
Machine Learning Applications

CS 4644-DL / 7643-A
ZSOLT KIRA

Topics:

• Convolutional Neural Networks



Administrivia

• Assignment 2 – Due June 22nd 

• Implement convolutional neural networks

• Resources (in addition to lectures):

• DL book: Convolutional Networks
• CNN notes https://www.cc.gatech.edu/classes/AY2022/cs7643_spring/assets/L10_cnns_notes.pdf 

• Backprop notes 
https://www.cc.gatech.edu/classes/AY2023/cs7643_spring/assets/L10_cnns_backprop_notes.pdf 

• HW2 Tutorial, Conv backward Coming Soon

• Slower OMSCS lectures on dropbox: Module 2 Lessons 5-6 (M2L5/M2L6) 
(https://www.dropbox.com/sh/iviro188gq0b4vs/AADdHxX_Uy1TkpF_yvIzX0nPa?dl=0) 

• Project 

• Proposal planning session Wed. 

• Proposal due June 15th 

• Reminder: Please do readings announced for discussions! 

https://www.deeplearningbook.org/contents/convnets.html
https://www.cc.gatech.edu/classes/AY2022/cs7643_spring/assets/L10_cnns_notes.pdf
https://www.cc.gatech.edu/classes/AY2023/cs7643_spring/assets/L10_cnns_backprop_notes.pdf
https://www.dropbox.com/sh/iviro188gq0b4vs/AADdHxX_Uy1TkpF_yvIzX0nPa?dl=0
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Number of Parameters

Number of parameters with N filters is: 𝑵 ∗ (𝒌𝟏∗ 𝒌𝟐 ∗ 𝟑 + 𝟏)

Example: 

𝒌𝟏 = 𝟑, 𝒌𝟐 = 𝟑, 𝑵 = 𝟒 𝒊𝒏𝒑𝒖𝒕 𝒄𝒉𝒂𝒏𝒏𝒆𝒍𝒔 = 𝟑, then  𝟑 ∗ 𝟑 ∗ 𝟑 + 𝟏 ∗ 𝟒 =112
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Chain Rule over all Output Pixels

Need to incorporate all upstream 

gradients:
Chain Rule:
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Gradients and Cross-Correlation
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Gradients and Cross-Correlation
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Does this look familiar? 

Cross-correlation 

between upstream 

gradient and input!

(until 𝒌𝟏 × 𝒌𝟐 output)
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What an Input Pixel Affects at Output

Gradient for input (to pass to prior layer)

Calculate one pixel at a time

What does this input pixel 

affect at the output?

Neighborhood around it 

(where part of the kernel 

touches it)
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Summing Gradient Contributions
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Chain rule for affected pixels (sum gradients):
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Summing Gradient Contributions
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Backwards is Convolution

Plugging in to earlier equation:
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Does this look familiar? 

Convolution between 

upstream gradient and 

kernel!

(can implement by 

flipping kernel and 

cross- correlation)

Again, all operations can be 

implemented via matrix 

multiplications (same as FC layer)!



Summary

• Convolutions are mathematical descriptions of striding linear operation

•  In practice, we implement cross-correlation neural networks! (still called 

convolutional neural networks due to history)

• Can connect to convolutions via duality (flipping kernel)

• Convolution formulation has mathematical properties explored in ECE

• Duality for forwards and backwards:

• Forward: Cross-correlation

• Backwards w.r.t. K: Cross-correlation b/w upstream gradient and input

• Backwards w.r.t. X: Convolution b/w upstream gradient and kernel

• In practice implement via cross-correlation and flipped kernel

• All operations still implemented via efficient linear algebra (e.g. matrix-

matrix multiplication)



Pooling 

Layers



Pooling Layers

Dimensionality reduction 

is an important aspect of 

machine learning

Can we make a layer to 

explicitly down-sample 

image or feature maps?

Yes! We call one class of 

these operations pooling 

operations 

From: https://pytorch.org/docs/stable/generated/torch.nn.MaxPool2d.html#torch.nn.MaxPool2d



Max Pooling

Example: Max pooling

Stride window across image but perform per-patch max operation 

𝑾 = 𝟓

𝑯
=

𝟓

X(𝟎: 𝟐, 𝟎: 𝟐)  =
𝟐𝟎𝟎 𝟏𝟓𝟎 𝟏𝟓𝟎
𝟏𝟎𝟎 𝟓𝟎 𝟏𝟎𝟎
𝟐𝟓 𝟐𝟓 𝟏𝟎

max(0:2,0:2) = 𝟐𝟎𝟎

How many learned 

parameters does 

this layer have?

