Yan: Foundational Interactive Video Generation

Yan Team – Tencent Tech Report

David He, Jinhoo Kim, Wonho Choi

Outline

- Problem Statement & Background
- Related Works
- Data
- Approach & Experiments: Yan-Sim, Yan-Gen, Yan-Edit
- Strengths
- Limitations

Interactive Video Generation

Problem: Generate (next observation) conditioned on (previous observations, previous actions, current action)

Genie 3: POV action camera of a tan house being painted by a first-person agent with a paint roller

Interactive Video Generation

Motivation: Generating interactive world simulators to train embodied agents.

Background: Diffusion Forcing

Denoise the next token with *independent* per-token noise levels on previous tokens

Background: Diffusion Forcing

Algorithm 1 Diffusion Forcing Training

```
1: loop
            Sample tajectory of observations (\mathbf{x}_1, ..., \mathbf{x}_T).
  3:
           for t = 1, ..., T do
                Sample independent noise level k_t \in
                \{0, 1, ..., K\}
              \mathbf{x}_{t}^{k_{t}} = \text{ForwardDiffuse}(\mathbf{x}_{t}, k_{t})
 5:
               Define \epsilon_t = \frac{\mathbf{x}_t^{k_t} - \sqrt{\bar{\alpha}_{k_t}} \mathbf{x}_t}{\sqrt{1 - \bar{\alpha}_{k_t}}}
 6:
               Update \mathbf{z}_t \sim p_{\theta}(\mathbf{z}_t | \mathbf{z}_{t-1}, \mathbf{x}_t^{k_t}, k_t).
 7:
                Set \hat{\epsilon}_t = \epsilon_{\theta}(\mathbf{z}_{t-1}, \mathbf{x}_t^{k_t}, k_t)
 9:
            end for
            L = MSELoss([\hat{\epsilon}_1, ..., \hat{\epsilon}_n], [\epsilon_1, ..., \epsilon_n])
10:
11:
            Backprop with L and update \theta
12: end loop
```

Algorithm 2 DF Sampling with Guidance

```
1: Input: Model \theta, scheduling matrix \mathcal{K}, initial latent
        \mathbf{z}_0, guidance cost c(\cdot).
 2: Initialize \mathbf{x}_1, \dots, \mathbf{x}_T \sim \mathcal{N}(0, \sigma_K^2 I).
  3: for row m = M - 1, ..., 0 do
 4: for t = 1, ..., T do
  5: \mathbf{z}_t^{\text{new}} \sim p_{\theta}(\mathbf{z}_t \mid \mathbf{z}_{t-1}, \mathbf{x}_t, \mathcal{K}_{m+1,t}).
 6: k \leftarrow \mathcal{K}_{m,t}, \mathbf{w} \sim \mathcal{N}(0, \mathbf{I}).
 7: \mathbf{x}_t^{\text{new}} \leftarrow \frac{1}{\sqrt{\alpha_k}} (\mathbf{x}_t - \frac{1 - \alpha_k}{\sqrt{1 - \bar{\alpha}_k}} \epsilon_{\theta} (\mathbf{z}_t^{\text{new}}, \mathbf{x}_t, k)) +
                  \sigma_k \mathbf{w}
  8:
                  Update \mathbf{z}_t \leftarrow \mathbf{z}_t^{\text{new}}.
  9:
             end for
              \mathbf{x}_{1:H} \leftarrow \text{AddGuidance}(\mathbf{x}_{1:H}^{\text{new}}, \nabla_{\mathbf{x}} \log c(\mathbf{x}_{1:H}^{\text{new}}))
11: end for
12: Return \mathbf{x}_{1:T}.
```


GameNGen

$p(o_n|o_{\leq n},a_{\leq n})$

PlayGen

Algorithm 2 Balanced Data Sampling

- 1: **Input:** Collected transition dataset \mathcal{D} , number of clusters $k \in \mathbb{N}$.
- 2: Output: Balanced transition dataset $\mathcal{D}_{\text{balanced}}$.
- 3: Calculate the transition characteristics (e.g., position distribution) based on e_t as a feature vector for each sample in \mathcal{D} .
- 4: Cluster all samples into k clusters based on the feature vectors, and obtain k cluster centers $\{\mathbf{c}_1, \mathbf{c}_2, \cdots, \mathbf{c}_k\}$.
- 5: Formulate a linear equation:

$$b_1\mathbf{c}_1 + b_2\mathbf{c}_2 + \dots + b_k\mathbf{c}_k = \mathbf{y},$$

where **y** is the target balanced transition characteristics, i.e., balanced transition characteristics (e.g., balanced position distribution).

