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Language Is Not All You Need: Aligning Perception

with Language Models (KOSMOS-1)

(Huang et al., NeurIPS 2023)

● Multimodal Large Language Model framework 

● Pretrained from scratch
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Architecture

• KOSMOS-1 has a standard Transformer-based causal language model 
architecture
• Model size: 1.6B parameters

• Can be extended to other modalities beyond vision
• Not explored in KOSMOS-1/2 though
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MAGNETO

• Extra LayerNorm to each 

sublayer

• Better training stability 

and superior 

performance across 

modalities.
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Extrapolatable Position Embedding (XPOS)

• Optimizes attention resolution so that the position information can be 

captured more precisely

• usual pairwise rotation (RoPE) + per-dimension exponential scaling for Q and K

• Block-wise causal attention in inference

• Generalize to different lengths better
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Training

Pretrain with a mix of following datasets

• Text Corpora
• Several massive datasets for training LLMs

• Image-Caption Pairs
• English LAION-2B, LAION-400M, and COYO-700M, Conceptual Captions

• Image-caption datasets from internet web pages

• Interleaved Image-Text Data
• 71M web pages from the Common Crawl snapshot

• Extract the text and images from the HTML of each selected web page

Language-only instruction tuning

• Train the model with the instruction data in the format of (instructions, inputs, and outputs)
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Grounding Multimodal Large Language Models to the World 

(KOSMOS-2)

(Peng et al., ICLR 2024)

● Add grounding to to a general-purpose MLLM
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KOSMOS-2

• Add grounding (linking text image regions) to a general-purpose MLLM

• Same architecture as KOSMOS-1, same model size (1.6B)
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Why Grounding?

• MLLMs “see” & “talk,” but often 
can’t point (refer to concrete 
regions)

• Many tasks need region-aware 
reasoning (phrase grounding, 
referring, grounded 
VQA/captioning)

• What we want: unified, 
scalable grounding without 
custom detectors
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Grounded Input Representations

• Represent references as Markdown-style links from text spans → location 
tokens

• Discretize image into P×P bins; each bin has a special token <loc_i>
• A bounding box = <box><loc₁><loc₂></box> (top-left + bottom-right)
• Train the model to align spans boxes inside normal LM decoding
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Web-Scale Grounded Image-Text Pairs (GRIT)

• Built on image-text pairs from subsets of LAION-2B & COYO-700M

• A two-step pipeline to extract and link text spans in the caption to their 

corresponding image regions
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Training

Pretrain with a mix of below datasets

• Same as KOSMS-1
• Text Corpora

• Image-Caption Pairs

• Interleaved Image-Text Data

• New: Grounded pairs (GRIT)

Fine-tuning

• Combine vision-language instruction dataset and language-only instruction datasets
• LLaVA-Instruct

• Unnatural Instructions & FLANv2

• Additional grounded instruction data by utilizing the pairs of bounding boxes and 

expressions in GRIT
• Prompt the model to generate the corresponding location tokens or expressions of the bounding 

boxes
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Results: Multimodal Grounding

• Phrase Grounding

• LLaVA-Instruct

• Unnatural Instructions & FLANv2

• Referring Expression Comprehension

• prompt the model to generate the corresponding location tokens or expressions of the 

bounding boxes
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Results: Multimodal Grounding
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• Large improvement in zero-
shot performance

• Still a gap between 
KOSMOS-2 and non-zero-
shot methods 
• Especially in referring 

expression comprehension



Results: Multimodal Referring

• Understand the region referred via input bounding boxes
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Results: Multimodal Referring

• Impressive zero-shot performance
• Even outperform finetuned SLR on CIDEr
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Results: General VL Tasks

• Flickr30k: Image captioning
• VQAv2: visual question-answering 

• Why KOSMOS-2 performance drop a little bit?
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Results: Language-only Tasks

• Overall similar performance as LLM & KOSMOS-1
• BoolQ (T/F QA)

• KOSMOS-2 achieves better results compared to LLM & KOSMOS-1

• CB (CommitmentBank) 
• Understand speaker commitment to the truth of a clause 
• KOSMOS-1 shows improvement, but KOSMOS-2 has much worse performance
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Discussion

Strengths:

• Elegant token-level grounding inside a standard VLM decoder

• Strong zero-shot performance on grounding tasks

• Effective GrIT pipeline to preprocess massive grounding data for training

Weaknesses:

