Topics:

Convolutional Neural Networks

## CS 4644-DL / 7643-A ZSOLT KIRA

#### Assignment 2 – Due June 22<sup>nd</sup>

- Implement convolutional neural networks
- Resources (in addition to lectures):
  - DL book: Convolutional Networks
  - CNN notes <a href="https://www.cc.gatech.edu/classes/AY2022/cs7643">https://www.cc.gatech.edu/classes/AY2022/cs7643</a> spring/assets/L10 cnns notes.pdf
  - Backprop notes https://www.cc.gatech.edu/classes/AY2023/cs7643\_spring/assets/L10\_cnns\_backprop\_notes.pdf
  - HW2 Tutorial, Conv backward Coming Soon
  - Slower OMSCS lectures on dropbox: Module 2 Lessons 5-6 (M2L5/M2L6) (https://www.dropbox.com/sh/iviro188gq0b4vs/AADdHxX\_Uy1TkpF\_yvIzX0nPa?dl=0)
- Project
  - Proposal planning session Wed.
  - Proposal due June 15<sup>th</sup>
- **Reminder:** Please do readings announced for discussions!

$$X(0:2,0:2) = \begin{bmatrix} 200 \ 150 \ 100 \\ 100 \ 50 \ 100 \\ 25 \ 25 \ 10 \end{bmatrix} \qquad K' = \begin{bmatrix} 1 & 0 & -1 \\ 2 & 0 & -2 \\ 1 & 0 & -1 \end{bmatrix} \xrightarrow{\text{Dot product}} X(0:2,0:2) \cdot K' = 65 + \text{bias}$$
Dot product (element-wise multiply and sum)
$$y(r,c) = (x * k)(r,c) = \sum_{a=0}^{k_1-1} \sum_{b=0}^{k_2-1} x(r + a, c + b) k(a, b)$$

**Cross-Correlation** 



Number of parameters with N filters is:  $N * (k_1 * k_2 * 3 + 1)$ 

**Number of Parameters** 





Need to incorporate all upstream gradients:

 $\left\{\frac{\partial L}{\partial y(0,0)}, \frac{\partial L}{\partial y(0,1)}, \dots, \frac{\partial L}{\partial y(H,W)}\right\}$ 

# Chain Rule: $\frac{\partial L}{\partial k(a,b)} = \sum_{r=0}^{H-1} \sum_{c=0}^{W-1} \frac{\partial L}{\partial y(r,c)} \frac{\partial y(r,c)}{\partial k(a,b)}$ Sum over Upstream We will all output gradient compute pixels (known)





 $W=5 \qquad (H-1,W-1)$ 





 $\frac{\partial y(r,c)}{\partial k(a,b)} = x(r+a,c+b)$ 

$$\frac{\partial L}{\partial k(a,b)} = \sum_{r=0}^{H-1} \sum_{c=0}^{W-1} \frac{\partial L}{\partial y(r,c)} x(r+a,c+b)$$



**Gradients and Cross-Correlation** 

Georgia Tech  $\frac{\partial y(r,c)}{\partial k(a,b)} = x(r+a,c+b)$ 

$$\frac{\partial L}{\partial k(a,b)} = \sum_{r=0}^{H-1} \sum_{c=0}^{W-1} \frac{\partial L}{\partial y(r,c)} x(r+a,c+b)$$

#### **Does this look familiar?**

Cross-correlation between upstream gradient and input! (until  $k_1 \times k_2$  output)





**Gradients and Cross-Correlation** 

Georg a Tech  $\frac{\partial L}{\partial x} = \frac{\partial L}{\partial y} \quad \frac{\partial y}{\partial x}$ 

Gradient for input (to pass to prior layer)

Calculate one pixel at a time

$$\frac{\partial L}{\partial x(r',c')}$$

What does this input pixel affect at the output?

Neighborhood around it (where part of the kernel touches it)





 $W = 5 \qquad (H-1, W-1)$ 



What an Input Pixel Affects at Output

Chain rule for affected pixels (sum gradients):





**Summing Gradient Contributions** 



Chain rule for affected pixels (sum gradients):

Let's derive it analytically this time (as opposed to visually)





**Summing Gradient Contributions** 

#### Plugging in to earlier equation:

$$\frac{\partial L}{\partial x(r',c')} = \sum_{a=0}^{k_1-1} \sum_{b=0}^{k_2-1} \frac{\partial L}{\partial y(r'-a,c'-b)} \frac{\partial y(r'-a,c'-b)}{\partial x(r',c')}$$

#### **Does this look familiar?**

$$=\sum_{a=0}^{k_1-1}\sum_{b=0}^{k_2-1}\frac{\partial L}{\partial y(r'-a,c'-b)}k(a,b)$$

Again, all operations can be implemented via matrix multiplications (same as FC layer)! Convolution between upstream gradient and kernel!

