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Goal

• Give a quick recap of diffusion models and latent diffusion models

• Focus on how text conditioning works in LDM

• Set up the motivation by noting that GLIGEN and ControlNet build on this text 
conditioning mechanism
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Diffusion Model

• Forward process: gradually add Gaussian noise to data until it becomes nearly 
pure noise. 

• Reverse process: train a neural network to iteratively denoise, step by step, 
recovering structure from noise.

• If we can learn the noise distribution at each step, we can sample new data by 
starting from noise and reversing the process.
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Latent Diffusion Model
• Problem: pixel-space x_t is huge

• Two step approach
1. Train encoder and decoder

2. Diffusion in latent space

• Benefits
• 8–16× smaller input size
• Faster training and inference
• U-Net models perceptual semantics, not raw 

pixels
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Text conditioning in LDM
1. Tokenizer
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Text conditioning in LDM
1. Tokenizer

2. Transformer

3. Cross-Attention with U-net's 
Intermediate layers

• Q: flattened intermediate 
layer of U-net

• K, V: encoded text prompt

• Attention output is directly 
added back to the original 
input feature map
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Connection to GLIGEN
• Text conditioning in LDM has no explicit spatial grounding

o e.g. A prompt like “a cat on the left and a dog on the right” may not respect spatial 
arrangement unless learned implicitly.

• GLIGEN introduces grounding tokens that tie text phrases to explicit regions of 
interest (RoIs) in the image
o Caption Toekns: CLIP embedding

o Grouding Tokens:
▪ Text token for the object

▪ Bouding box -> MLP -> region embedding

• GLIGEN adds a learnable gate that decides

      how much influence the grounded tokens

      have compared to the plain caption tokens
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Connection to ControlNet
• ControlNet also builds on LDM text conditioning, but solves structural control 

(edges, depth, poses, etc.)
1. Base U-Net is frozen

2. A control branch (cloned U-Net) is added, initialized with zero-convs so it starts with no effect

3. Structural condition (e.g., Canny edges, pose maps) is passed into the control branch, which 
learns to output residual feature maps

4. Residuals are injected into the frozen base U-Net at multiple layers

5. Text conditioning is still done via cross-attention as in LDM
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Latent Diffusion Models Perform Text-to-Image Generation
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Motivation: Text Is Limited for Generation Conditioning

Text conditioning: A dog is on the left in the picture.
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Most Related Work

  2021            2022  

DALL-E
zero-shot

text2image

autoregressive

DALL-E 2
diffusion

CLIP image embeddings

Imagen
Pre-trained 

language model 

for text encoding

Make-A-Scene
semantic map conditioning

closed-set (158 categories)

LDM
zero-shot

text2image

diffu

ReCo
open-set

fine-tuning required

box grounding

Can we have:

➢ open-set

➢ free of fine-tuning

➢ arbitrary visual conditioning

risk of knowledge forgetting

deviation from foundation models
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Approach: Grounding Instruction Encoding
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Approach: Grounding Instruction Encoding

Compatible with other visual conditioning!

➢ Image prompt:

➢ Keypoints:

➢ ...
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Approach: Adaptation for Grounded Generation

The pre-trained model is fixed!
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Approach: Adaptation for Grounded Generation

The pre-trained model is fixed!

Learning:

Sampling 

schedule
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Experiment: Closed-Set Grounded Text2Img Generation

detection data
detection + caption data

pseudo box labels using GLIP for detection

Fréchet Inception Distance (FID): 

1. Use pre-trained inception-v3 to embed images

2. Compare the two collections of real and 

generated images with a statistical distance
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Experiment: Closed-Set Grounded Text2Img Generation

detection data
detection + caption data

pseudo box labels using GLIP for detection

YOLO: Use a pre-trained YOLO-v4 to detect 

bounding boxes and compare them with the 

ground truth boxes using average precision.

source: 

https://faculty.cc.gatech.edu/~zk15/teaching/AY2025_cs8803vlm_fall/L5_OpenVocabulary.pdf
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generated images with a statistical distance



Experiment: Closed-Set Grounded Text2Img Generation

detection data
detection + caption data

pseudo box labels using GLIP for detection

➢ Image synthesis quality is better than most 

SOTA baselines, and comparable to LDM^*

➢ GLIGEN substantially outperforms LDM* on 

grounding.

