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Molmo and PixMo: Open Weights and Open Data for State-of-the-Art
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What is the problem that this paper addresses ?

Molmo
* Problem: - Lack of open, transparent, and high-performing vision-language A family of open state-of-the-art multimodal Al
models models
o Category-1: - API Based: - GPT-40, Claude, Gemini, Groq, —
o Category-2: - Open Weights: - Qwen, InternVL, PaliGemma a2 -

o Category-3: - Open Weights & Data: - LLava, Cambrian, Xgen @ @ -
= @

D

Solution:- MOLOMO

* A state-of-the-art open VLM: First large-scale open-weights + open-
data + open-code (still the vision encoder is left out !)
demonstrating competitive performance

o Open weights
o Open data (PixMo)
o Open training code

Gr Georgia
Git Repo: - hitps:/github.com/allenai/molmo/tree/main Lo
Website:- htps:/allenai.org/blog/molmo


https://github.com/allenai/molmo/tree/main
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Fig: - VLM Openness Comparison. We characterize the
openness of VLMs based on two attributes (open weights,
open data and code) across three model components (the
VLM and its two pre-trained components, the LLM backbone
and the vision encoder). In addition to open vs. closed, we
use the "distilled” label to indicate that the data used to train
the VLM includes images and text generated by a different,
proprietary VLM, meaning that the model cannot be
reproduced without a dependency on the proprietary VLM.



5 understand in a way of how a
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Paper Flow — Understanding Molmo Like Training a Model

PixMo

(Data Stage)

Molmo Molmo Conclusion
(Architecture Stage) (Training Stage) (What is the point of all this 1

e Previous
Datasets(History)

e Problems in
previous datasets

e PixMo- The new
dataset

e Ablations

e Background and e Pre-Training e Results and
Quick Architecture Details Evaluation
History e Post Training e Ablations

e MOLMO Details e Conclusion
architecture e Ablations e Demo

e Data e Discussion
Preprocessing e Q&A

e Ablations
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Stage-1: - The Data
Phase
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What datasets did previous architectures use ?

2020

ViT (Vision
Transformer)

Treats animage as a sequence
of patches + Transformer
encoder; no convolution layers.
Enabled scalable visual
representation learning.

2021

CLIP (OpenAl)

Two separate encoders — one
for image (ViT/ResNet) and one
for text (Transformer). Trained
with contrastive loss on large
web data to align embeddings in
a shared space.

2021-22

ViLT, FLAVA

Single Transformer that fuses
patch + token embeddings early
(“fusion encoder”) for cross-
modal reasoning.

2022

Flamingo (DeepMind)

Introduced cross-attention
“Perceiver Resampler”: a frozen
vision encoder produces tokens
that a large LLM attends to via
learned cross-attention layers.
Enables multi-image &
interleaved sequences.
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What datasets did previous architectures use ?

2023

LLaVA, InstructBLIP

Takes CLIP/BLIP-2 vision
encoders + LLM; aligns them via
visual instruction tuning (GPT-4-
generated conversations).

2023-24

Qwen-VL, InternVL

End-to-end large models
combining high-res vision
encoders, token resampling, and
multi-task heads (OCR, doc
reasoning).

2023-24

Qwen-VL, InternVL

End-to-end large models
combining high-res vision
encoders, token resampling, and
multi-task heads (OCR, doc
reasoning).

2024

Qwen2-VL

High-performing, open-weight
decoder-only LLM family (scales
well, strong reasoning; drop-in
backbone for VLMs).
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Problem in Previous
Dataset

Closed/ Proprietary or
Synthetic Data Loops

Noisy and Shallow Web
Captions (Lack of Fine Detail)

Limited Grounding and Spatial
Reasoning Data

Costly and Low-Quality Human
Captions

Missing Non-Photographic
Modalities (Docs / Charts /
Clocks)

Lack of Truly Open and
Reproducible Pipelines

Insufficient Multimodal
Breadth and Balance

Problem Cause

Many instruction and alignment datasets were generated using GPT-4
| GPT-4V, causing “distillation of proprietary systems” and preventing
reproducibility

Web-scraped alt-text is short (~5-10 words), inconsistent, and object-
level grounding is poor. This weakens fine-grained reasoning and
counting.