- 6: Solve the linear equation using the non-negative least squares method to obtain an approximate non-negative integer solution $\{b_1, b_2, \dots, b_k\}, b_i \in \mathbb{N}$.
- 7: **for** $i = 1, 2, \dots, k$ **do**
- 8: Sample b_i samples from the i^{th} cluster.
- 9: end for
- 10: Obtain $\mathcal{D}_{\text{balanced}}$ consisting of $\sum_{i=1}^{k} b_i$ samples.

The Matrix

Related Works

Paper	Date (arxiv)	Game	Novelty	Limitations
GameNGen	08/2024	Doom	First "high-quality" generative game engine	Limited context window, data collection is sensitive to reward function
PlayGen	12/2024	Super Mario Bros, Doom	Data Balancing	RNN also struggles with long context
The Matrix	12/2024	CyberPunk, Forza	Sliding Window Denoising	Human data collection is not scalable
Yan	08/2025	Yuan Meng Star	Yan-Edit	Only trained on Yuan Meng Star

A Note on Evaluation

Yan has no quantitative evaluations!

How have other works evaluated?

Image Quality: LPIPS, PNSR, FID

Video Quality: FVD

Human Evaluation: choose real game when given a real and generated video clip

Playability: train a separate model to predict $p(a_n|o_n,o_{n+1})$, and then use this to measure

the compatibility of frames and actions

Data (Engineering)

Resolution	FPS	Frame-wise	Action Space	Scale
720P	60	✓	5	792M
128P	30	\checkmark	5	250M
720P-4K	1-24	×	×	192M
360P	16	\checkmark	9	4M
720P	16	\checkmark	7	50M
1080P	30	✓	8	400M
	720P 128P 720P-4K 360P 720P	720P 60 128P 30 720P-4K 1-24 360P 16 720P 16	720P 60 ✓ 128P 30 ✓ 720P-4K 1-24 × 360P 16 ✓ 720P 16 ✓	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Collection Strategy for Diversity: random + PPO agents for breadth and depth

Data Filters: remove occlusions, engine lag, game loading frames, etc...

Data Balancing: stratified sampling across xyz coordinate, is the agent alive?, etc...

Yan-Sim: AAA-level Simulation

- Real-time high-resolution world simulator
- Stable Diffusion Architecture

Stable Diffusion

Stable Diffusion -> Yan-Sim

Yan-Sim: Improvement from Stable Diffusion

- Spatial-temporal consistency
 - Enhanced spatial-temporal compression
 - Spatial, action cross, and temporal attention blocks
- Faster Inference
 - Faster Decoder
 - Deterministic Sampler and less denoising steps
 - Shift Window Denoising Inference
- Other Optimizations
 - Pruning and Quantization

Yan-Sim: Spatial-temporal consistency

Modification on VAE

- Increased spatial downsampling rate from 8 to 32
- Increased temporal downsampling rate from 1 to 2
- \circ 1 x 8 x 8 -> 2 x 32 x 32
- Increased latent channel dimension from 4 to 16
- -> Higher information density with better spatio-temporal compression

Yan-Sim: Spatial-temporal consistency

 Spatial, Action Cross, and Temporal Attention for each block of Denoising U-Net

Yan-Sim: Spatial-temporal consistency

Spatial Attention

- Spatial positions within the same frame
- Same as SD

Action Cross Attention

- Action-conditioned cross attention
- Same as the text cross attention from SD
- Action Signals processed by a MLP layer to generate an action token (Dim=768)

Temporal Attention

- 1D temporal attention
- Inter-frame dependencies
- Causal (Not bi-directional)

- Faster Inference
 - = Lightweight Decoder
- Modification on Decoder
 - Reducing a layer per up block
 - Added a single layer up block and a pixel shuffle layer at the end for alignment

