Molmo and PixMo

Open Weights and Open Data for State-of-the-Art Vision-Language Models (CVPR) 2025

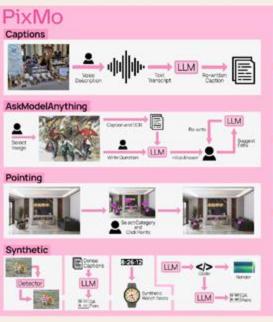
Allen Institute for AI & University of Washington Presented by: - Vedaang Chopra

♦ Molmo

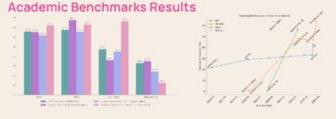
Molmo and PixMo: Open Weights and Open Data for State-of-the-Art Vision-Language Models Molmo Teamt

Introduction

- → Molmo is a SoTA VLM model trained with two-stage training on dense captioning and a mixture of PixMo and academic datasets
- → PixMo is an open dataset containing millions of annotations. None of the data is distilled from proprietary VLMs to ensure an independent and transparent data pipeline.
- → Training Requires only 2.5k GPUs hours for a 7B model. Overlapping crops and multi-annotation image training improve efficiency and performance







19uit By Mott Defise* Christopher Clark*, Sangko Lee, Sonun Tripatini, Yue Yong, Jae Sung Foni, Mohemmadrezo Sasurii, Niciae Musin'sghoff, Byre Lo Lucia Soldiens, Jason Liu, Tana Anderson, Erin Brandons, Klana Ehsens, Hugnig Noo, Yording Chen, Apy Peter, Mark tepsier Ovin Calison-Burch, Andrew Hest Bose Hendrix, Favyen Bastam, El Vanderbilt, Neihen Lambert, Yourne Obou, Anney Orfieda, Jenne Sparris, Sam Scornsberg, Michael Schmidt, Auror Samrel, Byton Blachoff, Pebe Worth, Chris Newell, Piper Workers, Tanmay Cupita, Kuc-Hoo Zeng Johlforcherdt, Dirk Gronnvellt, Johl Dunies, Chystel Nam, Sophie Lebrecht, Carles Wittill, Carlesa Schoonick, Occar Michel, Konger-Kropns, Luca Walte, Noon A. Dratts, Harmanob Hsjobras, Base Gestrick, All Famada Apatudiga Kerdinovi

Problem Introduction and Motivation

What is the problem that this paper addresses?

- Problem: Lack of open, transparent, and high-performing vision-language models
 - o Category-1: API Based: GPT-4o, Claude, Gemini, Groq,
 - Category-2: Open Weights: Qwen, InternVL, PaliGemma
 - Category-3: Open Weights & Data: LLava, Cambrian, Xgen

Solution:- MOLOMO

- A state-of-the-art open VLM: First large-scale open-weights + opendata + open-code (still the vision encoder is left out!) demonstrating competitive performance
 - Open weights
 - Open data (PixMo)
 - Open training code

		VLM		LLMI	LLM Backbone		Vision Encoder	
Category	Model	Open Weights	Open Data + Code	Open Weights	Open Data + Code	Open Weights	Open Data + Code	
	Molmo-728	Open	Open	Open	Closed	Open	Closed	
Molmo	Molmo-78-D	Open	Open	Open	Closed	Open	Closed	
MOLINO	Molmo-7B-O	Open	Open	Open	Open	Open	Closed	
	MolmoE-1B	Open	Open	Open	Open	Open	Closed	
	GPT-40	Closed	Closed	Closed	Closed	Closed	Closed	
	GPT-4V	Closed	Closed	Closed	Closed	Closed	Closed	
	Gemini 1.5 Pro	Closed	Closed	Closed	Closed	Closed	Closed	
API Models	Gemini 1.5 Flash	Closed	Closed	Closed	Closed	Closed	Closed	
	Claude 3.5 Sonnet	Closed	Closed	Closed	Closed	Closed	Closed	
	Claude 3 Opus	Closed	Closed	Closed	Closed	Closed	Closed	
	Claude 3 Haiku	Closed	Closed	Closed	Closed	Closed	Closed	
	Owen VL2 72B	Open	Closed	Open	Closed	Open	Closed	
	Owen VL2 7B	Open	Closed	Open	Closed	Open	Closed	
	Intern VL2 LLAMA 76B	Open	Closed	Open	Closed	Open	Closed	
Open Weights	Intern VL2 8B	Open	Closed	Open	Closed	Open	Closed	
	Pixtral 12B	Open	Closed	Open	Closed	Open	Closed	
	Phi3.5-Vision 4B	Open	Closed	Open	Closed	Open	Closed	
	PaliGemma 38	Open	Closed	Open	Closed	Open	Closed	
	LLAVA OneVision 72B	Open	Distilled	Open	Closed	Open	Closed	
	LLAVA OneVision 7B	Open	Distilled	Open	Closed	Open	Closed	
Open Weights & Data	Cambrian-134B	Open	Distilled	Open	Closed	Open	Closed	
	Cambrian-188	Open	Distilled	Open	Closed	Open	Closed	
	xGen - MM - Interleave 4B	Open	Distilled	Open	Closed	Open	Closed	
	LLAVA-1.5 138	Open	Open	Open	Closed	Open	Closed	
	LLAVA-1.5 7B	Open	Open	Open	Closed	Open	Closed	

Let's try to understand in a way of how a model is actually built !!

Paper Flow — Understanding Molmo Like Training a Model

PixMo	Molmo	Molmo	Conclusion (What is the point of all this !!)
(Data Stage)	(Architecture Stage)	(Training Stage)	
 Previous Datasets(History) Problems in previous datasets PixMo- The new dataset Ablations 	 Background and Quick Architecture History MOLMO architecture Data Preprocessing Ablations 	 Pre-Training Details Post Training Details Ablations 	 Results and Evaluation Ablations Conclusion Demo Discussion Q&A

Stage-1: - The Data Phase

What datasets did previous architectures use?

2020 2021 2021-22 2022 **ViT (Vision** CLIP (OpenAl) **VILT. FLAVA** Flamingo (DeepMind) Transformer) Treats an image as a sequence Two separate encoders — one Single Transformer that fuses Introduced cross-attention of patches + Transformer for image (ViT/ResNet) and one patch + token embeddings early "Perceiver Resampler": a frozen encoder; no convolution layers. for text (Transformer). Trained ("fusion encoder") for crossvision encoder produces tokens Fnabled scalable visual with contrastive loss on large modal reasoning. that a large LLM attends to via representation learning. web data to align embeddings in learned cross-attention lavers. a shared space. Enables multi-image & interleaved sequences.

What datasets did previous architectures use?

2023 2023-24 2023-24 2024 LLaVA, InstructBLIP **Qwen-VL, InternVL** Qwen-VL, InternVL Owen2-VL Takes CLIP/BLIP-2 vision End-to-end large models End-to-end large models High-performing, open-weight combining high-res vision encoders + LLM; aligns them via combining high-res vision decoder-only LLM family (scales visual instruction tuning (GPT-4encoders, token resampling, and encoders, token resampling, and well, strong reasoning; drop-in generated conversations). multi-task heads (OCR, doc multi-task heads (OCR, doc backbone for VLMs). reasoning). reasoning).

What were the problems with Previous Models/Datasets?