Earlier grounding/counting sets are small, single-target, or too easy,
while web-scale data lacks coordinates

Human annotation expensive; workers produce short, repetitive, copy-
pasted captions (~11 words avg)

Prior datasets mostly natural photos; lack structured visual reasoning
(documents, charts, diagrams, time)

Large VLMs trained on closed or undisclosed data; unclear
preprocessing — no reproducibility

Strong English and photographic bias; weak multilingual and multi-
domain coverage

Models or dataset affected

ShareGPT4V - LLaVA - InstructBLIP -
Qwen-VL-Chat - Gemini - PaLlI-Gemma

CLIP - ALIGN - LAION-400M/5B -
DataComp - OpenCLIP

CLIP - ALIGN - RefCOCO - RefCOCOQg -
CountBenchQA

COCO - Visual Genome - Flickr30k -
CC3M/CC12M

CLIP - LAION - BLIP-2 - FLAVA - VILT

Flamingo - ALIGN - Gemini - GPT-4V -
PaLl-Gemma

LAION - ALIGN - DataComp Georgia

Tech
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PixMo-Cap
Dense captions for pre-training

PixMo-Ask Model Anything
Free-form Q&A for instruction
following

PixMo- Points
Pointing for grounding & counting

PixMo- CapQA

QA from dense captions

PixMo- Docs
Code-generated
docs/charts/tables/diagrams

PixMo- Clocks
Realistic time reading

PixMo- Count
Open-domain counting with point
supervision

Goal: Teach broad visual understanding with very
detailed descriptions.

Goal: Teach the model to answer diverse, realistic
questions grounded in the image.

Goal-1: - Grounding: point to items described by
text

Goal-2: - Counting: count by pointing each instance
Goal -3: - Explanations: use points as visual
evidence in answers

Goal: Expand QA coverage cheaply without VLMs.

Goal: Teach OCR, chart/table reasoning, and doc
understanding.

Goal: Robust time-telling from analog watch faces.

Goal: Counting across diverse web images.

PixMo (Pixels

for Molmo)

Gr
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PixMo-CAP
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(street signs, memes, food, drawings,
websites, blurry photos, ...).

e  Annotators speak descriptions for 60—
90s (voice forces more detail and
prevents copying from VLMs).

e  Audio — ASRtranscripts — a text-only
LLM cleans/summarizes to a final T o
caption (remove fillers, unify style).

Scale & stats:

e 712k images, 1.3M transcripts/captions;
~196 words/caption (vs 11 in COCO; 37
in Localized Narratives).

Why it's novel/useful: The voice-first trick yields
richer, denser content and auditability (audio
receipts), crucial for learing fine detail.
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PixMo-AskModel Anything

Goal: Teach the model to answer diverse, realistic
questions grounded in the image.

How it's built:

e  Annotator picks animage and writes a

question.

e  RunOCR (non-VLM) + a PixMo-Cap-
trained captioner.

e  Atext-only LLM drafts an answer using
only OCR + caption (no VLM supervision).

e  Annotator accepts/rejects/revises until

correct.

Scale: 162k QA pairs over 73k images.

Why it matters: Human-in-the-loop yields high-
quality, grounded answers without VLM

dependency.
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PixMo-Points

Goal: To teach Molmo how to ground text in visual evidence,
count objects, and explain answers visually by pointing to
the exact regions in an image

How itis built: - Annotators write a short referring phrase
— point to each instance — mark “not-present” if absent.
Extended pipeline adds text-annotated points so LLM uses
them in explanations.

Scale & stats:

° Core pointing: 2.3M question—points over 223k
images (main text)

e  Datadetail section: 229k images, 1.98M referring
expressions, 8.7 expressions/image, 5.5
points/expression, ~47.7 points/image, 359k “no-
target” instances.

e 79k point-explanation annotations on 14k images.

Why it's novel/useful: = 10 x larger than
RefCOCO/gRefCOCO; points = faster than boxes / masks;
enables “count-by-pointing” chain-of-thought and visual
explainability.

ittt el
o

e e

L A A A J
Figure 14, Randomly selected examples from PixMo-Points, Even when text has been cut off, all points stll appear in the image, Our
templated prompts can be ungrammatical for some of these options. but we find they are still sufficient to et the model respond correctly
to natural language instructions.
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PixMo-Points
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Figure 15. Randomly selected examples from the experimental PixMo-Points data that includes points with explanations.



PixMo- CAPQA

Goal: Give Molmo large-scale
guestion—answer data so it can
perform interactive, question-answer
style reasoning about images

How it's built: A text-only language
model (LLM) is prompted to ask and
answer its own questions using only
the caption text as context.

Scale: 214k QA over 165k images.