- Denoising Diffusion Implicit Models (DDIM)
 - Deterministic sampler (first-order ODE instead of linear multistep ODE)
 - Requires fewer steps
- 4 Denoising Steps
 - Standard SD used 50 denoising steps

 Shift Window Denoising Inference

- Shift Window Denoising Inference
- Inference step processes a window of frames
- KV Cache is used to store previous attention states

Yan-Sim: Pruning and Quantization

- Structural pruning to UNet
- FP8 quantization of GEMMs (1.5-2x speed up)
- Cuda graph for kernel-launch overhead elimination and triton-based custom Kernels (1.15x speed up)
- Running two models on sperate GPUs to avoid serial inference

Yan-Sim: Architecture

Infinite Auto-regressive Generation Action Signal KV Cache Visual Encoder Decoder Init Frames $[\frac{\mathbb{T}}{2},\frac{H}{32},\frac{W}{32},\mathbb{C}]$ Yan-Sim Noisy Latent $[\frac{T}{2},\frac{H}{32},\frac{W}{32},C]$

Yan-Sim: Training

- VAE Training
- Diffusion Model Training

Yan-Sim: Training - 1) VAE Training

- VAE Training
 - Mean Squared Error (MSE)

- Learned Perceptual Image Path Similarity (LPIPS)
 - Feature distance

Yan-Sim: Training – 2) Diffusion Model Training

- Diffusion Model Training
 - Follows SD framework
 - Diffusion Forcing strategy
 - Denoise a set of tokens with independent per-token noise levels

Yan-Sim: Results

- Visual Quality
- Motion Consistency
- Accurate Mechanism Simulation
- Long Video Generation Capability

Comparison to other simulation framework

Video Length: Autoregressive generation ≠ "infinite" video length **Resolution:** hyperparameter for the data and VAE decoder **Real Time:** questionable, given that training data is 30 FPS **Low Latency:** pruning + quantization + torch.compile

	Video Length	Resolution	Real Time	Low Latency
The Matrix (Feng et al., 2024)	Infinite	720p	✓ (16fps)	×
PlayGen (Yang et al., 2024)	Infinite	128p	\checkmark (20fps)	$\checkmark (0.05s)$
Genie 2 (Parker-Holder et al., 2024)	10 - 20s	360p	×	×
GameFactory (Yu et al., 2025b)	Infinite	640p	×	×
Matrix-Game (Zhang et al., 2025)	Infinite	720p	×	×
Genie 3 (Ball et al., 2025)	few minutes	720p	\checkmark (24fps)	✓
Yan-Sim	Infinite	$1080 \mathrm{p}$	\checkmark (60fps)	\checkmark (0.11s)

Yan-Gen: Multi-Modal World Generation Model

- Real-time and interactive world generator
- Adaptive synthesis across varied scenarios

Wan: Open and Advanced Large-Scale Video Generative Models

Figure 9: Architecture of the Wan.

- Wan-VAE: 3D causal VAE through feature cache mechanism
- Diffusion Transformer (DiT) model architecture
- Cross-attention to embed the input text or image conditions

Wan: Open and Advanced Large-Scale Video **Generative Models**

Note 2: The default compression rate is $4\times8\times8$, except for SVD: $1\times8\times8$, Mochi: $6\times8\times8$, and Step Video: $8\times16\times16$.

Wan -> Yan-Gen

- Anti-drifting against error accumulation and bias exposure
 - Hierarchical captioning
- Multimodal conditions such as image, text, and action
 - Decoupled cross-attention layers
 - Multimodal to video (MM2V) training
- Causal model
 - Autoregressive post-training
- Real-time interaction
 - Distillation through self-forcing post-training

Yan-Gen: Architecture

- umt5-xxl text encoding (512 tokens)
- ViT-H-14 image embedding (257 tokens)
- Decoupled cross attention for text, image and action inputs

Yan-Gen: 4-Stage Training

Yan-Gen: Training – 1) Video Captioning

- Hierarchical captioning on 98 million frames using Qwen2.5VL
- Global Captioning (Static and High-level Description)
 - Global layout, visual theme, base lighting and weather
- Local Captioning (Grounding Dynamic Events)
 - o Local scene, interactive objects, and critical events

Yan-Gen: Training – 2) MM2V Training

• Goal: Generate fixed-length videos guided by a reference image, descriptive text prompts(hierarchical caption + action description), and a sequence of user actions.