#	Problem in Previous Dataset	Problem Cause	Models or dataset affected
1	Closed / Proprietary or Synthetic Data Loops	Many instruction and alignment datasets were generated using GPT-4 / GPT-4V, causing "distillation of proprietary systems" and preventing reproducibility	ShareGPT4V · LLaVA · InstructBLIP · Qwen-VL-Chat · Gemini · PaLI-Gemma
2	Noisy and Shallow Web Captions (Lack of Fine Detail)	Web-scraped alt-text is short (~5–10 words), inconsistent, and object-level grounding is poor. This weakens fine-grained reasoning and counting.	CLIP · ALIGN · LAION-400M/5B · DataComp · OpenCLIP
3	Limited Grounding and Spatial Reasoning Data	Earlier grounding/counting sets are small, single-target, or too easy, while web-scale data lacks coordinates	CLIP · ALIGN · RefCOCO · RefCOCOg · CountBenchQA
4	Costly and Low-Quality Human Captions	Human annotation expensive; workers produce short, repetitive, copypasted captions (~11 words avg)	COCO · Visual Genome · Flickr30k · CC3M/CC12M
5	Missing Non-Photographic Modalities (Docs / Charts / Clocks)	Prior datasets mostly natural photos; lack structured visual reasoning (documents, charts, diagrams, time)	CLIP · LAION · BLIP-2 · FLAVA · VILT
6	Lack of Truly Open and Reproducible Pipelines	Large VLMs trained on closed or undisclosed data; unclear preprocessing → no reproducibility	Flamingo · ALIGN · Gemini · GPT-4V · PaLI-Gemma
7	Insufficient Multimodal Breadth and Balance	Strong English and photographic bias; weak multilingual and multi-domain coverage	LAION · ALIGN · DataComp Georgia Tech

Part A:- Data Collection

01	PixMo-Cap Dense captions for pre-training	Goal: Teach broad visual understanding with very detailed descriptions.
02	PixMo-Ask Model Anything Free-form Q&A for instruction following	Goal: Teach the model to answer diverse, realistic questions grounded in the image.
03	PixMo- Points Pointing for grounding & counting	 Goal-1: - Grounding: point to items described by text Goal-2: - Counting: count by pointing each instance Goal -3: - Explanations: use points as visual evidence in answers
04	PixMo- CapQ A QA from dense captions	Goal: Expand QA coverage cheaply without VLMs.
05	PixMo- Docs Code-generated docs/charts/tables/diagrams	Goal: Teach OCR, chart/table reasoning, and doc understanding.
06	PixMo- Clocks Realistic time reading	Goal: Robust time-telling from analog watch faces.
07	PixMo- Count Open-domain counting with point supervision	Goal: Counting across diverse web images.

PixMo (Pixels for Molmo)

PixMo-CAP

Goal: Teach broad visual understanding with very detailed descriptions.

How it's built:

- Images sourced across ~70 topics (street signs, memes, food, drawings, websites, blurry photos, ...).
- Annotators speak descriptions for 60– 90s (voice forces more detail and prevents copying from VLMs).
- Audio → ASR transcripts → a text-only LLM cleans/summarizes to a final caption (remove fillers, unify style).

Scale & stats:

712k images, 1.3M transcripts/captions;
 ~196 words/caption (vs 11 in COCO; 37 in Localized Narratives).

Why it's novel/useful: The voice-first trick yields richer, denser content and auditability (audio receipts), crucial for learning fine detail.

Generate a long caption about this image.

This black and white sketch depicts a boat, elegantly stationed at a pier. The boat, enemingly wooden, show-ourse a classic design with from prominent sails catching an imagined brezer. Below the boat, text inscribed reads "TAPTANA" in close, appearance interest. In the lower right-hand course, another rext, written is, curvive and appearing less legible, adds an air of authorities by the arrower. The meticalous design in the sails and the overall structure of the boat highlights the craftmunnship and artistry involved in this sketch.

Create a detailed caption

This photograph, taken a night, coprares the striking image of a hotel called Brecur. States. The sky jacks black, which no stars or a monon visible, correleoping the unrounding zero in social durkness. In the middle ground, faint outlines of trees are visible in from or the building. The hotel heart appears to be five or six stories till and is brightly illustimated with yellow and orange lights, highlighting its structure. At the very may of the building, a pressument mean rod sign displays the name. "Beneze Subsets," accompanied by a wave-shaped logo. The funds features crinicron light patients, acking to the building's visual appeal, A set of entains in visible in the control benezeway, and although the hotel in well-lie, the details of the trees and surroundings remain indivisant does to the enveloping darkness.

Create a detailed exetion

This detailed color photograph captures an empty more within a house. The room's walls are painted a bright, dusty grees, overland with a lighter green paint that is mostly pecking and chipping areay, revealing the layer boneath. Dominating one wall is a window divided into four owns of there penels each, making a notal of 12 gines panes. The window frame and windowsill are painted a dark black, adding a stark contrast to the green walls.

On the left side of the image, an open doorway reveals a white-painted door with its own peeling paint, Beyond the doorway, darkness obscur-

describe the image

A screenable captured from an Android phone displays a Twitnez-com interface, taken when the platform was all llanows an Twitner, poin on softwanting as N. The sure? when the platform was all llanows an Twitner, poin to in reheasting as N. The sure? device. Blady a customized Android given the minimal status indicates at the top of the screen, there whe time as 20.4 The status has reversed a strong Wi-Ti connection, indicated by the full Wi-Fi signal icon, alongoide a charging and fully charged battery to the control of the status of the stat

The screen-bot focuses on the Twister profile of Sto Pinets (WealStoPeners). The user is not following this accounts, which has made a total of approximately 10.000 breets. The visible bester from Sto Pieters, dated Macch 20th, in a neply to David Pakman...

Write a long caption

Screenshot Description: Mobile Application Interface

The screenshot is of a mobile application on an iPhone, illustrating the messaging interface.

- **Status Bur Details:**
- Time: 4:17 PM is displayed in the top-left corner.
- Cellular Signal: The phone shows 2 out of 4 cellular signal burs.
 W)-Fi Signal: The Wi-Fi signal is weak, with 1 out of 3 burs.
- Battery Indicator: Although the battery percentage is not displayed, t

....

This image is a triptych featuring three detailed shots of piezus from Cattishman's Fizzeria in Calgary, All, established in 2018. The top, landscape-oriented photos showcases the piezeria's whimsical box design, adorsed with a cartoox catfish character dosnoing a white chef's bax, a chef's contit, and a not bandans.

The two images below provide closer looks at the piezenia's offerings. On the bottom left, a close-up reveals an microkod, there-looked pieze that nearly overflows a placific cutting board set on a herem nutice. The pieze is generously conted in choose and tomats succe, unadorned by other troppings, ready to be sliced and served.

Describe this

In this horizontally aligned landscape photograph, taken from a first person point of view, a heavy set man in a dack bloc, awed-an everyed Tthirt is helding a bright orange and black weed noter. The image, taken with a GeWos comera, thorus the enam gripping the top handle of the word caser with his right hand and a occordary handle with his left. His monach recorded is distributed of the date.

To the right of the image, there is a green backet with a gray object inside it, standing on smoother concrete, indicative of a garage or workshop area which has a layer of dust or sawdast on the floor. In the

describe this

This image cogners a heading downtown scene under a class, smalls sky. Central to the composition is a large, trianguales hilbmand structure, complexity deviced of any advertisements, revealing blank where antheors on all visible punels. The hilbboard is conjugated with measurems lights positized on poles above it. Presentably to illuminate it at sight. Surrounding the billboard are several prominent buildings, notable among them at neutral part brick intention or the cight, advanced with rows of windows and frige except ladders. A water tower perches on one of the reorityne, adding to the orbits among them as amonghers. To the life, at all white buildings will address or metal structure is visible. The upper left corner of the image features a yriftne crane, its pulleys and chains dightly structuring into the frame. The retrieb to libboard is encound of an untel time.

Figure 12. Randomly selected examples from PixMo-Cap with our prompt templates.

PixMo-AskModel Anything

Goal: Teach the model to answer diverse, realistic questions grounded in the image.

How it's built:

- Annotator picks an image and writes a question.
- Run OCR (non-VLM) + a PixMo-Captrained captioner.
- A text-only LLM drafts an answer using only OCR + caption (no VLM supervision).
- Annotator accepts/rejects/revises until correct.

Scale: 162k QA pairs over 73k images.

Why it matters: Human-in-the-loop yields highquality, grounded answers without VLM dependency.

What kind of donut is this?

This appears to be a cinnamous sugar dooset. The donest itself has a light tan color typical of a traditional fried dough. It's counted with a generous layer of cinnamous sugar, giving it that classic sweet and slightly spicy thaver profits.

The topping isn't cheese as....

Can you take the phrase Easter Rabbit and put all the letters alphabetically?

Certainly! Let's take the phrase "Easter Rabbit" and arrange its letters alphabetically:

AABBEEIRRSTT

This includes all the letters from "Easter Rabbin" in alphabetical order, with....

what kind of car is shown in the image?

The car shown in the image is an Andia RS. This high-performance sports car is known for its slock, and distinctive design. The Andi RB features a midengine layout and is recognized for its supersive performance capabilities. It's a popular choice among sports car embasiants and has been featured in various nating events and competitions.

what kind of back brake is on this motorcycle?