Use: Adds natural question—answer
format supervision that improves

Molmo's dialog and reasoning abilities.
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Figure 16. Randomly selected examples from the synthetic PixMo-CapQA data generated from PixMo-Cap,
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PixMo-Docs

Goal: Teach OCR, chart/table reasoning, and doc understanding.

How it's built (two-stage, all text-LLMs, no VLMs):

An LLM writes code that renders images (charts, tables, diagrams, mixed documents). Tooling: Matplotlib, Plotly, LaTeX, HTML, Vega-Lite,
Mermaid, Graphviz, Another LLM has privileged access to the code (not the image) to generate QA pairs with exact ground truth.

Scale & stats: 255k images, ~2.3M QA.
Use: - Instruction-tuning role: Provides the bulk of structured-reasoning supervision for Molmo during fine-tuning.
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Figure 19. Randomly selected chart examples from the synthetic PixMo-Docs data.
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PixMo- Clocks

Goal: Teach Molmo to interpret analog watches — map hand positions to numerical time.

How itis built: - Programmatically render ~50 watch bodies x ~160 k faces set to random times; each image
paired with QA (“What time is it?”).

Scale & stats: 826 k examples (image + QA pair ) - 50 body templates - 160 k faces - labels = exact HH:MM times.

Why it's novel/useful: Realistic, photo-style watches with shadows & decorations — harder than simulator
datasets; links visual geometry to numerical reasoning.
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Figure 17. Randomly selected examples from the synthetic PixMo-Clocks data after our data augmentation.




PixMo-Count

Goal: A synthetic but realistic dataset that focuses on grounding, counting, and visual explanations via explicit 2-D pointing.

How itis built: - Diverse web images collected across many object categories and environments. Run a non-VLM, OCR model over the images to locate
objects. For each image, identify the object class with the most detections (e.g., “cars” if most detections are cars). Record the count of that class (from 0-
10). Use object centers as point annotations for each detected instance. Automatically form a question —answer pair such as: Q: “How many cars are in the

image?” A:“5.

Scale & stats: 36 k train images (0—10 counts) - 540 val + 540 test (verified).

Why it's novel/useful: Adds point-level supervision for counting - harder & more diverse than CountBenchQA - enables explainable “countby-pointing.”
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Figure 18. Randomly selected examples from the synthetic PixMo-Count data.



Problem in Previous Dataset

Closed / Proprietary or Synthetic
Data Loops

Noisy and Shallow Web Captions
(Lack of Fine Detail)

Limited Grounding and Spatial
Reasoning Data

Costly and Low-Quality Human
Captions

Missing Non-Photographic
Modalities (Docs / Charts / Clocks)

Lack of Truly Open and
Reproducible Pipelines

Insufficient Multimodal Breadth
and Balance

How does PixMo Solve it ?

All PixMo data gathered without using any vision models — from human speech,
language-only LLM summarization, or direct programmatic generation

PixMo-Cap uses spoken human descriptions (~200 words avg) — richer, contextual,
fine-grained captions

PixMo-Points (2.3 M point annotations) + PixMo-Count (hard counting set) enable
spatial and numerical reasoning

Spoken-caption pipeline: annotators narrate images for 60-90 s; transcribed + LLM-
summarized — long, natural captions

PixMo-Docs & PixMo-Clocks — code-rendered charts, tables, diagrams, clocks
from LaTeX / Matplotlib / Plotly / Vega-Lite

Molmo releases full PixMo data + generation code, ensuring end-to-end
reproducibility and transparency.

PixMo covers multiple domains (images + documents + charts) and supports
multilingual captions, balancing modality and language diversity.

Georgia
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What does each subset of PixMo add to the model ?

Molmo
Fine-grained Understanding
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Any Questions ?



Stage-2: - The Modelling
Phase
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Background and Related
Works
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How did the previous architectures look like ?

2020

ViT (Vision
Transformer)

Treats animage as a sequence
of patches + Transformer
encoder; no convolution layers.
Enabled scalable visual
representation learning.

2021

CLIP (OpenAl)

Two separate encoders — one
for image (ViT/ResNet) and one
for text (Transformer). Trained
with contrastive loss on large
web data to align embeddings in
a shared space.

2021-22

ViLT, FLAVA

Single Transformer that fuses
patch + token embeddings early
(“fusion encoder”) for cross-
modal reasoning.

2022

Flamingo (DeepMind)

Introduced cross-attention
“Perceiver Resampler”: a frozen
vision encoder produces tokens
that a large LLM attends to via
learned cross-attention layers.
Enables multi-image &
interleaved sequences.

Georgia
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How did the previous architectures look like ?(contd..)