None!



Pooling with Tensors

From: Slides by CS 231n, Danfei Xu



Combining Convolution & Pooling Layers

Since the output of convolution and pooling layers are (multi-channel) images, 

we can sequence them just as any other layer

Image
Convolution

Layer
Pooling 

Layer

𝑾 = 𝟓

𝑯
=

𝟓



Invariance 

This combination adds some invariance to translation of the features 

If feature (such as beak) translated a little bit, output values still 

remain the same

Image
Convolution

Layer
Pooling 

Layer

𝑾 = 𝟓

𝑯
=

𝟓



Invariance vs. Equivariance

Convolution by itself has the property of equivariance

If feature (such as beak) translated a little bit, output values move by the 

same translation

𝑾 = 𝟓

𝑯
=

𝟓



Simple 

Convolutional 

Neural 

Networks



Combining Convolution & Pooling Layers

Since the output of convolution and pooling layers are (multi-channel) images, 

we can sequence them just as any other layer

Image
Convolution

Layer
Pooling 

Layer

𝑾 = 𝟓

𝑯
=

𝟓



Alternating Convolution and Pooling

Image

Convolution +

Non-Linear

Layer

Pooling

Layer

Convolution +

Non-Linear

Layer

Useful, 

lower-

dimensional 

features

Convolutional Neural Networks (CNNs)



Adding a Fully Connected Layer

Image
Pooling

Layer

Fully 

Connected 

Layers

Convolution +

Non-Linear

Layer

Convolution +

Non-Linear

Layer

Loss



Convolution +

Non-Linear

Layer

Convolution +

Non-Linear

Layer

Receptive Fields

Image
Pooling

Layer

Fully 

Connected 

Layers

Loss



Typical Depiction of CNNs 

Input

Image
PredictionsCNN

Convolutional Neural

Networks

Input

Image
Predictions



LeNet Architecture

These architectures have existed since 1980s

INPUT 
32x32

Convolutions SubsamplingConvolutions

C1: feature maps 
6@28x28

Subsampling

S2: f. maps
6@14x14

S4: f. maps 16@5x5

C5: layer
120

C3: f. maps 16@10x10

F6: layer
 84

Full connection

Full connection

Gaussian connections

OUTPUT
 10

Image Credit: Yann LeCun, Kevin Murphy



Handwriting Recognition

Image Credit:

Yann LeCun



Translation Equivariance (Conv Layers) & Invariance (Output)

Image Credit:

Yann LeCun



(Some) Rotation Invariance

Image Credit:

Yann LeCun



(Some) Scale Invariance

Image Credit:

Yann LeCun



A More Modern Canonical CNN



Advanced 

Convolutional 

Networks



Benchmarking Models



From: https://paperswithcode.com

The Importance of Benchmarks



The Space of CNN Architectures

Case Studies
- AlexNet

- VGG

- GoogLeNet

- ResNet

Also....
- SENet

- Wide ResNet

- ResNeXT

- DenseNet

- MobileNets

- NASNet

- EfficientNet

- ConvNeXt v1/v2



AlexNet - Architecture

From: Krizhevsky et al., ImageNet Classification with Deep ConvolutionalNeural Networks, 2012.



AlexNet – Layers and Key Aspects



AlexNet – Layers and Key Aspects

From: Slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



AlexNet – Layers and Key Aspects

From: Slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



AlexNet – Layers and Key Aspects

From: Slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



AlexNet – Layers and Key Aspects

From: Slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



AlexNet – Layers and Key Aspects

From: Slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Key aspects:

ReLU instead of sigmoid or tanh

Specialized normalization layers

PCA-based data augmentation

Dropout

Ensembling



VGGNet

From: Slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



VGGNet

From: Slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



VGGNet

From: Slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



VGG

From: Simonyan & Zimmerman, Very Deep Convolutional Networks for Large-Scale Image Recognition

From: Slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n 



Parameters and Memory

Most memory usage in 

convolution layers

Most parameters in FC 

layers

From: Simonyan & Zimmerman, Very Deep Convolutional Networks for Large-Scale Image Recognition

From: Slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n 



VGGNet



Inception Architecture

But have become deeper and more complex

From: Szegedy et al. Going deeper with convolutions



Inception Architecture

From: Szegedy et al. Going deeper with convolutions



Inception Architecture

From: Szegedy et al. Going deeper with convolutions



Inception Module

Key idea: Repeated blocks and multi-scale features

From: Szegedy et al. Going deeper with convolutions

Filter

concatenation

1x1 

convolutions

3x3 

convolutions

5x5 

convolutions

3x3 max 

pooling

Previous layer



Inception Module

From: slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Inception Module

From: slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



1x1 Convolutions

From: slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



1x1 Convolutions

From: slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



1x1 Convolutions

From: slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



1x1 Convolutions

Why?
From: slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



1x1 Convolutions

From: slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Revolution of Depth



The Challenge of Depth

From: He et al., Deep Residual Learning for Image Recognition 

Optimizing very deep networks is challenging!