The motorcycle in this image is equipped with a rear dram heale. You can see the drain brake assembly attached to the lab of the rear wheel. Dram brakes are an older brake technology that's less common on modern high-performance motorcycles, but they're still.

what is in this image

This image appears to be an Algenerated fastary forest scene. It depicts a buls, vibrant forest with various types of trees, including humboo and palm trees, as well as trees with autumncolored leaves in shades of orange and yellow. The gunual is converted in green graus and dened with colored flowers, particularly red and exampe blocens. A small pond with lily palm adds so the...

what is in the background?

The background of the image features a window with burry white curtains violby on one side. Sangligh appear to be streaming in through the window, creating a beight and airy atmosphere. The background is intentionally out of fixeus, which belog between attention to the mins subject of the image in the foreground. This soft, bluered background provides a pleasum and...

answer with text only, do not points how many times is the number I used in the photo

The number I appears six times in the photo. It's used in various parts of the contact information displayed, such as phone numbers and ID codes. These occurrences of the number I are distributed across different...

Do not point How many blades this has?

The wind turbine in the image has three blades. All three blades are clearly windle, extending outward from the central hub in a typical tri-blade configuration. This design is common for modern with turbines as it provides a good balance of efficiency and

selfout to the

This is a striking mural painted on the side of a building in Houston, Texas, It's a collaborative piece created by two renowned local graftsi artises, Daniel Angusha and ACK: The mural showcases a surreal and ensotionally evocative score.

The artwork reflects the unique styles of both artists. Duniel Anguilu, known for...

Figure 13. Randomly selected examples from PixMo-AskModelAnything.

PixMo-Points

Goal: To teach Molmo how to ground text in visual evidence, count objects, and explain answers visually by pointing to the exact regions in an image

How it is built: - Annotators write a short referring phrase → point to each instance → mark "not-present" if absent. Extended pipeline adds text-annotated points so LLM uses them in explanations.

Scale & stats:

- Core pointing: 2.3M question-points over 223k images (main text)
- Data detail section: 229k images, 1.98M referring expressions, 8.7 expressions/image, 5.5 points/expression, ~47.7 points/image, 359k "notarget" instances.
- 79k point-explanation annotations on 14k images.

Why it's novel/useful: $\approx 10 \times larger$ than RefCOCO/gRefCOCO; points = faster than boxes / masks; enables "count-by-pointing" chain-of-thought and visual explainability.

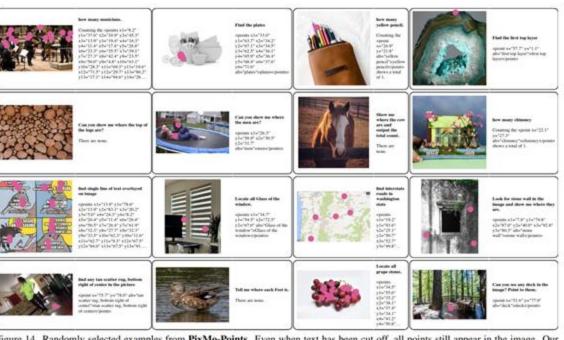
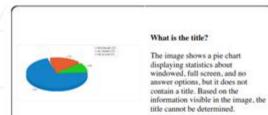


Figure 14. Randomly selected examples from **PixMo-Points**. Even when text has been cut off, all points still appear in the image. Our templated prompts can be ungrammatical for some of these options, but we find they are still sufficient to let the model respond correctly to natural language instructions.

PixMo-Points



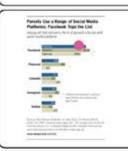
E) Personal de la Companya del companya de la companya de la companya del companya de la companya del la companya de la compan

what is the title of the graph?

The image shows a pie chart displaying personal New Year's resolutions. <point xm"51.4" ym"5.9" altu "little of the pie chart'>The title of the graph is "#1 Personal New Year's Resolution' which accurately summarizes the content of the chart. This title clearly indicates that the data presented represents the most popular or primary New Year's resolutions among respondents.

What percentage is business?

The image shows a pie chart of the top 10 email categories for phishing tests, epoint xu "620" y="20.0" altn" Business category in the pie chart">Business category in the pie chart">Business emails make up 25% of the phishing attempts-(point), representing the largest slice of the pie. This indicates that business-related phishing emails are the most...



What percentage of parents use Facebook?

The image shows a breakdown of social media usage among parents. «point xu=66» y=24 z= alte=Percentage of parents using Facebook >>74 percent
percents use Facebook, making it the most popular social media platform among this demographic. This statistic combines both mothers an...

What's the title?

The image shows a detailed financial document for <point x="30.2" y="8.3" att="Title of the document">Cow-Calf Production
Production
This document appears to be a projection of costs and returns for a 40-cow herd in North Texas for the year 2002. It provides a comprehensive breakdown of various financial aspects related to cattle production, including income, operating...

what is the average percent in my multi point selection?

To calculate the average percent of the selected points, we need to examine each point and sum up their percentages, then divide by the total number of points. Let's go through the data:

<point x="52.8" y="11.9" alt="52% of searches are from...

What is the highest craft distilleries in one state?

The image shows two maps of the United States depicting craft distilleries by state in 2007 and 2017. Looking at the 2017 map, we can see that 'spoint x="72.3" y="68.5" alt="state with the highest number of craft distilleries">106-c'point> is the highest number of craft distilleries...

What number and color can we see on the first image on the top row to the left?

The image shows a series of statistics about port community organizations, <point xn*9.4* yn*7.9* altm*41,200 people working in the port community*>41,200</point> is the number displayed in the first circle on the top left, representing the number of people working in the port community. This statistic is

presented in a <point x="12.0" y="4.2"...

what is the cost for 2 watermelons?

The image shows a breakdown of costs for watermelon production in Northeast Texas. spoint x="78.6" y="24.1" alta="Price per unit of watermelons">The price per unit (cwt.) of watermelons is \$3.00, and the quantity produced is 120 units-cipoints. To calculate the cost for 2 watermelons, we...

Figure 15. Randomly selected examples from the experimental PixMo-Points data that includes points with explanations.

PixMo-CAPQA

Goal: Give Molmo large-scale question-answer data so it can perform interactive, question-answer style reasoning about images

How it's built: A text-only language model (LLM) is prompted to ask and answer its own questions using only the caption text as context.

Scale: 214k QA over 165k images.

Use: Adds natural question-answer format supervision that improves Molmo's dialog and reasoning abilities.

Create a witty one-liner that combines the concept of a chameleon's color-changing abilities with the vibrant nature of the artwork shown. Your joke should deverly reference the multitude of colors present in the image without explicitly listing them all. Make sure to incorporate the phrase "fine art" in your punchline.

Why did the chameleon have a nervous breakdown at the art gallery? It tried to blend in with this "fine art" and short-circuited from color overload!

Imagine you're a baker who just created this beautiful Nutella swirl bread. What's going through your mind as you look at your finished creation, and how do you plan to share it with others?

As I gaze at my freshly baked Natella swirl bread, I can't help but feel a sense of pride and accomplishment. The intricate swirls and starburst pattern in the center turned out even better than I had hoped. The arests of warm bread and checolate fills the air, making my mouth water.

I carefully place the loaf on my favorite wooden cutting ...

What emotions or feelings does this image of a soda can evoke?

Looking at this image. I'd say it evokes a sense of refreshment and anticipation. The condensation deoplets running down the can suggest coolness, which can be quite appealing, especially on a bot day. The reflective silver surface of the can gives it a sleek, modern look that might create a feeling of trendiness or sophistication. The detailed matritional and ingredient information might evoke feelings of curiosity or conscientiouses in some viewers. Overail, the image likely creates a desire for the beverage, combining the visual cost of refreshment with the promise of a caffeinated pick-me-up, as indicated by the coffee and caffeine content trentioned on the can.

A youth soccer field is set up as a rectangle with a length that is 1.5 times its width. The field's perimeter is equal to the number of players visible on the field multiplied by 20 meters. If the area of one of the square tent canopies visible in the image is 16 square meters, what is the total area of the soccer field in square meters?

To solve this problem, we need to:

Count the number of players visible on the field from the image: 9 players

2. Calculate the perimeter: 9 * 20 = 180 meters...

Can you come up with a grilling pun or joke based on this image of someone checking the donness of meat on a barbecue?

Sure! Here's a grilling pun for you:

Why did the grillmaster get arrested?

Because he was caught feeling up his meat is public!

This joke plays on the image of someone touching the meat to check its doneness, but gives it a humorous, slightly riscpet twis by comparing it to inappropriate outching. It's a bit of weedplay that combines the cultury context with a checky double meaning.

Does the chameleon have bright green eyelids?