2023

LLaVA, InstructBLIP

Takes CLIP/BLIP-2 vision
encoders +LLM; aligns them via
visual instruction tuning (GPT-4-
generated conversations).

2023-24

Qwen-VL, InternVL

End-to-end large models
combining high-res vision
encoders, token resampling, and
multi-task heads (OCR, doc
reasoning).

2023-24

Qwen-VL, InternVL

End-to-end large models
combining high-res vision
encoders, token resampling, and
multi-task heads (OCR, doc
reasoning).

2024

Qwen2-VL

High-performing, open-weight
decoder-only LLM family (scales
well, strong reasoning; drop-in
backbone for VLMs).

Georgia
Gl" Tech
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Molmo: The Architecture

« Molmo is a Vision-Language Model (VLM) — it takes
an image + text input and produces text output (a
caption, answer, explanation, or coordinates).

“Point to Mt. Rainier"

* It's built in four main blocks:
a. Preprocessor — prepares the image (multi-scale

5 ﬂ- | "PomttoMt Rainier”
L

cropping). T°‘<°"‘z°'
b. Vision Encoder (ViT) — turns images into patch-level “n. @a--a8l
features. l
c. Connector — projects visual features into the same space E"°°"e'
as words. Connect an--as
d. Language Model (LLM) — generates text from those r—L—j r”,?f,';«,:f:;ﬂ
tokens. R

Figure 2. Molmo follows the simple and standard design of con-
necting a vision encoder and a language model,

Gr Georgia
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What pre-processing on images Molmo does?

PROBLEM: -

« Vision Transformers (like CLIP’s ViT-L/14)
have a strict input rule: They only accept
square images of a fixed resolution (for
example 336 x 336 pixels).

* But real-world photos are rectangular, have
different resolutions, and often contain small
details (like text on signs, buttons, clocks, No Overlap Overlap
charts). So if we just resized everything to
336x336:

a. Small details would blur or disappear.
b. Wide/tall scenes would get stretched or
squished.

Figure 3. Animage cropped without (left) and with (right) overlap.
Highlighted regions show areas used by the LLM. Overlapping
crops ensure that central patches are encoded with neighboring
context; for example, the patches containing the bike’s brand name
are always part of a crop where the entire name is visible.

Solution: - Molmo fixes that with a multi-scale tiling strategy—the Preprocessor. We
pass multiple inputs to encoder.
1.  We will compress the image to low level 336*336 px for global important
information
2. We will cut the image into several parts, each cut is 336*336 px, where cuts Gl" Georgia
overlap each other so that information is sent to the encoder properly Tech



Molmo: Vision Encoder

A . Vision Transformer (ViT)
The Vision Encoder is the part that e
turns raw image pixels into a set of 8ird o
. . Bal <+
meaningful numeric tokens that 2o Head
represent the image’s contents — I
texture, shape, objects, text, and layout. Trinskormr Encoder

Patch + Position

Molmo uses a Vision Transformer (ViT- ""'"“"'l @6
L/14, 336 px) — the same model used

in CLIP — but it adds some special Linear projection of Flattened Patches

tweaks to make it work better for fine- I '
grained multimodal understanding. T iii..- .

Molmo Vision Encoder(variants)-
*  OpenAi; ViT-L/14 336px CLIP

model
« SigLiP
. MetaCLIP

Transformer Encoder

Georgia
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Molmo: Connector and LLM Decoder

« The connector bridges the ViT and the LLM.

. D LMs (OLMo, LI OLMoE
- Takes pooled patch vectors from ViT. —— sgmm O ko) Outp:t
+ Uses a small MLP (multi-layer perceptron) to A . | é
map them into the LLM’s embedding space (so " ,

“visual tokens” and “word tokens” live in the

same world). ‘- . i (

- Adds positional information so the LLM knows oo Y EEEE ! Al
where in the image each token came from. (FFN) e Vel oo
Module  Router |
1 ' s
+ The LLM is a decoder-only transformer, like GPT- Norm Norm
style models. 4 $
« The LLM takes input as [Vision tokens] + [Text "3 "2
prompt tokens] Multi-head Attention Multi-head Attention
+ The LLM auto-regressively generates text, one token » A
at a time, conditioned on both image and text Norm N Norm Nox
context. =i d : = -
LLM's, used by Molmo: -
+ OLMo-7B-1024 preview (open sou rce) Figure 2: Comparison of the architecture of dense LMs and MoE models like OLMOE. The

Y . fi lud detail OLMOE-1B-7B al K-Norm (§4.2.5
OLMOoE-1B-7B (most efficient from allenai) s i s sare Qo (323

+ Qwen2 7B (best results)

Georgia
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How does the working look like in
MOLMO ? (example)

Step 1: The Input

e Real-world image: 1920 x 1080 x 3 (RGB); An image of a busy café street —
“Café Roma” signboard, tables, people, and parked cars.
e It has text (“Café Roma”), small details (menu board), and many objects (chairs,

people).

