Uy1TkpF_yvIzX0nPa?dl=0

Cross-Correlation

K’ =
1 0 − 1
2 0 − 2
1 0 − 1

X(0: 2,0: 2) =
200 150 150
100 50 100
25 25 10

X(0:2,0:2) ⋅ 𝐾′ = 65

Dot product
(element-wise multiply and sum)

+ bias

=

𝒂=𝟎

𝒌𝟏−𝟏

𝒃=𝟎

𝒌𝟐−𝟏

𝒙 𝒓 + 𝒂, 𝒄 + 𝒃 𝒌(𝒂, 𝒃)𝒚 𝒓, 𝒄 = (𝒙 ∗ 𝒌)(𝒓, 𝒄)

Number of Parameters

Number of parameters with N filters is: 𝑵 ∗ (𝒌𝟏∗ 𝒌𝟐 ∗ 𝟑 + 𝟏)

Example:

𝒌𝟏 = 𝟑, 𝒌𝟐 = 𝟑, 𝑵 = 𝟒 𝒊𝒏𝒑𝒖𝒕 𝒄𝒉𝒂𝒏𝒏𝒆𝒍𝒔 = 𝟑, then 𝟑 ∗ 𝟑 ∗ 𝟑 + 𝟏 ∗ 𝟒 =112

𝒌𝟐𝟑

𝒌
𝟏

𝟒

𝑾 − 𝒌𝟐 + 𝟏𝑯
−

𝒌
𝟏

+
𝟏

𝑾

𝟑

𝑯

Kernels
Feature MapsImage

Chain Rule over all Output Pixels

Need to incorporate all upstream

gradients:
Chain Rule:

𝝏𝑳

𝝏𝒌(𝒂, 𝒃)
=

𝒓=𝟎

𝑯−𝟏

𝒄=𝟎

𝑾−𝟏
𝝏𝑳

𝝏𝒚(𝒓, 𝒄)

𝝏𝒚(𝒓, 𝒄)

𝝏𝒌(𝒂, 𝒃)

𝑾 = 𝟓

𝑯 = 𝟓 𝒌𝟏 = 𝟑

𝒌𝟐 = 𝟑

(𝟎, 𝟎)

(𝑯 − 𝟏, 𝑾 − 𝟏)

(𝟎, 𝟎)

(𝒌𝟏 − 𝟏, 𝒌𝟐 − 𝟏)

Sum over

all output

pixels

Upstream

gradient

(known)

We will

compute

𝝏𝑳

𝝏𝒚(𝟎, 𝟎)
,

𝝏𝑳

𝝏𝒚(𝟎, 𝟏)
, … ,

𝝏𝑳

𝝏𝒚(𝑯, 𝑾)

Gradients and Cross-Correlation

𝑾

𝑯

𝑾

𝑯
𝒌𝟏

𝒌𝟐

r,c

a,b

r,c

𝝏𝑳

𝝏𝒌(𝒂, 𝒃)
=

𝒓=𝟎

𝑯−𝟏

𝒄=𝟎

𝑾−𝟏
𝝏𝑳

𝝏𝒚 𝒓, 𝒄
𝒙(𝒓 + 𝒂, 𝒄 + 𝒃)

= 𝒙(𝒓 + 𝒂, 𝒄 + 𝒃)
𝝏𝒚(𝒓, 𝒄)

𝝏𝒌(𝒂, 𝒃)

r+a,

c+b

Gradients and Cross-Correlation

𝑾

𝑯

𝑾

𝑯

Does this look familiar?

Cross-correlation

between upstream

gradient and input!

(until 𝒌𝟏 × 𝒌𝟐 output)

𝒌𝟏

𝒌𝟐

r,c

a,b

r,c

𝝏𝑳

𝝏𝒌(𝒂, 𝒃)
=

𝒓=𝟎

𝑯−𝟏

𝒄=𝟎

𝑾−𝟏
𝝏𝑳

𝝏𝒚 𝒓, 𝒄
𝒙(𝒓 + 𝒂, 𝒄 + 𝒃)

= 𝒙(𝒓 + 𝒂, 𝒄 + 𝒃)
𝝏𝒚(𝒓, 𝒄)

𝝏𝒌(𝒂, 𝒃)

r+a,

c+b

What an Input Pixel Affects at Output

Gradient for input (to pass to prior layer)

Calculate one pixel at a time

What does this input pixel

affect at the output?