➢ COCO2014D has the overall best performance.

39

YOLO: Use a pre-trained YOLO-v4 to detect 

bounding boxes and compare them with the 

ground truth boxes using average precision.

Fréchet Inception Distance (FID): 

1. Use pre-trained inception-v3 to embed images

2. Compare the two collections of real and 

generated images with a statistical distance



Experiment: Open-Set Grounded Text2Img Generation

benefit of pre-trained models40



Experiment: Open-Set Grounded Text2Img Generation

➢ AP_r: Average precision for rare categories

➢ AP_c: Average precision for common categories

➢ AP_f: Average precision for frequent categories

LAMA
GAN model

Outperforms LAMA 

(supervised baseline) 

on LVIS Scaling up the training 

data improves the 

performance.
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Experiment: Various Visual Conditioning

42



Experiment: Scheduled Sampling

Sampling 

schedule
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Reflection

Strengths.

✓ First diffusion model compatible with various visual 

conditioning / grounding

✓ Open-Set

✓ Free of fine-tuning pre-trained models
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Reflection

Strengths.

✓ First diffusion model compatible with various visual 

conditioning / grounding

✓ Open-Set

✓ Free of fine-tuning pre-trained models

Limitations

➢ Entity-centric grounding rather than conceptual and 

contextual grounding

➢ Experiments primarily deal with bounding boxes

➢ Assumes a maximal input caption length and 

number of entities to ground
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Brief Recap: Text-to-Image Diffusion
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Brief Recap: Text-to-Image Diffusion

Only conditioned on text!
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Brief Recap: GLIGEN
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Brief Recap: GLIGEN

Still text-conditioned! (+ bounding boxes)
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Motivation: Image-Based Spatial Conditioning

• Detailing exact spatial compositions is hard with only text

• Grounding enables high level composition only

• Consistency challenges
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Motivation: Image-Based Spatial Conditioning

• Detailing exact spatial compositions is hard with only text

• Grounding enables high level composition only

• Consistency challenges

What if we could condition on images too?
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ControlNet

Idea: fine-tune existing model for image-based spatial 
conditioning

Q: why might this not work?

• Catastrophic forgetting

• Mode collapse
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Related Work: Image-to-Image Translation

Pretraining is All You Need (PITI)

• Historically I2I is done with GANs

• Use large pretrained diffusion model

• Fine-tune task-specific adapters for downstream 
tasks
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Related Work: Image-to-Image Translation

Taming Transformers for Image Synthesis

• Vision transformer I2I approach

• Use a convolutional VQGAN to learn a discrete codebook

• Use transformer to model code sequences

• Reconstruct code sequences back to image
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Related Work: Image-to-Image Translation

Sketch-Guided Diffusion

• Given sketch and text prompt, guide image generation with the sketch

• Learn an auxiliary network that predicts sketch images

• During denoising, use this network to guide image generation

• Only supports sketch guidance
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ControlNet

Freeze core model and add a "conditioning branch"

• Freeze the original NN block and make a trainable copy

• Add zero convolution layers (weights are zero)

• Zero convolution layer weights eventually become non-zero

Over time, the conditioning branch learns how much of the conditioning 

signal to inject!
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ControlNet

Freeze core model and add a "conditioning branch"

• Freeze the original NN block and make a trainable copy

• Add zero convolution layers (weights are zero)

• Zero convolution layer weights eventually become non-zero

Over time, the conditioning branch learns how much of the conditioning 

signal to inject!

Conditioning signal "gate"

Signal influence "gate"
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ControlNet with Stable Diffusion

• Augment encoder blocks and middle 
block

• Efficient: locked copy parameters are 
frozen

• Convert conditioning images to 
feature space vector matching Stable 
Diffusion size
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Training

• Follow standard diffusion training and predict the noise added to a noisy image

• Randomly replace 50% of text prompts

• Zero convolutions add no additional noise, so image fidelity is preserved
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Training

• Follow standard diffusion training and predict the noise added to a noisy image

• Randomly replace 50% of text prompts

• Zero convolutions add no additional noise, so image fidelity is preserved

"Sudden Convergence Phenomenon"
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Qualitative Results: No Prompts
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Ablations
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Ablations
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Ablations
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ControlNet-lite



Comparisons
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Diversity
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Thank You!
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