%3 Step 2: Making the Image ViT-Friendly

Molmo can’t feed this rectangular image directly to the Vision Transformer (ViT), because
ViT only works on square 336x336 images.

So, Molmo creates:

e 1 low-resolution image — the entire scene scaled down to 336x336 (gives global
context).

e 8-12 high-resolution crops — zoomed-in squares (336x336 each) that cover
every part of the image.

Each crop overlaps its neighbor by about 56 pixels, so borders (like “Café”) don’t get cut
in half.

Figure 5. Converting an image into tokens. The image (top left)
is turned into a single low-res and several overlapping high-res
crops (bottom left). Padding (the black borders) is used so each
crop is square and the aspect ratio of the image is preserved. The
final token sequence for the image (right, arranged top-down left-
to-right with line breaks for clarity) is built by extracting patch-
level features from the crops, shown here using images of the
patches, and special tokens. An image start and image end token
are placed before/after the high-res and low-res patches, and col-
umn tokens are inserted after each row of patches. This example
uses 4 high-res crops and extracts features from 36 (6 x6) patches
per crop, in practice Molmo typically uses 12 high-res crops and
extracts features from 144 (12 x 12) patches per crop.

Gr Georgia
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How does the inference look like in MOLMO ?

& Step 3: Padding the Edges

If the grid doesn’t perfectly fit, black padding is added
to fill extra space.
Molmo tells the ViT whether each patch is:

real image region,

partially padded, or

all padding (by adding padding-type
embeddings).

This ensures the model doesn’t confuse black
borders with actual dark areas of the image.

@ Step 4: ViT Patchification and Feature Extraction

Each crop (336x%336) is divided into 14x14 px patches, so each crop becomes a
24x24 grid = 576 patches.

Every patch — converted to a 1024-dimensional feature vector by ViT’s patch
embedding layer.

Example (per crop):

Input: [336, 336, 3]

éplit into patches - [24, 24, 1024]
Iélatten ~ [576, 1024]

Molmo takes ViT outputs from two internal layers — one mid-level (for textures),
one late (for semantics) — and combines them — slightly better detail
understanding.

Gr Georgia
Tech



How does the inference look like in MOLMO ?

Step 5: 2x2 Attention Pooling

Now, 576 tokens per crop is too many.
So Molmo uses 2x2 attention pooling to compress
information while keeping local context.

Every 4 neighboring patches — 1 pooled token:
24x24 -, 12x12 = 144 tokens per crop

Each token still has 1024 dimensions, but now
represents a small region (like a person’s face or part
of a table).

/ Step 6: Removing Redundant Overlaps

Since crops overlapped, some tokens describe the same pixels twice.
Molmo removes these duplicate areas, keeping only unique patches for the full
image.

So if 9 crops x 144 = 1296 tokens before cleanup,
after removing overlap — roughly 1100 unique visual tokens remain.

* Step 7: Vision—-Language Connector (The Bridge)

Each vision token is a 1024-D vector (from ViT),
but our LLM (Qwen2 or OLMo) uses 4096-D embeddings for text.

So Molmo adds a small MLP connector that maps:
[1100, 1024] - [1100, 4096]

Now all vision tokens “look” like text tokens — just numbers in the same space.

Gr Georgia
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How does the inference look like in MOLMO ?

Step 8: Add Layout Tokens

To tell the LLM how the image was tiled, Molmo adds
special layout tokens:

<img_start_lowres> ... <img_end_lowres>

<img_start_hires> ... <row_end>
<img_end_hires>

This helps the model “know” that one token sequence
came from the top-left crop, another from bottom-right,
etc.

Final vision sequence length: about 1110 tokens
(4096-D each).

Step 9: Add the Text Prompt
Now the user asks a question —“What color is the car parked near the café?”
These words are tokenized into ~8 text tokens (4096-D each).
Molmo concatenates:
[Vision tokens][Text tokens]

-~ [1110 + 8 = 1118 tokens, 4096-D each

Georgia
Gl" Tech



How does the inference look like in MOLMO ?