Neighborhood around it

(where part of the kernel

touches it)

𝑾 = 𝟓

𝑯 = 𝟓 𝒌𝟏 = 𝟑

𝒌𝟐 = 𝟑

(𝟎, 𝟎)

(𝑯 − 𝟏, 𝑾 − 𝟏)

(𝟎, 𝟎)

(𝒌𝟏 − 𝟏, 𝒌𝟐 − 𝟏)

𝝏𝑳

𝝏𝒙
=

𝝏𝑳

𝝏𝒚

𝝏𝒚

𝝏𝒙

r’,c’

𝝏𝑳

𝝏𝒙(𝒓′, 𝒄′)

Summing Gradient Contributions

𝝏𝑳

𝝏𝒙(𝒓′, 𝒄′)
=

𝑷𝒊𝒙𝒆𝒍𝒔 𝒑

𝝏𝑳

𝝏𝒚 𝒑

𝝏𝒚(𝒑)

𝝏𝒙 𝒓′, 𝒄′

𝝏𝑳

𝝏𝒙(𝒓′, 𝒄′)
=

𝒂=𝟎

𝒌𝟏−𝟏

𝒃=𝟎

𝒌𝟐−𝟏
𝝏𝑳

𝝏𝒚 ? , ?

𝝏𝒚(? , ?)

𝝏𝒙 𝒓′, 𝒄′

Chain rule for affected pixels (sum gradients):
𝒙 𝒓′, 𝒄′ ∗ 𝒌 𝟎, 𝟎 ⇒ 𝒚 𝒓′, 𝒄′
𝒙 𝒓′, 𝒄′ ∗ 𝒌 𝟏, 𝟏 ⇒ 𝒚 𝒓′ − 𝟏, 𝒄′ − 𝟏
…

𝒙 𝒓′, 𝒄′ ∗ 𝒌 𝒂, 𝒃 ⇒ 𝒚 𝒓′ − 𝒂, 𝒄′ − 𝒃

𝑾 = 𝟓

𝑯 = 𝟓

1 2

3 4

r’,c’

(𝒓′ − 𝒌𝟏 + 𝟏, 𝒄′ − 𝒌𝟐 + 𝟏)

r’,c’

1 2

3 4

𝑾 = 𝟓

𝑯 = 𝟓

1 2

3 4

r’,c’

Summing Gradient Contributions

𝝏𝑳

𝝏𝒙(𝒓′, 𝒄′)
=

𝑷𝒊𝒙𝒆𝒍𝒔 𝒑

𝝏𝑳

𝝏𝒚 𝒑

𝝏𝒚(𝒑)

𝝏𝒙 𝒓′, 𝒄′

𝝏𝑳

𝝏𝒙(𝒓′, 𝒄′)
=

𝒂=𝟎

𝒌𝟏−𝟏

𝒃=𝟎

𝒌𝟐−𝟏
𝝏𝑳

𝝏𝒚 𝒓′ − 𝒂, 𝒄′ − 𝒃

𝝏𝒚(𝒓′ − 𝒂, 𝒄′ − 𝒃)

𝝏𝒙 𝒓′, 𝒄′

Let’s derive it

analytically this time (as

opposed to visually)

Chain rule for affected pixels (sum gradients):

(𝒓′ − 𝒌𝟏 + 𝟏, 𝒄′ − 𝒌𝟐 + 𝟏)

r’,c’

1 2

3 4

Backwards is Convolution

Plugging in to earlier equation:

𝝏𝑳

𝝏𝒙(𝒓′, 𝒄′)
=

𝒂=𝟎

𝒌𝟏−𝟏

𝒃=𝟎

𝒌𝟐−𝟏
𝝏𝑳

𝝏𝒚 𝒓′ − 𝒂, 𝒄′ − 𝒃

𝝏𝒚(𝒓′ − 𝒂, 𝒄′ − 𝒃)

𝝏𝒙 𝒓′, 𝒄′

 =

𝒂=𝟎

𝒌𝟏−𝟏

𝒃=𝟎

𝒌𝟐−𝟏
𝝏𝑳

𝝏𝒚 𝒓′ − 𝒂, 𝒄′ − 𝒃
𝒌(𝒂, 𝒃)

Does this look familiar?

Convolution between

upstream gradient and

kernel!

(can implement by

flipping kernel and

cross- correlation)

Again, all operations can be

implemented via matrix

multiplications (same as FC layer)!

Summary

• Convolutions are mathematical descriptions of striding linear operation

• In practice, we implement cross-correlation neural networks! (still called

convolutional neural networks due to history)

• Can connect to convolutions via duality (flipping kernel)

• Convolution formulation has mathematical properties explored in ECE

• Duality for forwards and backwards:

• Forward: Cross-correlation

• Backwards w.r.t. K: Cross-correlation b/w upstream gradient and input

• Backwards w.r.t. X: Convolution b/w upstream gradient and kernel

• In practice implement via cross-correlation and flipped kernel

• All operations still implemented via efficient linear algebra (e.g. matrix-

matrix multiplication)

Pooling

Layers

Pooling Layers

Dimensionality reduction

is an important aspect of

machine learning

Can we make a layer to

explicitly down-sample

image or feature maps?