Yan-Gen: Training 2) MM2V - Adaptation Phase

 Finetuned the pretrained Wan model with Low-Rank Adaptation (LoRA) for imageand text-based video generation

• With p=0.1, model only have global caption

Yan-Gen: Training – 2) MM2V – Action Module

$$\mathcal{L}_{fm} = \mathbb{E}_{x_0, x_1, c_{txt}, c_{img}, c_{act}, t} ||u(x_t, c_{txt}, c_{img}, c_{act}, t; \theta) - v_t||^2$$

 Goal: Generate fixed-length videos guided by a reference image, descriptive text prompts(hierarchical caption + action description), and a sequence of user actions.

Yan-Gen: Training – 3) Autoregressive Post-Training

$$\mathcal{L}_{mse} = \mathbb{E}_{x, c_{txt}, c_{img}, c_{act}, t^i} \left\| u' \left(\{x_{t^i}^i\}_{i=1}^N, \{t^i\}_{i=1}^N \right) - \{x_0^i\}_{i=1}^N \right\|^2$$

Goal: Convert Yan-Gen into a causal and autoregressive model

Yan-Gen: Training – 4) Self-Forcing Post-Training

$$\nabla_{\phi} \mathcal{L}_{dmd} \triangleq \mathbb{E}_{t} \left(\nabla_{\phi} \mathbf{KL} \left(p_{\text{gen},t} || p_{\text{data},t} \right) \right)$$

 Goal: Extracting a few-step generator using distribution matching distillation (DMD)

Yan-Gen: Results

 Text-to-Interactive Video

 Text-Guided Interactive Video Expansion

 Image-to-Interactive Video

 Multimodal Cross-Domain Fusion

Yan Edit

- Real-time multi-granular video content editing using text
- Built on top of other Yan models
 - Interactive Mechanics Simulator (Yan-Sim)
 - Visual Renderer (Yan-Gen)

Yan Edit: Architecture

- Interactive Mechanics Simulator + Visual Renderer
 - Simulator Maintains physics + interactivity
 - Renderer Maintains style

Yan Edit: Training – Simulator (Yan-Sim)

- Data preparation
 - Text Embeddings: Qwen2.5-VL to generate description for objects
 - Latent Space: VAE Training to compress depth maps into latent space
 - Action Embeddings: User controls
- Yan-Sim Training Phase 1:
 - Additional text cross-attention layer for text descriptions
 - Joint optimization between spatial, action, and text in UNet block
- Yan-Sim Training Phase 2:
 - Freeze text cross-attention after structural alignment with text descriptions
 - Fine-tune action layers for fine-grained details

Yan Edit: Training - Renderer

- Data preparation
 - Depth map: Process maps from simulator trainings through ControlNet
 - Text: Style-based prompt
 - In-domain: Style captions from Yan dataset
 - Out-of-domain: New captions generated using GPT-4
- Yan-Gen 4 Stage Training
 - Video Captioning Used as in-domain prompts
 - MM2V Training
 - Autoregressive Post Training combined with ControlNet weights in DiT
 - Self-Forcing Post-Training

Yan Edit - Evaluation

- Structure Editing
 - Dynamic structure prompts during interaction
 - Real-time content generation

Style Editing

- Dynamic rendering style changes
- Open-domain style editing with accurate interactions

Strengths

- Unified framework for interactive video generation
 - Simulation, generation, editing
- Open-domain interactive worlds
- Accurate resolution and physical world modeling
- Large scale dataset collection + generation

Limitations & Societal Implications

Visual consistency across long durations

- 2. Impractical real-world application
- Underlying game environment
- 3. Compute Inefficiency
- Uses A100 for inference

Discussion Points

- What may be some tradeoffs if we were to use real-world datasets instead of gamecentric ones?
- Which applications would benefit from using virtual (i.e. game-based) datasets?
- Do you think user platforms (i.e. social media) benefit from AI content?
- Yan provides a unified framework for us to produce and edit interactive videos. Is an interactive model the future of video generation?
- Would you classify Yan as closer to a video generation model or world model?