Yes. The chameleon in the image has vibrant green coloration, including bright green eyelids.

PixMo-Docs

Goal: Teach OCR, chart/table reasoning, and doc understanding.

How it's built (two-stage, all text-LLMs, no VLMs):

An LLM writes code that renders images (charts, tables, diagrams, mixed documents). Tooling: Matplotlib, Plotly, LaTeX, HTML, Vega-Lite, Mermaid, Graphviz, Another LLM has privileged access to the code (not the image) to generate QA pairs with exact ground truth.

Scale & stats: 255k images, ~2.3M QA.

Use: - Instruction-tuning role: Provides the bulk of structured-reasoning supervision for Molmo during fine-tuning.

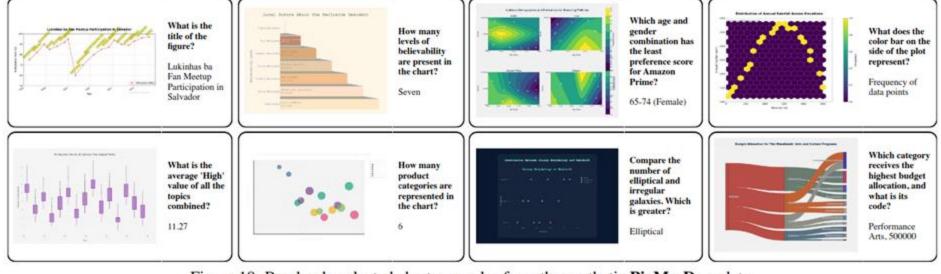


Figure 19. Randomly selected chart examples from the synthetic **PixMo-Docs** data.

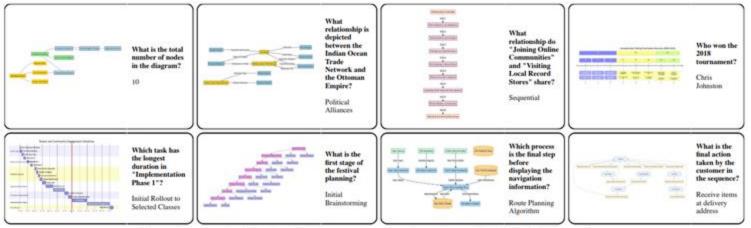


Figure 21. Randomly selected diagram examples from the synthetic PixMo-Docs data.

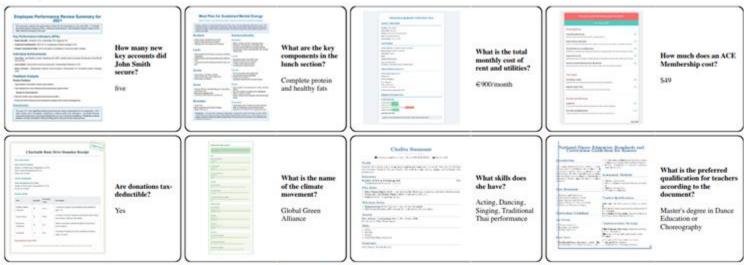


Figure 22. Other randomly selected documents from the synthetic PixMo-Docs data.

PixMo-Clocks

Goal: Teach Molmo to interpret analog watches \rightarrow map hand positions to numerical time.

How it is built: - Programmatically render \sim 50 watch bodies $\times \sim$ 160 k faces set to random times; each image paired with QA ("What time is it?").

Scale & stats: 826 k examples (image + QA pair) · 50 body templates · 160 k faces · labels = exact HH:MM times.

Why it's novel/useful: Realistic, photo-style watches with shadows & decorations \rightarrow harder than simulator data sets; links visual geometry to numerical reasoning.

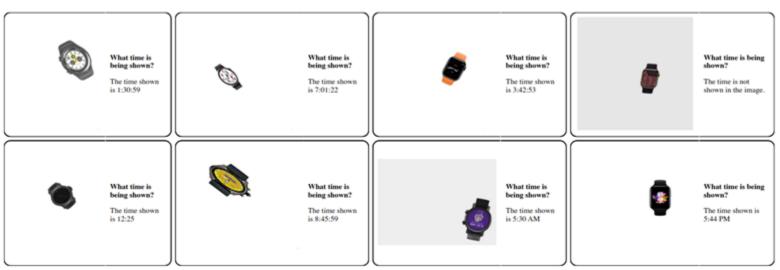


Figure 17. Randomly selected examples from the synthetic PixMo-Clocks data after our data augmentation.

PixMo-Count

Goal: A synthetic but realistic dataset that focuses on grounding, counting, and visual explanations via explicit 2-D pointing.

How it is built: - Diverse web images collected across many object categories and environments. Run a non-VLM, OCR model over the images to locate objects. For each image, identify the object class with the most detections (e.g., "cars" if most detections are cars). Record the count of that class (from 0–10). Use object centers as point annotations for each detected instance. Automatically form a question—answer pair such as: Q: "How many cars are in the image?" A: "5."

Scale & stats: 36 k train images (0-10 counts) · 540 val + 540 test (verified).

Why it's novel/useful: Adds point-level supervision for counting · harder & more diverse than CountBenchQA · enables explainable "countby-pointing."

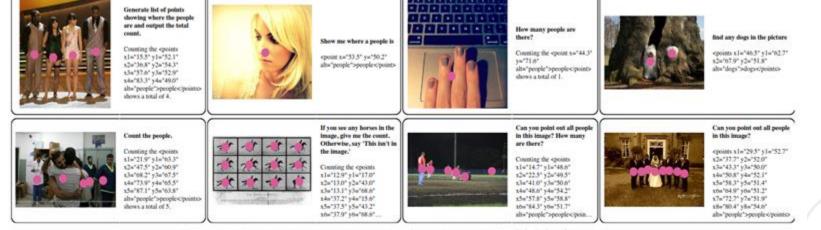
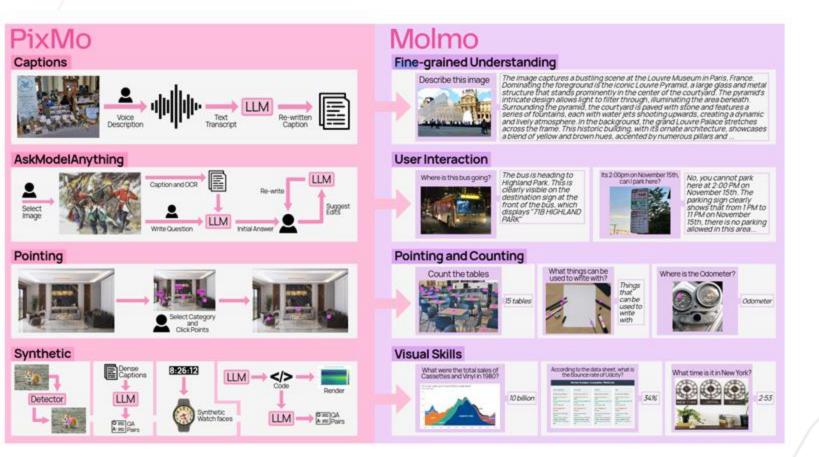


Figure 18. Randomly selected examples from the synthetic **PixMo-Count** data.

What were the problems with Previous Models/Datasets?

	/	
#	Problem in Previous Dataset	How does PixMo Solve it?
1	Closed / Proprietary or Synthetic Data Loops	All PixMo data gathered without using any vision models — from human speech, language-only LLM summarization, or direct programmatic generation
2	Noisy and Shallow Web Captions (Lack of Fine Detail)	PixMo-Cap uses spoken human descriptions (~200 words avg) → richer, contextual, fine-grained captions
3	Limited Grounding and Spatial Reasoning Data	PixMo-Points (2.3 M point annotations) + PixMo-Count (hard counting set) enable spatial and numerical reasoning
4	Costly and Low-Quality Human Captions	Spoken-caption pipeline: annotators narrate images for 60–90 s; transcribed + LLM-summarized → long, natural captions
5	Missing Non-Photographic Modalities (Docs / Charts / Clocks)	PixMo-Docs & PixMo-Clocks — code-rendered charts, tables, diagrams, clocks from LaTeX / Matplotlib / Plotly / Vega-Lite
6	Lack of Truly Open and Reproducible Pipelines	Molmo releases full PixMo data + generation code , ensuring end-to-end reproducibility and transparency.
7	Insufficient Multimodal Breadth and Balance	PixMo covers multiple domains (images + documents + charts) and supports multilingual captions, balancing modality and language diversity.
	-	

What does each subset of PixMo add to the model?