+ Step 10: LLM Forward Pass (Decoder-Only Transformer) TT"’(Xt Attends to Vision Tokens
oken
Inside the LLM: _ _
“car” high attention on the
e Vision tokens — context memory (can look at each other freely). car region

e Text tokens — causal (each new word can attend to all vision tokens + previous text).

“color” | focuses on same
area

Now self-attention learns relationships like: So during generation, when predicting the next
token, the model “looks back” at the vision embeddings representing those regions.

“‘café” | attention on

_ Step 11: Output signboard
The decoder outputs the next tokens one by one: " weak uniform
attention

Vision + “What color is the car?”
!

LLM attends to car patches

!

Predicts “red”

!

“The car is red.” (‘,rﬁ;ﬂf_lsia
c

That’s how Molmo connects visual understanding to language reasoning.



Molmo: Architecture(Ablations)

VIT-L/14 cap F1 1l-avg
OpenAl CLIP 336px  54.1 769
MetaCLIP 336px 541 712
SigLIP-So400m 384px 544  77.1
DINOV2 336px 532 756

(a) Vision encoder. Encoders that were trained
on noisy web-scale image-text pairs perform
similarly (rows 1-3). Surprisingly, DINOv2,
which is trained on images only (no text, no la-
bel supervision), is competitive on these tasks.
MetaCLIP and DINOv2 are fully open.

cropping cap Fi; ll-avg
single 46.7 628
multi, nooverlap 534 757
multi, overlap 54.1 769

(d) Cropping. Using the entire image only
(single crop) performs poorly. Our novel over-
lapping crop method (see Figure 3), which pre-
vents loss of context, performs the best.

# crops train, test  cap Fy 1l-avg

4.4 520 710
4,12 520 741
4,36 520 742
12, 12 54.1 749
12, 36 541 769
36, 36 540 772

(b) Image resolution. Using more crops at
training and testing time generally improves
performance. However, captioning and count-
ing can perform poorly when # of crops are
unequal. so for these tasks we always set the
number of test crops equal to the training value.

setting cap F1 ll-avg
off 530 762
on 4.1 769

(e) Length conditioning. Captioning with
length hints is a superior pre-training task com-
pared to captioning alone as evident by the im-
proved captioning and downstream results.

pre-train, fine-tune cap F) 1l-avg

off, off 53.1 74.6
off, on 53.1 76.6
on, on 537 770

on (text only), on 54.1 769

(¢) Dropout. Dropout in the LLM improves
pre-training and fine-tuning results. In pre-
training, applying dropout to captioning text
tokens only further improves results. This de-
sign may encourage the model to rely more on
vision tokens rather than past text tokens.

2x2 pooling cap Fi 1l-avg
stacking 53.7  76.1
attention 54.1 769

() Pooling. Pooling 2x2 windows of vision
tokens using mean-query attention performs
better than simply stacking the four features as
input to the vision-language connector MLP.

Table 2. Model ablations. Default settings are marked in gray . See the Appendix for additional ablations.
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Stage-3:- The Training
Phase
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Part-A: - Pre - Training



What are the technical details related to pre-training MOLMO ?

Input Data The PixMo-Cap dataset — 712 K diverse images, 1.3 M human
voice-based transcripts and long captions (= 196 words per
caption)

Optimizer AdamW (B =0.9, 0.95; € = 1e-6).

Epochs/ ~4 epochs over PixMo-Cap (~22 K steps for 7B model).

Steps

Precision Mixed precision (AMP): activations — bfloat16; weights & grad
reduce — float32 (for stability).

Parallelizatio | Fully Sharded Data Parallel (FSDP)

n

Epochs/ ~4 epochs over PixMo-Cap (~22 K steps for 7B model).

Steps

Sequence Max 2304 tokens (vision + text).

Length

e
1509 foa1d

o o “aom

%0
Figure 6. Training loss curves for Molmo-7B-D with model
weights and gradient reduction in bfloatl6 (blue) and float32
(pink). Floa32 is our default configuration.

Gr Georgia
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Dataset usage: Prompts Used:- Model is prompted with either "long caption:" (for detailed caption)
OR "transcript:" (for spoken-style output)

For images with multiple captions/transcripts: all text tokens are concatenated in one sequence with
attention masks — each annotation attends only to its own text + image tokens. Saves compute (~ 2
x faster).

Length Hint: Numerical token in prompt controls caption verbosity ("long caption 70:"); Improves
recall/precision trade-off.