(can implement by flipping kernel and cross- correlation)





- Convolutions are mathematical descriptions of striding linear operation
- In practice, we implement **cross-correlation neural networks!** (still called convolutional neural networks due to history)
  - Can connect to convolutions via duality (flipping kernel)
  - Convolution formulation has mathematical properties explored in ECE
- Duality for forwards and backwards:
  - Forward: Cross-correlation
  - Backwards w.r.t. K: Cross-correlation b/w upstream gradient and input
  - Backwards w.r.t. X: Convolution b/w upstream gradient and kernel
    - In practice implement via cross-correlation and flipped kernel
- All operations still implemented via **efficient linear algebra** (e.g. matrixmatrix multiplication)





## Pooling Layers



- Dimensionality reduction is an important aspect of machine learning
- Can we make a layer to explicitly down-sample image or feature maps?



Yes! We call one class of these operations pooling operations

#### Parameters

- kernel\_size the size of the window to take a max over
- stride the stride of the window. Default value is kernel\_size
- padding implicit zero padding to be added on both sides

From: https://pytorch.org/docs/stable/generated/torch.nn.MaxPool2d.html#torch.nn.MaxPool2/





#### **Example:** Max pooling

Stride window across image but perform per-patch max operation

 $X(0:2,0:2) = \begin{bmatrix} 200 & 150 & 150 \\ 100 & 50 & 100 \\ 25 & 25 & 10 \end{bmatrix} \implies \max(0:2,0:2) = 200$ 



Max Pooling

How many learned parameters does this layer have?





- makes the representations spatially smaller
- saves computation (GPU mem & speed), allows go deeper
- operates over each activation map independently:



From: Slides by CS 231n, Danfei Xu



Since the **output** of convolution and pooling layers are **(multi-channel) images**, we can sequence them just as any other layer







This combination adds some invariance to translation of the features

If feature (such as beak) translated a little bit, output values still remain the same







#### Convolution by itself has the property of equivariance

If feature (such as beak) translated a little bit, output values move by the same translation





*W* = 5



#### Invariance vs. Equivariance

Simple Convolutional Neural Networks



Since the **output** of convolution and pooling layers are **(multi-channel) images**, we can sequence them just as any other layer



**Combining Convolution & Pooling Layers** 



**Alternating Convolution and Pooling** 





Geo







**Receptive Fields** 



#### These architectures have existed **since 1980s**



Image Credit: Yann LeCun, Kevin Murphy



Georg a Tech

#### Handwriting Recognition



Image Credit: Yann LeCun Georg a

#### **Translation Equivariance (Conv Layers) & Invariance (Output)**



Image Credit: Yann LeCun Georgia

#### (Some) Rotation Invariance



Image Credit: Yann LeCun Georga

#### (Some) Scale Invariance



Image Credit: Yann LeCun Georgaa







## Advanced Convolutional Networks





The **ImageNet** dataset contains 14,197,122 annotated images according to the WordNet hierarchy. ImageNet Large Scale Visual Recognition Challenge (ILSVRC) is a benchmark for image classification and object detection based on the dataset.

**Benchmarking Models** 

#### The Importance of Benchmarks



C



### **Case Studies**

- AlexNet
- VGG
- GoogLeNet
- ResNet



#### Also....

- SENet
- Wide ResNet
- ResNeXT

- DenseNet
- MobileNets
- NASNet
- EfficientNet
- ConvNeXt v1/v2

#### The Space of CNN Architectures



#### **AlexNet - Architecture**



From: Krizhevsky et al., ImageNet Classification with Deep ConvolutionalNeural Networks, 2012.


# Case Study: AlexNet

[Krizhevsky et al. 2012]





Figure copyright Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton, 2012. Reproduced with permission.







First layer (CONV1): 96 11x11 filters applied at stride 4 => Q: what is the output volume size? Hint: (227-11)/4+1 = 55 W' = (W - F + 2P) / S + 1

From: Slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231r





Output volume [55x55x96]

First layer (CONV1): 96 11x11 filters applied at stride 4

W' = (W - F + 2P) / S + 1

227 227 3  $55 \times 55$  96

From: Slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n





```
First layer (CONV1): 96 11x11 filters applied at stride 4
=>
Output volume [55x55x96]
```

Q: What is the total number of parameters in this layer?