Any Questions?

Stage-2: - The Modelling Phase

Background and Related Works

How did the previous architectures look like?

web data to align embeddings in

a shared space.

representation learning.

2020 2021 2021-22 2022 CLIP (OpenAl) ViT (Vision VILT, FLAVA Flamingo (DeepMind) Transformer) Treats an image as a sequence Two separate encoders — one Single Transformer that fuses Introduced cross-attention of patches + Transformer for image (ViT/ResNet) and one patch + token embeddings early "Perceiver Resampler": a frozen encoder; no convolution layers. for text (Transformer). Trained ("fusion encoder") for crossvision encoder produces tokens Enabled scalable visual with contrastive loss on large modal reasoning. that a large LLM attends to via

learned cross-attention layers. Enables multi-image &

interleaved sequences.

How did the previous architectures look like ?(contd..)

2023 2023-24 2023-24 2023-24 2024

LLaVA, InstructBLIP Qwen-VL, InternVL Qwen-VL, InternVL Qwen2-VL

Takes CLIP/BLIP-2 vision encoders + LLM; aligns them via visual instruction tuning (GPT-4-generated conversations).

End-to-end large models combining high-res vision encoders, token resampling, and multi-task heads (OCR, doc reasoning).

End-to-end large models combining high-res vision encoders, token resampling, and multi-task heads (OCR, doc reasoning).

High-performing, open-weight decoder-only LLM family (scales well, strong reasoning; drop-in backbone for VLMs).

Model Architecture

Molmo: The Architecture

- Molmo is a Vision-Language Model (VLM) it takes an image + text input and produces text output (a caption, answer, explanation, or coordinates).
- It's built in four main blocks:
 - a. Preprocessor prepares the image (multi-scale cropping).
 - b. Vision Encoder (ViT) turns images into patch-level features.
 - c. Connector projects visual features into the same space as words.
 - d. Language Model (LLM) generates text from those tokens.

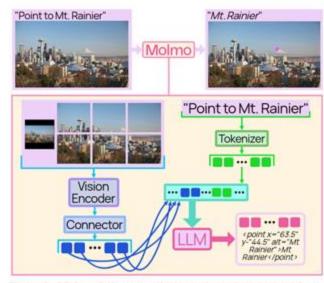


Figure 2. Molmo follows the simple and standard design of connecting a vision encoder and a language model.

What pre-processing on images Molmo does?

PROBLEM: -

- Vision Transformers (like CLIP's ViT-L/14)
 have a strict input rule: They only accept
 square images of a fixed resolution (for
 example 336 × 336 pixels).
- But real-world photos are rectangular, have different resolutions, and often contain small details (like text on signs, buttons, clocks, charts). So if we just resized everything to 336×336:
 - a. Small details would blur or disappear.
 - b. Wide/tall scenes would get stretched or squished.

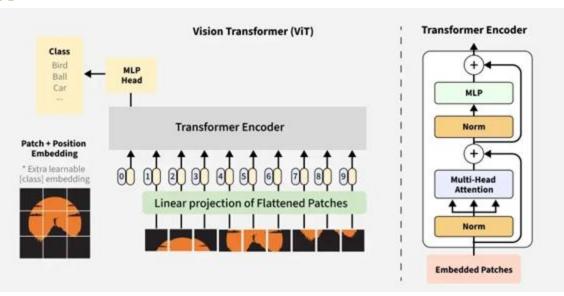
Figure 3. An image cropped without (left) and with (right) overlap. Highlighted regions show areas used by the LLM. Overlapping crops ensure that central patches are encoded with neighboring context; for example, the patches containing the bike's brand name are always part of a crop where the entire name is visible.

Solution: - Molmo fixes that with a multi-scale tiling strategy—the Preprocessor. We pass multiple inputs to encoder.

- 1. We will compress the image to low level 336*336 px for global important information
- 2. We will cut the image into several parts, each cut is 336*336 px, where cuts overlap each other so that information is sent to the encoder properly

Molmo: Vision Encoder

- The Vision Encoder is the part that turns raw image pixels into a set of meaningful numeric tokens that represent the image's contents texture, shape, objects, text, and layout.
- Molmo uses a Vision Transformer (ViT-L/14, 336 px) — the same model used in CLIP — but it adds some special tweaks to make it work better for finegrained multimodal understanding.
- Molmo Vision Encoder(variants)-
 - OpenAi; ViT-L/14 336px CLIP model
 - SigLiP
 - MetaCLIP



Molmo: Connector and LLM Decoder

- The connector bridges the ViT and the LLM.
- · Takes pooled patch vectors from ViT.
- Uses a small MLP (multi-layer perceptron) to map them into the LLM's embedding space (so "visual tokens" and "word tokens" live in the same world).
- Adds positional information so the LLM knows where in the image each token came from.
- The LLM is a decoder-only transformer, like GPTstyle models.
- The LLM takes input as [Vision tokens] + [Text prompt tokens]
- The LLM auto-regressively generates text, one token at a time, conditioned on both image and text context.
- LLM's, used by Molmo: -
 - OLMo-7B-1024 preview (open source)
 - OLMoE-1B-7B (most efficient from allenai)
 - Qwen2 7B (best results)

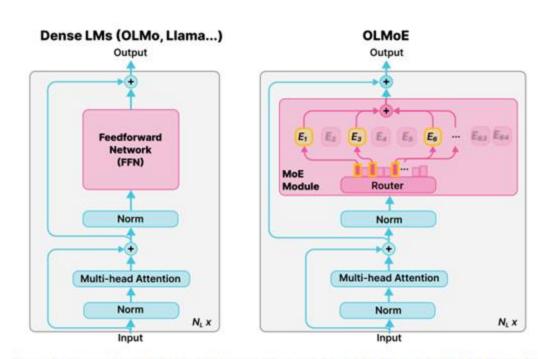


Figure 2: Comparison of the architecture of dense LMs and MoE models like OLMoE. The figure excludes some details, e.g., OLMoE-1B-7B also uses QK-Norm (§4.2.5).

How does the working look like in MOLMO? (example)

Step 1: The Input

- Real-world image: **1920 × 1080 × 3 (RGB)**; An image of a busy café street "Café Roma" signboard, tables, people, and parked cars.
- It has text ("Café Roma"), small details (menu board), and many objects (chairs, people).

Step 2: Making the Image ViT-Friendly

Molmo can't feed this rectangular image directly to the Vision Transformer (ViT), because ViT only works on **square 336×336** images.

So, Molmo creates:

- 1 low-resolution image → the entire scene scaled down to 336×336 (gives global context).
- **8–12 high-resolution crops** → zoomed-in squares (336×336 each) that cover every part of the image.

Each crop overlaps its neighbor by about **56 pixels**, so borders (like "Café") don't get cut in half.

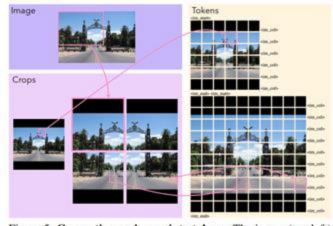


Figure 5. Converting an image into tokens. The image (top left) is turned into a single low-res and several overlapping high-res crops (bottom left). Padding (the black borders) is used so each crop is square and the aspect ratio of the image is preserved. The final token sequence for the image (right, arranged top-down left-to-right with line breaks for clarity) is built by extracting patch-level features from the crops, shown here using images of the patches, and special tokens. An image start and image end token are placed before/after the high-res and low-res patches, and column tokens are inserted after each row of patches. This example uses 4 high-res crops and extracts features from 36 (6×6) patches per crop, in practice Molmo typically uses 12 high-res crops and extracts features from 144 (12×12) patches per crop.

How does the inference look like in MOLMO?

Step 3: Padding the Edges

If the grid doesn't perfectly fit, black padding is added to fill extra space.

Molmo tells the ViT whether each patch is:

- real image region,
- partially padded, or
- all padding (by adding padding-type embeddings).
- This ensures the model doesn't confuse black borders with actual dark areas of the image.

Step 4: ViT Patchification and Feature Extraction

Each crop (336×336) is divided into **14×14 px patches**, so each crop becomes a **24×24 grid = 576 patches**.

Every patch \rightarrow converted to a **1024-dimensional feature vector** by ViT's patch embedding layer.