• Limited novelty in architecture

• Model size (1.6B) is small, limiting its generalization ability

• Slight drop of KOSMOS-2 on VQA vs KOSMOS-1 suggests trade-offs in 

training mix
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Unified-IO: A Unified Model for Vision, Language, and Multi-

Modal Tasks (Unified IO 1)

(Lu et al., 2022 – Allen Institute for AI)

● First attempt at a single Seq2Seq model for a very wide set of AI tasks

● Trained jointly on 90+ datasets, 95 tasks

● Handles vision, language, and vision+language tasks
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Motivation

Why Unified-IO?

Traditional CV models: task-specific heads (e.g. Mask R-CNN, VQA models)

NLP: success of Seq2Seq token-based models (T5, GPT-3)

Challenge: Vision outputs are very different (boxes, masks, depth maps, images)

Goal: Homogenize everything into tokens → single transformer can learn all 
tasks
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Architecture

Base: T5-style Transformer encoder–decoder

All inputs/outputs → sequences of tokens from a shared vocabulary

Text: SentencePiece tokens

Dense outputs (images, masks, depth, normals): encoded into tokens via VQ-VAE

Sparse outputs (boxes, keypoints): encoded as coordinate tokens

Vocabulary: ~50k tokens (32k text, 16k image, 1k location)
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UnifiedIO-1

25

What are the risks of forcing 
everything into discrete tokens?



4 Models!
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Datasets

Unified-IO Training Data

• Stage 1 (Pretraining):

• Text: C4, Wikipedia

• Images: ImageNet-21k, YFCC15M

• Image–Text pairs: COCO Captions, Visual 

Genome

Stage 2 (Multi-task training):

~95 datasets, grouped into 8 task categories:

• Image synthesis

• Detection & localization

• Dense labeling (segmentation, depth, normals)

• Captioning

• VQA & reasoning

• NLP tasks

• Classification

• Referring expressions / keypoints

Covers ~130M examples across all groups27
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Training

Two-Stage Training Pipeline

● Stage 1: Pretraining

○ Text denoising (mask 15% spans, reconstruct)

○ Image denoising (mask 75% patches, reconstruct via 

VQ-VAE tokens)

○ Sample datasets proportional to size

● Stage 2: Multi-task Joint Training

○ Train on all 95 datasets simultaneously

○ Sampling: balance groups (equal probability, except 

small adjustment for image synthesis/dense labeling)

○ Within groups: sample ∝ √(dataset size) (so small 

datasets aren’t drowned out)

● Models trained: 71M → 2.9B parameters

Should multimodal models be trained from 
scratch or built on pretrained LLMs?
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Results

GRIT benchmark: first model to do all 7 
tasks, best score (64.3, +32 over prior best)

Performs well across 16 other benchmarks 
(ImageNet, VQA, NYU Depth, BoolQ, etc.)

Shows little drop from “seen” to “unseen” 
concepts → strong generalization

Not SOTA on every task, but competitive 
across board without fine-tuning
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Results

32

When we evaluate models like Unified-IO, should we prioritize broad 

generalization across many tasks, or top performance on individual 

benchmarks?



Strengths

True unification of modalities and tasks

● One seq2seq Transformer handles 95 datasets / 22 tasks / 8 groups with no task-specific heads (Sec. 3.1, Fig. 2).

● Competitive across perception (detection, segmentation), generation (captioning, image synthesis), and reasoning (VQA, 
NLVR2).

Strong generalization across tasks

● On the GRIT benchmark, Unified-IO-XL is the only model that supports all 7 tasks and achieves the highest average 
(64.3 vs 32.0 for GPV-2) (Table 3).

● Maintains performance across “seen” vs “unseen” prompts and datasets (Sec. 5.3).

Scalable and flexible

● Model scales up to 2.9B parameters and shows consistent gains with size (Table 4).

● Outputs are always token sequences, so the same infrastructure can be extended to new modalities.

Simplified I/O representation

● Unified vocabulary (49,536 tokens: 32k text, 16k vision, 1k location) lets everything be cast as sequence prediction (Sec. 
3.2).
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Weaknesses
• Detection struggles in cluttered scenes

• Paper notes low recall in dense environments — bounding box outputs often miss small or 
overlapping objects (Sec. 5.3, error analysis).