From: Slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231r





Parameters: (11\*11\*3 + 1)\*96 = 35K

```
First layer (CONV1): 96 11x11 filters applied at stride 4
=>
Output volume [55x55x96]
```

11 x 11

From: Slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231r



Full (simplified) AlexNet architecture: [224k224x3] INPUT [55x55x96] CONV1: 96 11x11 filters at stride 4, pad 0 [27x27x96] MAX POOL1: 3x3 filters at stride 2 [27x27x96] NORM1: Normalization layer [27x27x256] CONV2: 256 5x5 filters at stride 1, pad 2 [13x13x256] MAX POOL2: 3x3 filters at stride 2 [13x13x256] NORM2: Normalization layer [13x13x384] CONV3: 384 3x3 filters at stride 1, pad 1 [13x13x384] CONV4: 384 3x3 filters at stride 1, pad 1 [13x13x256] MAX POOL3: 3x3 filters at stride 1, pad 1 [13x13x256] CONV5: 256 3x3 filters at stride 1, pad 1 [6x6x256] MAX POOL3: 3x3 filters at stride 2 [4096] FC6: 4096 neurons [4096] FC7: 4096 neurons [1000] FC8: 1000 neurons (class scores)



### Key aspects:

- ReLU instead of sigmoid or tanh
- Specialized normalization layers
- PCA-based data augmentation
- Dropout
- Ensembling

From: Slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231r

Georgia Tech

Small filters, Deeper networks

8 layers (AlexNet) -> 16 - 19 layers (VGG16Net)

Only 3x3 CONV stride 1, pad 1 and 2x2 MAX POOL stride 2

11.7% top 5 error in ILSVRC'13 (ZFNet) -> 7.3% top 5 error in ILSVRC'14









Q: Why use smaller filters? (3x3 conv)

Stack of three 3x3 conv (stride 1) layers has same effective receptive field as one 7x7 conv layer

Q: What is the effective receptive field of three 3x3 conv (stride 1) layers?



FC 4096

C 4096





Q: What is the effective receptive field of three 3x3 conv (stride 1) layers?



Conv1 (3x3) Conv2 (3x3) Conv3 (3x3)