Text-only Dropout: Drop text tokens to force reliance on visual tokens (better grounding).
Connector Fast Warmup: Higher LR + short warmup — no need for separate connector pre-training,
since cleaner data

Full FP32 weights + AMP: Prevents numerical instability at scale.

Georgia
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Part- B: - Post - Training
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What are the technical details for post tuning ?

Figure 4. Datasets used for fine-tuning, shown in proportion to
their sampling rates. Green denotes human-annotated data we col-
lected, blue denotes synthetic data we generated, and purple repre-
sents pre-existing academic datasets. PixMo-Docs has been sub-
divided into charts, tables, diagrams, and other.

Input Data Combines PixMo (AskModelAnything, Points, Count, Docs,
Clocks, CapQA) + 15+ academic datasets (VQA, ChartQA,
DocVQA, etc.).

Optimizer AdamW (B =0.9,0.95; € = 1e-6).

Epochs / ~4 epochs over PixMo-Cap (~22 K steps for 7B model).

Steps

Precision Mixed precision (AMP): activations — bfloat16; weights & grad
reduce — float32 (for stability).

Parallelizati | Fully Sharded Data Parallel (FSDP)

on

Sampling Proportional to v(dataset size) to avoid dominance by large

rule: - synthetic sets.Pointing data heavily up-weighted.

€ o




What are some other fine-tuning strategies?

Problem: - When fine-tuning on 15+ different datasets (VQA,
DocVQA, ChartQA, PixMo-Points, etc.), each dataset has different
answer styles, different output formats, and different question tones.
This was not done for Pixmo datasets !

If you train them together without separation: The model might
confuse formats (e.g., answering a chart question like a VQA
question), or lose conversational tone because benchmark answers
are short and mechanical.

Solution — Introduce lightweight text prefixes (“style tags”). These
are short tokens inserted at the start of the input prompt, telling the
model what kind of data/task this example belongs

Dataset: Example Input
VQAv2.0 vga2: What is the man
holding?

TextVQA textvga: What does the sign

S

When Fine-tuning:-

Input sequence (simplified)
[IMG_START] ...vision tokens... [IMG_END]

"chartga:" "What" "was" "the" "sales" ... "?"
— model predicts "The", "sales", "were", "10",
Ilbillionll , " . n

For pointing:

<point x="42.3" y="55.1" alt="dog">dog</point>

Model learns to chain-of-thought count by pointing sequentially.
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What are the key details from both the training phases ?

e All components (ViT, Connector, LLM) remain
trainable, but with smaller LRs(during fine tuning) and

higher LRs(during pre training)

e FSDP + AdamW + cosine decay (same setup) for pre
and post training

pre-train fine-tune
GPUs time GPU hr. GPUs time GPU hr
IB-E 8 333 264 64 13.3 850
7B-D 64 8.6 550 128 11.2 1.4k
7B-0 64 8.9 570 128 13.5 1.7k
72B 128 333 4.2k 256 324 8.3k

Table 8. Training times for the Molmo models using H100 GPUs.

Stage Purpose Data Key Tricks Output
Pre- Align vision & language PixMo-Cap (dense | Length hints, overlap crops, text-only dropout, Generates detailed image
Training captions) connector fast warmup captions
Fine- Teach reasoning & PixMo + academic | Style tags, multi-task batching, up-weight Answers, counts, and
Tuning instruction following datasets pointing points to objects
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Any Questions ?



Evaluation



What is the point of that Benchmark ?

Benchmark

What It Is

Skill Tested

Example Question

AlI2D — Science
Diagrams

Multiple-choice questions about science diagrams (arrows,
labels, parts, flows).

Diagram reading; spatial and semantic
relations

“Which arrow shows heat flow?”

ChartQA — Charts
& Plots

Question answering over bar, line, and pie charts.

OCR; numerical reading; basic
arithmetic/aggregation

“Whatis the 2019 sales for
Europe?”

VQA v2.0 —
Everyday Photos

Visual question answering on natural images with short
answers.

General visual understanding;
commonsense reasoning

“What color is the bus?”

DocVQA —
Documents (Scans,
Forms)

QA on document images such as forms, receipts, and
pages.

OCR,; layout and document structure
understanding

“What s the total due?”

InfoQA —
Infographics

QA over infographic-style visuals mixing text and images.

OCR,; reasoning over mixed text and
visual elements

“According to the infographic,
which country leads in X?”

TextVQA —
Reading Text in the
Wild

QA on natural photos where recognizing text is essential.

Scene text detection, recognition, and
grounding

“What does the street sign say?”




What is the point of that Benchmark(contd.) ?