Example (per crop):

```
Input: [336, 336, 3] \downarrow Split into patches \rightarrow [24, 24, 1024] \downarrow Flatten \rightarrow [576, 1024]
```

Molmo takes ViT outputs from **two internal layers** — one mid-level (for textures), one late (for semantics) — and combines them \rightarrow slightly better detail understanding.

How does the inference look like in MOLMO?

Now, 576 tokens per crop is too many. So Molmo uses **2×2 attention pooling** to compress information while keeping local context.

Every 4 neighboring patches → 1 pooled token:

$$24\times24 \rightarrow 12\times12 = 144$$
 tokens per crop

Each token still has **1024 dimensions**, but now represents a *small region* (like a person's face or part of a table).

Step 6: Removing Redundant Overlaps

Since crops overlapped, some tokens describe the same pixels twice.

Molmo removes these duplicate areas, keeping only **unique patches** for the full image.

So if 9 crops × 144 = 1296 tokens before cleanup, after removing overlap → roughly **1100 unique visual tokens** remain.

Step 7: Vision–Language Connector (The Bridge)

Each vision token is a **1024-D vector** (from ViT), but our LLM (Qwen2 or OLMo) uses **4096-D embeddings** for text.

So Molmo adds a small **MLP connector** that maps:

$$[1100, 1024] \rightarrow [1100, 4096]$$

Now all vision tokens "look" like text tokens — just numbers in the same space.

How does the inference look like in MOLMO?

Step 8: Add Layout Tokens

To tell the LLM how the image was tiled, Molmo adds special layout tokens:

```
<img_start_lowres> ... <img_end_lowres>
<img_start_hires> ... <row_end> ...
<img_end_hires>
```

This helps the model "know" that one token sequence came from the top-left crop, another from bottom-right, etc.

Final vision sequence length: about **1110 tokens** (4096-D each).

Step 9: Add the Text Prompt

Now the user asks a question —"What color is the car parked near the café?"

These words are tokenized into ~8 text tokens (4096-D each).

Molmo concatenates:

```
[Vision tokens][Text tokens]
\rightarrow [1110 + 8 = 1118 \text{ tokens}, 4096-D \text{ each}]
```


How does the inference look like in MOLMO?

Step 10: LLM Forward Pass (Decoder-Only Transformer)

Inside the LLM:

- Vision tokens → context memory (can look at each other freely).
- Text tokens → causal (each new word can attend to all vision tokens + previous text).

Now self-attention learns relationships like: So during generation, when predicting the next token, the model "looks back" at the vision embeddings representing those regions.

Step 11: Output

The decoder outputs the next tokens one by one:

```
Vision + "What color is the car?"

↓
LLM attends to car patches

↓
Predicts "red"

↓
"The car is red."
```

Text Token	Attends to Vision Tokens
"car"	high attention on the car region
"color"	focuses on same area
"café"	attention on signboard
"?"	weak uniform attention

That's how Molmo connects visual understanding to language reasoning.

Molmo: Architecture(Ablations)

ViT-L/14	cap F_1	11-avg
OpenAI CLIP 336px	54.1	76.9
MetaCLIP 336px	54.1	77.2
SigLIP-So400m 384px	54.4	77.1
DINOv2 336px	53.2	75.6

(a) Vision encoder. Encoders that were trained on noisy web-scale image-text pairs perform similarly (rows 1-3). Surprisingly, DINOv2, which is trained on images only (no text, no label supervision), is competitive on these tasks. MetaCLIP and DINOv2 are fully open.

cropping	$cap F_1$	11-avg	
single	46.7	62.8	
multi, no overlap	53.4	75.7	
multi, overlap	54.1	76.9	

(d) Cropping. Using the entire image only (single crop) performs poorly. Our novel overlapping crop method (see Figure 3), which prevents loss of context, performs the best.

# crops train, test	$cap F_1$	11-avg
4, 4	52.0	71.0
4, 12	52.0	74.1
4, 36	52.0	74.2
12, 12	54.1	74.9
12, 36	54.1	76.9
36, 36	54.0	77.2

(b) Image resolution. Using more crops at training and testing time generally improves performance. However, captioning and counting can perform poorly when # of crops are unequal, so for these tasks we always set the number of test crops equal to the training value.

setting	$cap F_1$	11-avg	
off	53.0	76.2	
on	54.1	76.9	

(e) Length conditioning. Captioning with length hints is a superior pre-training task compared to captioning alone as evident by the improved captioning and downstream results.

pre-train, fine-tune	cap F_1	11-avg
off, off	53.1	74.6
off, on	53.1	76.6
on, on	53.7	77.0
on (text only), on	54.1	76.9

(c) Dropout. Dropout in the LLM improves pre-training and fine-tuning results. In pretraining, applying dropout to captioning text tokens only further improves results. This design may encourage the model to rely more on vision tokens rather than past text tokens.

2×2 pooling	cap F_1	11-avg	
stacking	53.7	76.1	
attention	54.1	76.9	

(f) Pooling. Pooling 2×2 windows of vision tokens using mean-query attention performs better than simply stacking the four features as input to the vision-language connector MLP.

Table 2. Model ablations. Default settings are marked in gray. See the Appendix for additional ablations.

Stage-3:- The Training Phase

Part-A: - Pre - Training

What are the technical details related to pre-training MOLMO?

/	
Input Data	The PixMo-Cap dataset — 712 K diverse images, 1.3 M human voice-based transcripts and long captions (≈ 196 words per caption)
Optimizer	AdamW (β = 0.9, 0.95; ϵ = 1e-6).
Epochs / Steps	~4 epochs over PixMo-Cap (~22 K steps for 7B model).
Precision	Mixed precision (AMP): activations \rightarrow bfloat16; weights & grad reduce \rightarrow float32 (for stability).
Parallelizatio n	Fully Sharded Data Parallel (FSDP)
Epochs / Steps	~4 epochs over PixMo-Cap (~22 K steps for 7B model).
Sequence Length	Max 2304 tokens (vision + text).

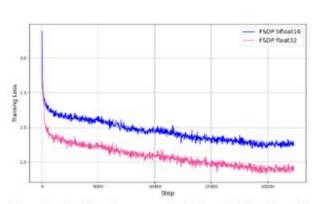


Figure 6. Training loss curves for Molmo-7B-D with model weights and gradient reduction in bfloat16 (blue) and float32 (pink). Float32 is our default configuration.

Molmo: Pre-Training(Ablations)

- Dataset usage: Prompts Used:- Model is prompted with either "long caption:" (for detailed caption)
 OR "transcript:" (for spoken-style output)
- For images with multiple captions/transcripts: all text tokens are concatenated in one sequence with attention masks → each annotation attends only to its own text + image tokens. Saves compute (~ 2 × faster).
- **Length Hint:** Numerical token in prompt controls caption verbosity ("long caption 70:"); Improves recall/precision trade-off.
- Text-only Dropout: Drop text tokens to force reliance on visual tokens (better grounding).
- Connector Fast Warmup: Higher LR + short warmup → no need for separate connector pre-training,
 since cleaner data
- Full FP32 weights + AMP: Prevents numerical instability at scale.

Part-B: - Post - Training

What are the technical details for post tuning?

Figure 4. Datasets used for fine-tuning, shown in proportion to their sampling rates. Green denotes human-annotated data we collected, blue denotes synthetic data we generated, and purple represents pre-existing academic datasets. PixMo-Docs has been subdivided into charts, tables, diagrams, and other.

Input Data	Combines PixMo (AskModelAnything, Points, Count, Docs, Clocks, CapQA) + 15+ academic datasets (VQA, ChartQA, DocVQA, etc.).
Optimizer	AdamW (β = 0.9, 0.95; ε = 1e-6).
Epochs / Steps	~4 epochs over PixMo-Cap (~22 K steps for 7B model).
Precision	Mixed precision (AMP): activations \rightarrow bfloat16; weights & grad reduce \rightarrow float32 (for stability).
Parallelizati on	Fully Sharded Data Parallel (FSDP)
Sampling rule: -	Proportional to √(dataset size) to avoid dominance by large synthetic sets.Pointing data heavily up-weighted.

What are some other fine-tuning strategies?

Problem: - When fine-tuning on 15+ different datasets (VQA, DocVQA, ChartQA, PixMo-Points, etc.), each dataset has different answer styles, different output formats, and different question tones. This was not done for Pixmo datasets!

If you train them together without separation: The model might confuse formats (e.g., answering a chart question like a VQA question), or lose conversational tone because benchmark answers are short and mechanical.