But deeper, more non-linearities

And fewer parameters:  $3 * (3^2C^2)$  vs.  $7^2C^2$  for C channels per layer





| INDUT: (224x224x21 memory: 224x224x2=150K percent; 0 (not counting biases)                                                 | ConvNet Configuration |         |                                     |           |           |           |           |
|----------------------------------------------------------------------------------------------------------------------------|-----------------------|---------|-------------------------------------|-----------|-----------|-----------|-----------|
| inPO1. [224x224x3] memory. 224 224 3=150K params. 0 (net counting biddece)                                                 |                       | А       | A-LRN                               | В         | С         | D         | Е         |
| CONV3-64: [224x224x64] memory: 224*224*64=3.2M params: (3*3*3)*64 = 1,728                                                  | 11                    | weight  | 11 weight                           | 13 weight | 16 weight | 16 weight | 19 weight |
| CONV3-64: [224x224x64] memory: 224*224*64=3.2M params: (3*3*64)*64 = 36,864                                                |                       | ayers   | layers                              | layers    | layers    | layers    | layers    |
| POOL2 [112x112x64] memory 112*112*64=800K params 0                                                                         |                       |         | input ( $224 \times 224$ RGB image) |           |           |           |           |
| CONV3-128: [112x112x128], memory: 112*112*128=1.6M, params: (3*3*64)*128 = 73.728                                          | co                    | nv3-64  | conv3-64                            | conv3-64  | conv3-64  | conv3-64  | conv3-64  |
| CONV2 120: [112x112x120] memory 1121121120=1.0M parameter (21214)20120 = 10,720                                            |                       |         | LRN                                 | conv3-64  | conv3-64  | conv3-64  | conv3-64  |
| CONV3-128 [112x112x128] memory. 112 112 128 1.6M params. (3 3 128) 128 = 147,456                                           |                       | 2 100   |                                     | max       | pool      | 100       | 120       |
| POOL2: [56x56x128] memory: 56*56*128=400K params: 0                                                                        | con                   | IV3-128 | conv3-128                           | conv3-128 | conv3-128 | conv3-128 | conv3-128 |
| CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*128)*256 = 294,912                                              |                       |         |                                     | tonvo-128 | pool      | conv3-128 | conv5-128 |
| CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*256)*256 = 589.824                                              | COL                   | w3-256  | conv3-256                           | conv3-256 | conv3-256 | conv3-256 | conv3-256 |
| CONV/3-256: [56x56x256], memory: 56*56*256=800K, params: (3*3*256)*256 = 589.824                                           | con                   | w3-256  | conv3-256                           | conv3-256 | conv3-256 | conv3-256 | conv3-256 |
| DOOL 2: [29/2252] memory: 29/29/256 = 200K prome: 0                                                                        |                       |         |                                     |           | conv1-256 | conv3-256 | conv3-256 |
| POULZ. [282282286] Memory. 28 28 286-200K params. 0                                                                        |                       |         |                                     |           |           |           | conv3-256 |
| CONV3-512: $[28x28x512]$ memory: $28^{\circ}28^{\circ}512 = 400K$ params: $(3^{\circ}3^{\circ}256)^{\circ}512 = 1,179,648$ |                       |         |                                     | max       | pool      |           |           |
| CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*512)*512 = 2,359,296                                            | COL                   | w3-512  | conv3-512                           | conv3-512 | conv3-512 | conv3-512 | conv3-512 |
| CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*512)*512 = 2.359.296                                            | COL                   | w3-512  | conv3-512                           | conv3-512 | conv3-512 | conv3-512 | conv3-512 |
| POOL 2: [14x14x512] memory: 14*14*512=100K params: 0                                                                       |                       |         |                                     |           | conv1-512 | conv5-512 | conv3 512 |
| CON(2, 512) [14/14/14/512] memory: 14/14/512=100K, parame: (2*2*512)*512 = 2.250.206                                       | e maxpool             |         |                                     | pool      |           | conv3-312 |           |
| CONV3-512. [14114/312] memory. 14 14 512-100K params. (3 3 512) 512 - 2,359,290                                            | COL                   | w3-512  | conv3-512                           | conv3-512 | conv3-512 | conv3-512 | conv3-512 |
| CONV3-512: $[14x14x512]$ memory: $14*14*512=100K$ params: $(3*3*512)*512 = 2,359,296$                                      | con                   | w3-512  | conv3-512                           | conv3-512 | conv3-512 | conv3-512 | conv3-512 |
| CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512 = 2,359,296                                            |                       |         |                                     |           | conv1-512 | conv3-512 | conv3-512 |
| POOL2: [7x7x512] memory: 7*7*512=25K params: 0                                                                             |                       |         |                                     |           |           |           | conv3-512 |
| EC: $[1x1x4096]$ memory: 4096 params: $7*7*512*4096 = 102760448$                                                           | maxpool               |         |                                     |           |           |           |           |
| $C_{1}$ [1x1x4000] memory 4000 parame: 4000*4000 = 16 777.216                                                              | FC-4096               |         |                                     |           |           |           |           |
| PC. [1x1x4030] memory. 4036 params. 4036 4036 - 16,777,216                                                                 | FC-4096               |         |                                     |           |           |           |           |
| FC: $[1x1x1000]$ memory: 1000 params: 4096*1000 = 4,096,000                                                                | FC-1000               |         |                                     |           |           |           |           |
|                                                                                                                            | son-max               |         |                                     |           |           |           |           |
|                                                                                                                            |                       |         |                                     |           |           |           |           |

VGG

| Table 2: Number of parameters (in millions). |         |     |     |     |     |  |  |
|----------------------------------------------|---------|-----|-----|-----|-----|--|--|
| Network                                      | A,A-LRN | В   | С   | D   | E   |  |  |
| Number of parameters                         | 133     | 133 | 134 | 138 | 144 |  |  |

From: Simonyan & Zimmerman, Very Deep Convolutional Networks for Large-Scale Image Recognition From: Slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231r/