Skip Conections



Skip Connections



ResNet Details



ResNet Details



Skip Conections



Bottleneck Layers



ResNet Details



Training ResNets 



Computational Complexity

From: An Analysis Of Deep Neural Network Models For Practical Applications



Wide Residual Networks



DenseNet



ConvNeXt (2022)

•Do the reading for discussion!

2024-01-16 Slides created for CS886 at UWaterloo 73



Evolving Architectures and AutoML

From: https://ai.googleblog.com/2018/03/using-evolutionary-automl-to-discover.html 

Several ways to learn 

architectures:

Evolutionary learning 

and reinforcement 

learning

Prune over-

parameterized 

networks

Learning of 

repeated blocks 

typical



Evolving Architectures and AutoML



Summary

Convolutional neural networks (CNNs) stack pooling, convolution, non-

linearities, and fully connected (FC) layers

Feature engineering => architecture engineering!

Tons of small details and tips/tricks

Considerations: Memory, compute/FLO, dimensionality reduction, 

diversity of features, number of parameters/capacity, etc.



Transfer 

Learning & 

Generalization



Generalization

Reality

Input

Softmax

FC HxWx3

Multi-class Logistic 

Regression

From: slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Reality

Generalization

model class

3x3 conv, 384

Pool

5x5 conv, 256

11x11 conv, 96

Input

Pool

3x3 conv, 384

3x3 conv, 256

Pool

FC 4096

FC 4096

Softmax

FC 1000

AlexNet

From: slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Generalization

model class

Pool

Input

Pool

Pool

Pool

Pool

Softmax

3x3 conv, 512

3x3 conv, 512

3x3 conv, 256

3x3 conv, 256

3x3 conv, 128

3x3 conv, 128

3x3 conv, 64

3x3 conv, 64

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

FC 4096

FC 1000

FC 4096

VGG19

From: slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Reality



Transfer Learning – Training on Large Dataset

What if we don’t have 

enough data?

Step 1: Train on large-scale 

dataset

Convolutional Neural

Networks

Input

Image
Predictions



Initializing with Pre-Trained Network

Step 2: Take your custom data and initialize the network with weights 

trained in Step 1

Replace last layer with new fully-connected for 

output nodes per new category



Finetuning on New Dataset

Step 3: (Continue to) train on new dataset

Finetune: Update all parameters

Freeze feature layer: Update only last layer weights (used when not 

enough data)

Replace last layer with new fully-connected for 

output nodes per new category



Surprising Effectiveness of Transfer Learning

From: Razavian et al., CNN Features off-the-shelf: an Astounding 

Baseline for Recognition

This works 

extremely well! It 

was surprising upon 

discovery.

Features learned 

for 1000 object 

categories will 

work well for 

1001st!

Generalizes even 

across tasks 

(classification to 

object detection)



But it doesn’t always work that 

well!

If the source dataset you train on 

is very different from the target 

dataset, transfer learning is not as 

effective

If you have enough data for the 

target domain, it just results in 

faster convergence

See He et al., “Rethinking 

ImageNet Pre-training”

Learning with Less Labels



Effectiveness of More Data

From: Hestness  et al., Deep Learning Scaling Is 

Predictable
From: Revisiting the Unreasonable 

Effectiveness of Data 

https://ai.googleblog.com/2017/07/revisiting-

unreasonable-effectiveness.html



Dealing with Low-Labeled Situations

Setting Source Target Shift Type

Semi-supervised Single labeled Single unlabeled None

Domain Adaptation Single labeled Single unlabeled Non-semantic

Domain Generalization Multiple labeled Unknown Non-semantic

Cross-Task Transfer Single labeled Single unlabeled Semantic

Few-Shot Learning Single labeled Single few-labeled Semantic

Un/Self-Supervised Single unlabeled Many labeled Both/Task

There is a large number of different low-labeled settings in DL research

Non-Semantic Shift Semantic Shift
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