Solution → Introduce lightweight text prefixes ("style tags"). These are short tokens inserted at the start of the input prompt, telling the model what kind of data/task this example belongs

Dataset: Example Input VQA v2.0 vqa2: What is the man holding? TextVQA textvqa: What does the sign

When Fine-tuning:-

Input sequence (simplified)

```
[IMG_START] ...vision tokens... [IMG_END]
"chartqa:" "What" "was" "the" "sales" ... "?"
→ model predicts "The", "sales", "were", "10",
"billion", "."
```

For pointing:

```
<point x="42.3" y="55.1" alt="dog">dog</point>
```

Model learns to chain-of-thought count by pointing sequentially.

What are the key details from both the training phases?

- All components (ViT, Connector, LLM) remain trainable, but with smaller LRs(during fine tuning) and higher LRs(during pre training)
- FSDP + AdamW + cosine decay (same setup) for pre and post training

	pre-train			fine-tune		
	GPUs	time	GPU hr.	GPUs	time	GPU hr.
1B-E	8	33.3	264	64	13.3	850
7B-D	64	8.6	550	128	11.2	1.4k
7B-O	64	8.9	570	128	13.5	1.7k
72B	128	33.3	4.2k	256	32.4	8.3k

Table 8. Training times for the Molmo models using H100 GPUs.

Stage	Purpose	Data	Key Tricks	Output
Pre- Align vision & language PixMo-Cap (dense captions)		Length hints, overlap crops, text-only dropout, connector fast warmup	Generates detailed image captions	
Fine- Tuning	Teach reasoning & instruction following	PixMo + academic datasets	Style tags, multi-task batching, up-weight pointing	Answers, counts, and points to objects

Any Questions?

Evaluation

What is the point of that Benchmark?

Visual question answering on natural images with short

QA on document images such as forms, receipts, and

QA over infographic-style visuals mixing text and images.

QA on natural photos where recognizing text is essential.

#	Benchmark	What It Is	Skill Tested	Example Question
1	Al2D — Science Diagrams	Multiple-choice questions about science diagrams (arrows, labels, parts, flows).	Diagram reading; spatial and semantic relations	"Which arrow shows heat flow?"

ChartQA — Charts Question answering over bar, line, and pie charts.

answers.

pages.

2

3

& Plots

VQA v2.0 —

DocVQA —

Forms)

InfoQA —

Infographics

TextVQA —

Wild

Everyday Photos

Documents (Scans,

Reading Text in the

OCR; numerical reading; basic

General visual understanding;

OCR; layout and document structure

OCR; reasoning over mixed text and

Scene text detection, recognition, and

commonsense reasoning

understanding

visual elements

grounding

arithmetic/aggregation

"What is the 2019 sales for

"What color is the bus?"

"What is the total due?"

"According to the infographic,

"What does the street sign say?"

which country leads in X?"

Europe?"

What is the point of that Benchmark(contd.)?

Hard Counting

scenes.

#	Benchmark	What It Is	Skill Tested	Example Question			
7	RealWorldQA — Zero-shot Natural Photos	QA on diverse, real-world images unseen in training.	Zero-shot generalization; robust visual understanding	"Is the person wearing a helmet?"			
8	MMMU — Multi-	Academic-style reasoning tasks across many subjects.	Multi-step reasoning with images	"Given the labeled circuit, which bulb is brightest?"			

	Hotos			
8	MMMU — Multi-	Academic-style reasoning tasks across many subjects.	Multi-step reasoning with images	"Given the labeled circuit, which
	Domain Reasoning			bulb is brightest?"
9	MathVista — Visual	Math problems involving visual diagrams or figures.	Math reasoning; geometry; multi-step	"What is the angle at point B?"

	Domain Reasoning			bulb is brightest?"
9	MathVista — Visual Math Reasoning	Math problems involving visual diagrams or figures.	Math reasoning; geometry; multi-step logic	"What is the angle at point B?"

	/			
9	MathVista — Visual Math Reasoning	Math problems involving visual diagrams or figures.	Math reasoning; geometry; multi-step logic	"What is the angle at point B?"
10	CountBenchQA —	Counting objects in natural or cluttered scenes.	Object counting; grounding	"How many red chairs are

9	MathVista — Visual Math Reasoning	Math problems involving visual diagrams or figures.	Math reasoning; geometry; multi-step logic	"What is the angle at point B?"
10	Counting in Images	Counting objects in natural or cluttered scenes.	Object counting; grounding	"How many red chairs are there?"

	wath Reasoning		logio	
10	CountBenchQA — Counting in Images	Counting objects in natural or cluttered scenes.	Object counting; grounding	"How many red chairs are there?"
11	PixMo-Count —	A more difficult counting benchmark with messy, real	Robust counting; localization under	"Count the people wearing

noise

helmets."

Human evaluation via pairwise preference comparisons Overall multimodal answer quality and "Which model gave a better 12 **Human Preference** alignment with human judgment explanation?" (~15k prompts, ~870 raters). (Elo)

model	-	-	-	-	-		_							_
API call only		50000	10.0500	00000						2000				
GPT-4V [88]	89.4	78.1	77.2	87.2	75.1	78.0	61.4	63.1	58.1	69.9	45.0	71.1	1041	10
GPT-4o-0513 [90]	94.2	85.7	78.7	92.8	79.2	77.4	75.4	69.1	63.8	87.9	59.6	78.5	1079	1
Gemini 1.5 Flash [103]	91.7	85.4	80.1	89.9	75.3	78.7	67.5	56.1	58.4	81.6	61.1	75.1	1054	7
Gemini 1.5 Pro [103]	94.4	87.2	80.2	93.1	81.0	78.7	70.4	62.2	63.9	85.8	64.3	78.3	1074	3
Claude-3 Haiku [7]	86.7	81.7	68.4	88.8	56.1	67.3	45.5	50.2	46.4	83.0	43.9	65.3	999	18
Claude-3 Opus [7]	88.1	80.8	66.3	89.3	55.6	67.5	49.8	59.4	50.5	83.6	43.3	66.7	971	21
Claude-3.5 Sonnet [7]	94.7	90.8	70.7	95.2	74.3	74.1	60.1	68.3	67.7	89.7	58.3	76.7	1069	4
Open weights only													-	
PaliGemma-mix-3B [10]	72.3	33.7	76.3	31.3	21.4	56.0	55.2	34.9	28.7	80.6	60.0	50.0	937	27
Phi3.5-Vision-4B [1]	78.1	81.8	75.7	69.3	36.6	72.0	53.6	43.0	43.9	64.6	38.3	59.7	982	19
Qwen2-VL-7B [111]	83.0	83.0	82.9	94.5	76.5	84.3	70.1	54.1	58.2	76.5	48.0	73.7	1025	14
Qwen2-VL-72B [111]	88.1	88.3	81.9	96.5	84.5	85.5	77.8	64.5	70.5	80.4	55.7	79.4	1037	12
InternVL2-8B [104]	83.8	83.3	76.7	91.6	74.8	77.4	64.2	51.2	58.3	57.8	43.9	69.4	953	23
InternVL2-Llama-3-76B [104]	87.6	88.4	85.6	94.1	82.0	84.4	72.7	58.2	65.5	74.7	54.6	77.1	1018	16
Pixtral-12B [3]	79.0	81.8	80.2	90.7	50.8	75.7	65.4	52.5	58.0	78.8	51.7	69.5	1016	17
Llama-3.2V-11B-Instruct [5]	91.1	83.4	75.2	88.4	63.6	79.7	64.1	50.7	51.5	73.1	47.4	69.8	1040	11
Llama-3.2V-90B-Instruct [5]	92.3	85.5	78.1	90.1	67.2	82.3	69.8	60.3	57.3	78.5	58.5	74.5	1063	5
Open weights + data († distilled)														
LLaVA-1.5-7B [69]	55.5	17.8	78.5	28.1	25.8	58.2	54.8	35.7	25.6	40.1	27.6	40.7	951	26
LLaVA-1.5-13B [69]	61.1	18.2	80.0	30.3	29.4	61.3	55.3	37.0	27.7	47.1	35.2	43.9	960	22
xGen-MM-interleave-4B† [119]	74.2	60.0	81.5	61.4	31.5	71.0	61.2	41.1	40.5	81.9	50.2	59.5	979	20

63.4

66.8

72.0

76.6

68.6

74.6

77.3

81.2

50.7

54.4

60.7

79.6

83.3

84.8

952

953

1024

1051

1032

1051

1056

1077

25

24

15

13

9

6

model

Cambrian-1-8B† [106]

Cambrian-1-34B† [106]

MolmoE-1B

Molmo-7B-O

Molmo-7B-D

Molmo-72B

LLaVA OneVision-7B† [59]

LLaVA OneVision-72B† [59]

73.0

85.6

86.4

90.7

75.6

80.0

78.0

The Molmo family: Open weights, Open data, Open training code, Open evaluations

83.8

84.0

83.9

85.3

85.6

75.5

87.5

90.8

92.2

93.5

46.0

68.8

74.9

53.9

70.0

72.6

76.7

78.3

80.5

78.8

80.4

81.7

67.8

66.3

71.9

60.4

67.5

70.7

49.7

48.8

56.8

34.9

39.3

53.2

63.2

67.5

34.0

44.5

51.6

58.6

75.6

78.8

84.3

89.0

88.5

What did we achieve?