| INPUT: [224x224x3] memory: 224*224*3=150K params: 0 (not counting biases)         |  |  |  |  |  |  |  |
|-----------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| CONV3-64: [224x224x64] memory: 224*224*64=3.2M params: (3*3*3)*64 = 1,728         |  |  |  |  |  |  |  |
| CONV3-64: [224x224x64] memory: 224*224*64=3.2M params: (3*3*64)*64 = 36,864       |  |  |  |  |  |  |  |
| POOL2: [112x112x64] memory: 112*112*64=800K params: 0                             |  |  |  |  |  |  |  |
| CONV3-128: [112x112x128] memory: 112*112*128=1.6M params: (3*3*64)*128 = 73,728   |  |  |  |  |  |  |  |
| CONV3-128: [112x112x128] memory: 112*112*128=1.6M params: (3*3*128)*128 = 147,456 |  |  |  |  |  |  |  |
| POOL2: [56x56x128] memory: 56*56*128=400K params: 0                               |  |  |  |  |  |  |  |
| CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*128)*256 = 294,912     |  |  |  |  |  |  |  |
| CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*256)*256 = 589,824     |  |  |  |  |  |  |  |
| CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*256)*256 = 589,824     |  |  |  |  |  |  |  |
| POOL2: [28x28x256] memory: 28*28*256=200K params: 0                               |  |  |  |  |  |  |  |
| CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*256)*512 = 1,179,648   |  |  |  |  |  |  |  |
| CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*512)*512 = 2,359,296   |  |  |  |  |  |  |  |
| CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*512)*512 = 2,359,296   |  |  |  |  |  |  |  |
| POOL2: [14x14x512] memory: 14*14*512=100K params: 0                               |  |  |  |  |  |  |  |
| CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512 = 2,359,296   |  |  |  |  |  |  |  |
| CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512 = 2,359,296   |  |  |  |  |  |  |  |
| CONV3-512: [14x14x512] memory: 14-14-512=100K params: (3-3-512)-512 = 2,359,296   |  |  |  |  |  |  |  |
| POOL2. [7x7x512] memory: 777512=25K params: 0                                     |  |  |  |  |  |  |  |
| FC. $[1x1x4096]$ memory: 4096 parame: 4096*4096 = 102,700,446                     |  |  |  |  |  |  |  |
| FC: [1x1x4030] memory: 1000 parame: $4030 = 10,777,210$                           |  |  |  |  |  |  |  |
| -6. [1x1x1000] memory. 1000 params. 4090 1000 = 4,090,000                         |  |  |  |  |  |  |  |

Most memory usage in convolution layers

# Most parameters in FC layers

From: Simonyan & Zimmerman, Very Deep Convolutional Networks for Large-Scale Image Recognition From: Slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231r



**Parameters and Memory** 

### Case Study: VGGNet

[Simonyan and Zisserman, 2014]

#### Details:

- ILSVRC'14 2nd in classification, 1st in localization
- Similar training procedure as Krizhevsky 2012
- No Local Response Normalisation (LRN)
- Use VGG16 or VGG19 (VGG19 only slightly better, more memory)
- Use ensembles for best results
- FC7 features generalize well to other tasks

#### Still very expensive!

TOTAL memory: 24M \* 4 bytes ~= 96MB / image (only forward! ~\*2 for bwd) TOTAL params: 138M parameters

VGGNet

|               |         |               | Softmax       |
|---------------|---------|---------------|---------------|
|               |         |               | FC 1000       |
|               |         | Softmax       | FC 4098       |
|               | fc8     | FC 1000       | FC 4098       |
|               | fc7     | FC 4098       | Pool          |
|               | fc6     | FC 4098       | 3x3 conv, 512 |
|               |         | Pool          | 3x3 conv. 512 |
|               | conv5-3 | 3x3 conv, 512 | 3x3 conv. 512 |
|               | conv5-2 | 3x3 conv, 512 | 3x3 conv. 512 |
|               | conv5-1 | 3x3 conv. 512 | Pool          |
|               |         | Pool          | 3x3 conv. 512 |
| Softmax       | conv4-3 | 3x3 conv. 512 | 3x3 conv, 512 |
| FC 1000       | conv4-2 | 3x3 conv, 512 | 3x3 conv, 512 |
| FC 4098       | conv4-1 | 3x3 conv, 512 | 3x3 conv. 512 |
| FC 4098       |         | Pool          | Pool          |
| Pool          | conv3-2 | 3x3 conv, 258 | 3x3 conv, 256 |
| 3x3 conv. 256 | conv3-1 | 3x3 conv. 258 | 3x3 conv. 256 |
| 3x3 conv. 384 |         | Pool          | Pool          |
| Pool          | conv2-2 | 3x3 conv. 128 | 3x3 conv. 128 |
| 3x3 conv. 384 | conv2-1 | 3x3 conv. 128 | 3x3 conv. 128 |
| Pool          |         | Pool          | Pool          |
| 5x5 conv, 258 | conv1-2 | 3x3 conv, 64  | 3x3 conv, 64  |
| 1x11 conv, 96 | conv1-1 | 3x3 conv, 64  | 3x3 conv, 64  |
| Input         |         | Input         | Input         |
| AlexNet       |         | VGG16         | VGG19         |



fc7

fc6

conv5

conv4

conv3

conv2 conv1



### But have become **deeper and more complex**



From: Szegedy et al. Going deeper with convolutions



Georg a Tech

### Case Study: GoogLeNet

[Szegedy et al., 2014]