Yes! We call one class of

these operations pooling

operations

From: https://pytorch.org/docs/stable/generated/torch.nn.MaxPool2d.html#torch.nn.MaxPool2d

Max Pooling

Example: Max pooling

Stride window across image but perform per-patch max operation

𝑾 = 𝟓

𝑯
=

𝟓

X(𝟎: 𝟐, 𝟎: 𝟐) =
𝟐𝟎𝟎 𝟏𝟓𝟎 𝟏𝟓𝟎
𝟏𝟎𝟎 𝟓𝟎 𝟏𝟎𝟎
𝟐𝟓 𝟐𝟓 𝟏𝟎

max(0:2,0:2) = 𝟐𝟎𝟎

How many learned

parameters does

this layer have?

None!

Pooling with Tensors

From: Slides by CS 231n, Danfei Xu

Combining Convolution & Pooling Layers

Since the output of convolution and pooling layers are (multi-channel) images,

we can sequence them just as any other layer

Image
Convolution

Layer
Pooling

Layer

𝑾 = 𝟓

𝑯
=

𝟓

Invariance

This combination adds some invariance to translation of the features

If feature (such as beak) translated a little bit, output values still

remain the same

Image
Convolution

Layer
Pooling

Layer

𝑾 = 𝟓

𝑯
=

𝟓

Invariance vs. Equivariance

Convolution by itself has the property of equivariance

If feature (such as beak) translated a little bit, output values move by the

same translation

𝑾 = 𝟓

𝑯
=

𝟓

Simple

Convolutional

Neural

Networks

Combining Convolution & Pooling Layers

Since the output of convolution and pooling layers are (multi-channel) images,

we can sequence them just as any other layer

Image
Convolution

Layer
Pooling

Layer

𝑾 = 𝟓

𝑯
=

𝟓

Alternating Convolution and Pooling

Image

Convolution +

Non-Linear

Layer

Pooling

Layer

Convolution +

Non-Linear

Layer

Useful,

lower-

dimensional

features

Convolutional Neural Networks (CNNs)

Adding a Fully Connected Layer

Image
Pooling

Layer

Fully

Connected

Layers

Convolution +

Non-Linear

Layer

Convolution +

Non-Linear

Layer

Loss

Convolution +

Non-Linear

Layer

Convolution +

Non-Linear

Layer

Receptive Fields

Image
Pooling

Layer

Fully

Connected

Layers

Loss

Typical Depiction of CNNs

Input

Image
PredictionsCNN

Convolutional Neural

Networks

Input

Image
Predictions

LeNet Architecture

These architectures have existed since 1980s

INPUT
32x32

Convolutions SubsamplingConvolutions

C1: feature maps
6@28x28

Subsampling

S2: f. maps
6@14x14

S4: f. maps 16@5x5

C5: layer
120

C3: f. maps 16@10x10

F6: layer
 84

Full connection

Full connection

Gaussian connections

OUTPUT
 10

Image Credit: Yann LeCun, Kevin Murphy

Handwriting Recognition

Image Credit:

Yann LeCun

Translation Equivariance (Conv Layers) & Invariance (Output)

Image Credit:

Yann LeCun

(Some) Rotation Invariance

Image Credit:

Yann LeCun

(Some) Scale Invariance

Image Credit:

Yann LeCun

A More Modern Canonical CNN

Advanced

Convolutional

Networks

Benchmarking Models

From: https://paperswithcode.com

The Importance of Benchmarks

The Space of CNN Architectures

Case Studies
- AlexNet

- VGG

- GoogLeNet

- ResNet

Also....
- SENet

- Wide ResNet

- ResNeXT

- DenseNet

- MobileNets

- NASNet

- EfficientNet

- ConvNeXt v1/v2

AlexNet - Architecture

From: Krizhevsky et al., ImageNet Classification with Deep ConvolutionalNeural Networks, 2012.

AlexNet – Layers and Key Aspects

AlexNet – Layers and Key Aspects

From: Slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

AlexNet – Layers and Key Aspects

From: Slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

AlexNet – Layers and Key Aspects

From: Slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

AlexNet – Layers and Key Aspects

From: Slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

AlexNet – Layers and Key Aspects

From: Slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Key aspects:

ReLU instead of sigmoid or tanh

Specialized normalization layers

PCA-based data augmentation

Dropout

Ensembling

VGGNet

From: Slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

VGGNet

From: Slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

VGGNet

From: Slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

VGG

From: Simonyan & Zimmerman, Very Deep Convolutional Networks for Large-Scale Image Recognition

From: Slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Parameters and Memory

Most memory usage in

convolution layers

Most parameters in FC

layers

From: Simonyan & Zimmerman, Very Deep Convolutional Networks for Large-Scale Image Recognition