• Image generation capped by VQ-VAE quality

• Frozen VQ-VAE used for image tokens → limits fidelity, produces blurrier generations compared to 
diffusion-based models (Sec. 3.2 + Appendix B).

• Prompt sensitivity

• Case study on RefCOCO: small changes in prompt phrasing cause large accuracy drops (Table 7). 
Shows the model doesn’t robustly generalize across linguistic variations.

• Language weaker than vision

• Performs “respectably” on NLP tasks, but far below large LLMs trained on trillions of tokens (Sec. 
5.2, Table 6).
This is a scale issue: max 2.9B params vs 100B+ for frontier LMs.

• Task imbalance in training

• Even with √(dataset size) sampling, rare tasks (e.g., depth) were sampled only 0.43% of the time 
(Appendix C). Limits ceiling on specialized tasks.
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UnifiedIO-2

Now with audio, video, and action capabilities!
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Related Works

CoDi

Large diffusion layers 

decode an aligned latent 

space in its multi-headed 

architecture.
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Motivation & Problem Statement

One autoregressive architecture to rule them all (text, vision, audio)

Rather than separate generator models, it uses one with thin decoding heads. 
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Architecture

• Three input encoders

• Text: LLaMA

• Images: ViT

• Audio: Audio Spectrogram Transformer

• Thin projection layers

1.1 - 6.8B
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Architecture

• Three input encoders

• Text: LLaMA

• Images: ViT

• Audio: Audio Spectrogram Transformer

• Thin projection layers

• 24 UIO-2 encoder x 24 decoder 

layers x (16 or 24) attention heads

1.1 - 6.8B

Maximum sequence length
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Architecture

• Three input encoders

• Text: LLaMA

• Images: ViT

• Audio: Audio Spectrogram Transformer

• Thin projection layers

1.1 - 6.8B

Maximum sequence length

Do you agree with the sequence length budget allotment?

• 24 UIO-2 encoder x 24 decoder 

layers x (16 or 24) attention heads
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Mo’ modalities, mo’ problems

Gradient stability achieved through:

• 2D rotary encodings

• QK normalization 

• Scaled cosine attention

• Mixture of training

• Z-loss
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Mo’ modalities, mo’ problems

Gradient stability achieved through:

• 2D rotary encodings

• QK normalization 

• Scaled cosine attention

• Mixture of training

• Z-loss
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Mo’ modalities, mo’ problems

Gradient stability achieved through:

• 2D rotary encodings

• QK normalization 

• Scaled cosine attention

• Mixture of training

• Z-loss
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Pre-training Data

600 TB

• NLP [33%]

• Image & Text Pairs [40%]

• A/V [25%]

• 3D Embodiment [1%]

• + Instruction fine tuning
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Pre-training Data

600 TB

• NLP [33%]

• Image & Text Pairs [40%]

• A/V [25%]

• 3D Embodiment [1%]

• + Instruction fine tuning

Embeddings share a single representation 
space, how well represented can any one 
modality be? 45



Instruction Tuning Data

• Language [25%]

• Image [49%]

• Generation [17.6%]

• Reasoning [17.8%]

• Sparse image labelling [7.25%]

• Surface normal & depth estimation 

[4.1%]

• Audio [18%]

• Generation [7.5%]

• Captioning [10.6%]

• Video [14%]

• Reasoning [10.6%]

• Sparse Labelling [3.42%]

• Embodied AI [4%]
46



Training - Dynamic Packing

1. Encode training examples in batch

2. Concatenate examples up to 1152 

token limit

3. Mask attention layers to attend to 

only their example

4. Unpack into a maximum of 2048 

tokens

Most training examples only include a 

handful of modalities, so we process 

multiple training examples 

simultaneously. 
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Capabilities
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Capabilities
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Results - Pre-instruction Tuning

50



Results - Generation

Why does CoDi perform better in certain audio/visual tasks? 
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Results - Vision/Lang Reasoning
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Audio-Video Reasoning
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Ablation Study

Grounding

Why do you think performance 

dropped between UIO-1 and 2?
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Conclusions

The first 

autoregressive multi-

modal model that does 

vision, text, audio, 

and action. 
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But should it be the last?
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Thank you!
Questions or 
Thoughts?
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Three training modes

autoregressive mask auto-encoder autoregressive with

dynamic masking
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