Deeper networks, focus on computational efficiency

- ILSVRC'14 classification winner (6.7% top 5 error)
- 22 layers
- Only 5 million parameters!
   12x less than AlexNet
   27x less than VGG-16
- Efficient "Inception" module
- No FC layers



From: Szegedy et al. Going deeper with convolutions



### Case Study: GoogLeNet

[Szegedy et al., 2014]

Deeper networks, focus on computational efficiency

- ILSVRC'14 classification winner (6.7% top 5 error)
- 22 layers
- Only 5 million parameters!
   12x less than AlexNet
   27x less than VGG-16
- Efficient "Inception" module
- No FC layers





From: Szegedy et al. Going deeper with convolutions



### **Inception Architecture**

### Key idea: Repeated blocks and multi-scale features



From: Szegedy et al. Going deeper with convolutions





# Case Study: GoogLeNet

[Szegedy et al., 2014]

"Inception module": design a good local network topology (network within a network) and then stack these modules on top of each other

Multiple conv filter size diversifies learned features



















#### Alternatively, interpret it as applying the same FC layer on each input pixel









**1x1** Convolutions

### Case Study: GoogLeNet

[Szegedy et al., 2014]







### Case Study: GoogLeNet

[Szegedy et al., 2014]

Deeper networks, with computational efficiency

- 22 layers
- Efficient "Inception" module
- Avoids expensive FC layers
- 12x less params than AlexNet
- 27x less params than VGG-16
- ILSVRC'14 classification winner (6.7% top 5 error)

Fiter concatenation Previous Lave Inception module

From: slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



69











### The Challenge of Depth



From: He et al., Deep Residual Learning for Image Recognition

Optimizing very deep networks is challenging!



[He et al., 2015]

A deeper model can **emulate** a shallower model: copy layers from shallower model, set extra layers to identity

Thus deeper models should do at least <u>as good as</u> shallow models

Deeper models are harder to optimize. They don't learn identity functions (no-op) to emulate shallow models

**Solution**: Change the network so learning identity functions (no-op) as extra layers is easy







[He et al., 2015]

Solution: Change the network so learning identity functions as extra layers is easy







# Case Study: ResNet

[He et al., 2015]

#### Full ResNet architecture:

- Stack residual blocks
- Every residual block has two 3x3 conv layers



FC 1000





# Case Study: ResNet

[He et al., 2015]

#### Full ResNet architecture:

- Stack residual blocks
- Every residual block has two 3x3 conv layers
- Periodically, double # of filters and downsample spatially using stride 2 (/2 in each dimension) Reduce the activation volume by half.



oftmax

FC 1000





# Case Study: ResNet

[He et al., 2015]

#### Full ResNet architecture:

- Stack residual blocks
- Every residual block has two 3x3 conv layers
- Periodically, double # of filters and downsample spatially using stride 2 (/2 in each dimension) Reduce the activation volume by half.
- Additional conv layer at the beginning (stem)



FC 1000

Skip Conections



[He et al., 2015]

For deeper networks (ResNet-50+), use "bottleneck" layer to improve efficiency (similar to GoogLeNet)