From: Slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

VGGNet

Inception Architecture

But have become deeper and more complex

From: Szegedy et al. Going deeper with convolutions

Inception Architecture

From: Szegedy et al. Going deeper with convolutions

Inception Architecture

From: Szegedy et al. Going deeper with convolutions

Inception Module

Key idea: Repeated blocks and multi-scale features

From: Szegedy et al. Going deeper with convolutions

Filter

concatenation

1x1

convolutions

3x3

convolutions

5x5

convolutions

3x3 max

pooling

Previous layer

Inception Module

From: slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Inception Module

From: slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

1x1 Convolutions

From: slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

1x1 Convolutions

From: slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

1x1 Convolutions

From: slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

1x1 Convolutions

Why?
From: slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

1x1 Convolutions

From: slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Revolution of Depth

The Challenge of Depth

From: He et al., Deep Residual Learning for Image Recognition

Optimizing very deep networks is challenging!

Skip Conections

Skip Connections

ResNet Details

ResNet Details

Skip Conections

Bottleneck Layers

ResNet Details

Training ResNets

Computational Complexity

From: An Analysis Of Deep Neural Network Models For Practical Applications

Wide Residual Networks

DenseNet

ConvNeXt (2022)

•Do the reading for discussion!

2024-01-16 Slides created for CS886 at UWaterloo 73

Evolving Architectures and AutoML

From: https://ai.googleblog.com/2018/03/using-evolutionary-automl-to-discover.html

Several ways to learn

architectures:

Evolutionary learning

and reinforcement

learning

Prune over-

parameterized

networks

Learning of

repeated blocks

typical

Evolving Architectures and AutoML

Summary

Convolutional neural networks (CNNs) stack pooling, convolution, non-

linearities, and fully connected (FC) layers

Feature engineering => architecture engineering!

Tons of small details and tips/tricks

Considerations: Memory, compute/FLO, dimensionality reduction,

diversity of features, number of parameters/capacity, etc.

Transfer

Learning &

Generalization

Generalization

Reality

Input

Softmax

FC HxWx3

Multi-class Logistic

Regression

From: slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Reality

Generalization

model class

3x3 conv, 384

Pool

5x5 conv, 256

11x11 conv, 96

Input

Pool

3x3 conv, 384

3x3 conv, 256

Pool

FC 4096

FC 4096

Softmax

FC 1000

AlexNet

From: slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Generalization

model class

Pool

Input

Pool

Pool

Pool

Pool

Softmax

3x3 conv, 512

3x3 conv, 512

3x3 conv, 256

3x3 conv, 256

3x3 conv, 128

3x3 conv, 128

3x3 conv, 64

3x3 conv, 64

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

FC 4096

FC 1000

FC 4096

VGG19

From: slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Reality

Transfer Learning – Training on Large Dataset

What if we don’t have

enough data?

Step 1: Train on large-scale

dataset

Convolutional Neural

Networks

Input

Image
Predictions

Initializing with Pre-Trained Network

Step 2: Take your custom data and initialize the network with weights

trained in Step 1

Replace last layer with new fully-connected for

output nodes per new category

Finetuning on New Dataset

Step 3: (Continue to) train on new dataset

Finetune: Update all parameters

Freeze feature layer: Update only last layer weights (used when not

enough data)

Replace last layer with new fully-connected for

output nodes per new category

Surprising Effectiveness of Transfer Learning

From: Razavian et al., CNN Features off-the-shelf: an Astounding

Baseline for Recognition

This works

extremely well! It

was surprising upon

discovery.

Features learned

for 1000 object

categories will

work well for

1001st!

Generalizes even

across tasks

(classification to

object detection)

But it doesn’t always work that

well!

If the source dataset you train on

is very different from the target

dataset, transfer learning is not as

effective

If you have enough data for the

target domain, it just results in

faster convergence

See He et al., “Rethinking

ImageNet Pre-training”

Learning with Less Labels

Effectiveness of More Data

From: Hestness et al., Deep Learning Scaling Is

Predictable
From: Revisiting the Unreasonable

Effectiveness of Data

https://ai.googleblog.com/2017/07/revisiting-

unreasonable-effectiveness.html

Dealing with Low-Labeled Situations

Setting Source Target Shift Type

Semi-supervised Single labeled Single unlabeled None

Domain Adaptation Single labeled Single unlabeled Non-semantic

Domain Generalization Multiple labeled Unknown Non-semantic

Cross-Task Transfer Single labeled Single unlabeled Semantic

Few-Shot Learning Single labeled Single few-labeled Semantic

Un/Self-Supervised Single unlabeled Many labeled Both/Task

There is a large number of different low-labeled settings in DL research

Non-Semantic Shift Semantic Shift

	Slide 1: CS 4644-DL / 7643-A Zsolt Kira
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73: ConvNeXt (2022)
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87