Table 1. We present academic benchmark results for 10 common datasets, plus a new counting benchmark, PixMo-Count, which features more challenging natural images than CountBenchQA. We categorize models into four groups: (top) proprietary models accessible only via API calls, (upper middle) models with released weights but closed data, (lower middle) models with released weights and training data (noting some of these use distillation (†) from proprietary VLMs via synthetic data), and (bottom) the

Molmo family of models.

What is the conclusion of these results?

🦊 Overall Performance

Molmo-72B ranks #2 overall (just behind GPT-4o) → Beats Gemini
 1.5 Pro, Gemini 1.5 Flash, and
 Claude 3.5 Sonnet.(Elo ranking)

 Molmo-7B and MolmoE-1B models perform between GPT-4V and GPT-4o while being fully open.

 Achieves state-of-the-art among open models — and all weights, data, and code are released.

Where Molmo Excels

- **Visual Understanding & Captioning :-** Excellent at describing complex natural images; ranks top on these benchmarks.
- **Counting & Grounding: -** Best-in-class due to new point-then-count reasoning and 2D pointing data.
- **Diagram & Chart Interpretation:-** Performs near top; overlapping multi-crops preserve fine visual details.
- **Document & OCR Tasks:-** After multimodal training, a small drop in text-only skills (recovered by fine-tuning with Tulu-3).

Average / Needs Improvement

- **Reasoning & Math :-** Weaker reasoning and math logic; model not trained with enough structured reasoning data.
- Fine OCR & Text-heavy Scenes:- Slightly behind Qwen2-VL, which is heavily optimized for OCR.
- **Text-Only Knowledge / Coding:-** After multimodal training, a small drop in text-only skills (recovered by fine-tuning with Tulu-3).

Other Results: - CHATBOT ARENA

What it is: Third-party human preference leaderboard (pairwise votes \rightarrow Elo).

What Molmo did:

- Molmo-72B beats all fully open/openweight models there, but sits below top proprietary models.
- In Molmo's own controlled Elo study (Section 5), Molmo-72B ranks #2 overall (just behind GPT-4o).

model	score	95% CI	opennness
Gemini-Exp-114 [103]	1278	+28/-27	API only
ChatGPT-40-latest (20240903) [90]	1256	+13/-13	API only
Gemini-1.5-Pro-002 [103]	1220	+15/-14	API only
Gemini-1.5-Flash-002 [103]	1219	+15/-17	API only
GPT-4o-2024-05-13 [90]	1213	+9/-9	API only
Claude 3.5 Sonnet (20240620) [7]	1187	+9/-7	API only
Claude 3.5 Sonnet (20241022) [7]	1184	+15/-15	API only
Gemini-1.5-Pro-001 [103]	1158	+9/-8	API only
GPT-4-Turbo-2024-04-09 [88]	1157	+7/-10	API only
Gemini-1.5-Flash-8B-Exp-0827 [103]	1137	+15/-13	API only
GPT-4o-2024-08-06 [90]	1131	+18/-20	API only
Gemini-1.5-Flash-8B-001 [103]	1133	+10/-15	API only
GPT-4o-mini-2024-07-18 [89]	1124	+7/-9	API only
Molmo-72B	1115	+18/-17	Fully Open
Qwen2-VL-72B [111]	1113	+15/-17	Open Weight
InternVL2-26B [104]	1096	+11/-10	Open Weight
Pixtral-12B-2409 [3]	1085	+13/-14	Open Weight
Llama-3.2V-90B-Instruct [5]	1085	+12/-14	Open Weight
Gemini-1.5-Flash-001 [103]	1087	+8/-8	API only
Molmo-7B-D	1076	+15/-18	Fully Open
Yi-Vision [4]	1070	+21/-26	Distilled
Claude 3 Opus [7]	1073	+6/-8	API only
Qwen2-VL-7B [111]	1068	+15/-14	Open Weight
Llama-3.2V-11B-Instruct [5]	1061	+14/-14	Open Weight

Table 9. Chatbot Arena's vision leaderboard for English queries. The table is up to date as of Nov. 13, 2024. We show up to 20 rows for clarity.

Other Results: - CLOCK Reading

- Prompt: "What time is being shown? Answer as HH:MM."
- Result: Most VLMs—open and closed struggle.
- Molmo models dominate VLMs (overall/hour/minute accuracy), though a specialized single-task clock model still wins.

model	acc.	hour acc.	min. acc.
GPT-4o-0513 [90]	2.7	14.2	8.6
Gemini 1.5 Pro [103]	0.9	11.6	5.1
Claude-3.5 Sonnet [7]	6.6	22.3	17.5
PaliGemma-mix-3B [10]	6.1	21.0	15.8
Phi3.5-Vision-4B [1]	1.9	12.0	7.6
Qwen2-VL-72B [111]	9.1	24.9	18.4
InternVL2-Llama-3-76B [104]	3.3	16.3	9.9
Pixtral-12B [3]	1.7	11.9	6.7
Llama-3.2V-90B-Instruct [5]	3.4	17.9	10.1
LLaVA-1.5-13B [69]	0.8	11.6	5.7
xGen-MM-interleave-4B [119]	2.0	11.9	8.0
Cambrian-1-34B [106]	1.8	11.1	7.2
LLaVA OneVision-72B [59]	5.7	17.9	15.4
MolmoE-1B	65.8	77.9	74.1
Molmo-7B-O	64.2	76.3	73.8
Molmo-7B-D	68.2	78.6	76.0
Molmo-72B	65.6	77.1	73.7
Specialized single-task model [121]	78.9	84.2	82.9

Table 10. Clock reading benchmark results. We report the averages of overall, hour and minute accuracies, each evaluated on three different test sets based on COCO, OpenImages and Clock Movies, respectively. Bold numbers represent the highest VLM scores while the best numbers, excluding Molmo, are <u>underlined</u>. We categorize models into five groups: (first) API-only, (second) open-weight, (third) open-weight and open-data, (four) the Molmo family and (five) the specialized clock reading model.

Conclusion

What is the conclusion from all this?

Molmo set out to prove that multimodal reasoning can be achieved openly — with transparent data, modular architecture, and reproducible training recipes.

Key Contributions: -

- **PixMo Dataset:** High-quality, LLM-assisted but auditable multimodal data bridging web-scale diversity with detailed grounding (captions, points, documents, clocks, counts).
- Molmo Model: Simple yet powerful architecture multiscale overlapping crops + attention pooling connector + open LLM — that achieves competitive reasoning without closed data.
- Openness: Every stage data, code, checkpoints, evaluation is public and reproducible, setting a new standard for transparency in VLMs.

Quick Demo!

Discussion

Where Do We Go From Here?

- Q1:- PixMo introduces separate datasets for every new capability (counting, clock reading, document QA). Do we risk fragmenting 'intelligence' into narrow subskills instead of achieving general reasoning?
- **Q-2:-** If data diversity matters more than sheer scale, what does an ideal next-generation multimodal dataset look like curated, synthetic, or mixed?
- **Q-3:-** With all the VLM architecture seen, can we conclude now that if we combine techniques we will get the best model?
- Q-4:- While training how much emphasis to text v/s image(dropout layer in MOLMO's LLM)?
- **Q-5:-** Is data still the bottleneck or is the current problem in our architecture or context for models?
- **Q-6:-** As VLMs evolve toward multimodal agents (seeing, hearing, acting), what defines true intelligence performance on datasets, or the ability to generalize without new data?
- **Q-7:-** Papers like Imagebind, Unified-IO-2, combine modalities under a shared token space, does that mark the end of modular encoders and connectors like in Molmo or will modularity remain important for specialization?