|                          |                                                            |                                                                                         |                                                                              | <pre>&gt;&gt;&gt; import torch &gt;&gt;&gt; from torchvision. &gt;&gt;&gt; model = resnet18( &gt;&gt;&gt; summary(model2, (</pre> | models import resnet18<br>)<br>3, 224, 224), device='d | cpu')                |
|--------------------------|------------------------------------------------------------|-----------------------------------------------------------------------------------------|------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|----------------------|
| layer name               | output size                                                | 18-layer                                                                                | 34-layer                                                                     | Layer (type)                                                                                                                      | Output Sł                                              | nape Param           |
| conv1                    | 112×112                                                    |                                                                                         |                                                                              | conv2d 1                                                                                                                          | <br>Γ 1 64 112 1                                       |                      |
|                          |                                                            |                                                                                         |                                                                              | BatchNorm2d-2                                                                                                                     | [-1, 64, 112, 1<br>[-1, 64, 112, 1                     | [12] 9,40<br>[12] 12 |
|                          |                                                            |                                                                                         |                                                                              | Rel U-3                                                                                                                           | [-1, 64, 112, 1]                                       | 112]                 |
| $conv2_x$ 56×56          | $56 \times 56$                                             | $\begin{bmatrix} 3 \times 3, 64 \\ 3 \times 3, 64 \end{bmatrix} \times 2$               | $\left[\begin{array}{c} 3\times3,64\\ 3\times3,64 \end{array}\right]\times3$ | MaxPool2d-4                                                                                                                       | [-1, 64, 56,                                           | 56]                  |
|                          | 30730                                                      |                                                                                         |                                                                              | Conv2d-5                                                                                                                          | [-1, 64, 56,                                           | 56] 36,86            |
|                          |                                                            |                                                                                         |                                                                              | BatchNorm2d-6                                                                                                                     | [-1, 64, 56,                                           | 56] 12               |
|                          |                                                            |                                                                                         | ReLU-7                                                                       | [-1, 64, 56,                                                                                                                      | 56]                                                    |                      |
| $conv3$ x $28 \times 28$ | $\begin{bmatrix} 3 \times 3, 128 \end{bmatrix}_{\times 2}$ | [ 3×3, 128 ] ×4                                                                         | Conv2d-8                                                                     | [-1, 64, 56,                                                                                                                      | 56] 36,86                                              |                      |
|                          |                                                            |                                                                                         | BatchNorm2d-9                                                                | [-1, 64, 56,                                                                                                                      | 56] 12                                                 |                      |
| convo_x                  | 20720                                                      | 3×3, 128 ^2                                                                             | 3×3, 128 ^                                                                   | ReLU-10                                                                                                                           | [-1, 64, 56,                                           | 56]                  |
|                          |                                                            |                                                                                         |                                                                              | BasicBlock-11                                                                                                                     | [-1, 64, 56,                                           | 56]                  |
|                          |                                                            |                                                                                         | $\begin{bmatrix} 3 \times 3, 256 \\ 3 \times 3, 256 \end{bmatrix} \times 6$  | Conv2d-12                                                                                                                         | [-1, 64, 56,                                           | 56] 36,86            |
|                          | 14 14                                                      | $4 \times 14 \begin{bmatrix} 3 \times 3, 256 \\ 3 \times 3, 256 \end{bmatrix} \times 2$ |                                                                              | BatchNorm2d-13                                                                                                                    | [-1, 64, 56,                                           | 56] 12               |
| conv4_x                  | 14×14                                                      |                                                                                         |                                                                              | ReLU-14                                                                                                                           | [-1, 64, 56,                                           | 56]                  |
|                          |                                                            |                                                                                         | Conv2d-15                                                                    | [-1, 64, 56,                                                                                                                      | 56 36,86                                               |                      |
|                          |                                                            |                                                                                         |                                                                              | BatchNorm2d-16                                                                                                                    | [-1, 64, 56,                                           | 56] 12               |
| $conv5_x$ 7×7            | [3×3 512]                                                  | [ 3×3 512 ]                                                                             | ReLU-17<br>RecicPlack 19                                                     | [-1, 04, 30,<br>[ 1 64 F6                                                                                                         | 50]<br>56]                                             |                      |
|                          | 7×7                                                        | $   \frac{5 \times 5, 512}{2}   \times 2$                                               | $  3 \times 3, 512 \times 3$                                                 |                                                                                                                                   | [-1, 04, 30,<br>[_1 130 30                             | טכ<br>201 ד ד סכ     |
|                          |                                                            | [ 3×3, 512 ]                                                                            | [ 3×3, 512 ]                                                                 | BatchNorm2d-20                                                                                                                    | $\begin{bmatrix} -1 & 120 & 20 \end{bmatrix}$          | 28] 73,72            |
|                          |                                                            |                                                                                         |                                                                              | Rel U-21                                                                                                                          | [-1, 128, 28]                                          | 28]                  |
|                          | 1×1                                                        |                                                                                         | ave                                                                          | Conv2d-22                                                                                                                         | [-1, 128, 28,                                          | 28] 147,45           |
| FLO                      | OPs                                                        | $1.8 \times 10^{9}$                                                                     | $3.6 \times 10^{9}$                                                          | 3.8×10°                                                                                                                           | 7.6×10 <sup>2120</sup> 20                              | 11.3×10°25           |



\_\_\_\_



Training ResNet in practice:

- Batch Normalization after every CONV layer
- Xavier initialization from He et al.
- SGD + Momentum
- Learning rate: 0.1, divided by 10 when validation error plateaus
- Mini-batch size 256
- Weight decay of 1e-5
- No dropout used





### **Computational Complexity**





0

GE

From: An Analysis Of Deep Neural Network Models For Practical Application

# Wide Residual Networks

[Zagoruyko et al. 2016]

- Argues that residuals are the important factor, not depth
- Use wider residual blocks (F x k filters instead of F filters in each layer)
- 50-layer wide ResNet outperforms
   152-layer original ResNet
- Increasing width instead of depth more computationally efficient (parallelizable)







### Densely Connected Convolutional Networks (DenseNet)

[Huang et al. 2017]

- Dense blocks where each layer is connected to every other layer in feedforward fashion
- Alleviates vanishing gradient, strengthens feature propagation, encourages feature reuse
- Showed that shallow 50-layer network can outperform deeper 152 layer ResNet

**DenseNet** 



Dense Block


### ConvNeXt (2022)

• Do the reading for discussion!



Slides created for CS886 at UWaterloo



## Several ways to *learn* architectures:

- Evolutionary learning and reinforcement learning
- Prune overparameterized networks
- Learning of repeated blocks typical



From: https://ai.googleblog.com/2018/03/using-evolutionary-automl-to-discover.html





### Learning Transferable Architectures for Scalable Image Recognition

[Zoph et al. 2017]

- Applying neural architecture search (NAS) to a large dataset like ImageNet is expensive
- Design a search space of building blocks ("cells") that can be flexibly stacked
- NASNet: Use NAS to find best cell structure on smaller CIFAR-10 dataset, then transfer architecture to ImageNet









2 x 2 maxpoo

Evolving Architectures and AutoML

 Convolutional neural networks (CNNs) stack pooling, convolution, nonlinearities, and fully connected (FC) layers

Feature engineering => architecture engineering!

- Tons of small details and tips/tricks
- Considerations: Memory, compute/FLO, dimensionality reduction, diversity of features, number of parameters/capacity, etc.





### Transfer Learning & Generalization





From: slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n







From: slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Georgia Tech



From: slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n





## What if we don't have enough data?

**Step 1:** Train on large-scale dataset







**Networks** 

**Transfer Learning – Training on Large Dataset** 



## **Step 2:** Take your custom data and **initialize** the network with weights trained in Step 1



Replace last layer with new fully-connected for output nodes per new category



**Initializing with Pre-Trained Network** 



Step 3: (Continue to) train on new dataset

- Finetune: Update all parameters
- Freeze feature layer: Update only last layer weights (used when not enough data)



Replace last layer with new fully-connected for output nodes per new category



**Finetuning on New Dataset** 



#### This works extremely well! It was surprising upon discovery.

- Features learned for 1000 object categories will work well for 1001<sup>st</sup>!
- Generalizes even across tasks (classification to object detection)



From: Razavian et al., CNN Features off-the-shelf: an Astounding Baseline for Recognition

#### **Surprising Effectiveness of Transfer Learning**



#### Learning with Less Labels

But it doesn't always work that well!

- If the source dataset you train on is very different from the target dataset, transfer learning is not as effective
- If you have enough data for the target domain, it just results in faster convergence

See He et al., "Rethinking ImageNet Pre-training"



#### **Effectiveness of More Data**



From: Revisiting the Unreasonable Effectiveness of Data https://ai.googleblog.com/2017/07/revisitingunreasonable-effectiveness.html



#### *From:* Hestness et al., Deep Learning Scaling Is *Predictable*



#### There is a large number of different low-labeled settings in DL research

| Setting               | Source           | Target             | Shift Type   |
|-----------------------|------------------|--------------------|--------------|
| Semi-supervised       | Single labeled   | Single unlabeled   | None         |
| Domain Adaptation     | Single labeled   | Single unlabeled   | Non-semantic |
| Domain Generalization | Multiple labeled | Unknown            | Non-semantic |
| Cross-Task Transfer   | Single labeled   | Single unlabeled   | Semantic     |
| Few-Shot Learning     | Single labeled   | Single few-labeled | Semantic     |
| Un/Self-Supervised    | Single unlabeled | Many labeled       | Both/Task    |



# Semantic Shift

**Dealing with Low-Labeled Situations** 