# Benchmark What It Is Skill Tested Example Question

7 RealWorldQA — QA on diverse, real-world images unseen in training. Zero-shot generalization; robust visual “Is the person wearing a
Zero-shot Natural understanding helmet?”
Photos

8 MMMU — Multi- Academic-style reasoning tasks across many subjects. Multi-step reasoning with images “Given the labeled circuit, which
Domain Reasoning bulb is brightest?”

9 MathVista — Visual Math problems involving visual diagrams or figures. Math reasoning; geometry; multi-step “Whatis the angle at point B?”
Math Reasoning logic

10 CountBenchQA — Counting objects in natural or cluttered scenes. Object counting; grounding “How many red chairs are
Counting in Images there?”

11 PixMo-Count — A more difficult counting benchmark with messy, real Robust counting; localization under “Count the people wearing
Hard Counting scenes. noise helmets.”

12 Human Preference Human evaluation via pairwise preference comparisons Overall multimodal answer quality and “Which model gave a better

(Elo)

(~15k prompts, ~870 raters).

alignment with human judgment

explanation?”
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API call only
GPT-4V [55] 894 781 772 872 751 780 614 631 581 699 450 7.1 1041 10
GPT-40-0513 [90] 942 857 787 928 792 774 754 691 638 879 596 785 1079 1
Gemini 1.5 Flash [103) 91.7 854 80.1 899 753 787 675 561 584 816 61.1 751 1054 7
Gemini 1.5 Pro [103] 944 872 802 931 810 787 704 622 639 858 643 783 1074 3
Claude-3 Haiku [7] 86.7 81.7 684 888 561 673 455 502 464 830 439 653 999 18
Claude-3 Opus [7] 88.1 808 663 893 556 675 498 594 505 836 433 667 971 21
Claude-3.5 Sonnet [7] 4.7 9.8 707 952 743 741 60.1 683 67.7 897 583 767 1069 -
Open weights only
PaliGemma-mix-3B [ 10] 723 337 763 313 214 560 552 349 287 806 600 500 937 27
Phi3.5-Vision-4B [ 1) 78.1 818 757 693 366 720 536 430 439 646 383 597 982 19
Qwen2-VL-7TB[111] 830 830 829 945 765 843 70.1 541 582 765 480 737 1025 14
Qwen2-VL-72B [ 11] 88.1 883 819 965 845 855 778 645 705 804 557 794 1037 12
IntemVL2-8B [ 104] 838 833 767 916 748 774 642 512 583 578 439 94 953 23
IntemVL2-Llama-3-76B [104] 87.6 884 856 941 820 844 727 582 655 747 546 771 1018 16
Pixtral-12B [3] 790 81.8 802 9.7 508 757 654 525 580 788 5.7 695 1016 17
Llama-3.2V-11B-Instruct [5] 91.1 834 752 884 636 797 641 507 515 731 474 698 1040 11
Llama-3.2V-90B-Instruct [5] 923 855 781 901 672 823 698 603 573 785 585 745 1063 5
Open weights + data (7 distilled)
LLaVA-1.5-7B [69] 555 178 785 281 258 582 548 357 256 401 276 407 951 26
LLaVA-1.5-13B [6Y] 61.1 182 800 303 294 613 553 370 27.7 471 352 439 960 22
xGen-MM-interleave-4B7 [119] 742 600 815 614 315 710 61.2 411 405 819 502 595 979 20
Cambrian-1-8Bf [ 106) 730 733 812 778 416 717 642 427 490 764 466 634 952 25
Cambrian-1-34B1 [ 106] 797 756 838 755 460 767 678 49.7 532 756 50.7 668 953 24
LLaVA OneVision-7B1 [59] 814 800 840 875 688 783 663 488 632 788 544 720 1024 15
LLaVA OneVision-72B1 [59] 856 837 852 913 749 B80S 719 568 675 843 607 766 1051 8
The Molmo family: Open weights, Opm data, Open training code, Open evaluations
MolmoE-1B 780 839 777 539 788 604 349 340 872 796 686 1032 13
Molmo-7B-0O 90.7 804 853 908 700 804 675 393 445 890 833 746 1051 9
Molmo-78-D 932 841 856 922 726 817 707 453 516 885 848 773 1056 6
Molmo-72B 9.3 873 865 935 819 831 752 541 586 912 852 812 1077 2

What did we
achieve ?

Table 1. We present academic benchmark
results for 10 common datasets, plus a new
counting benchmark, PixMo-Count, which
features more challenging natural images
than CountBenchQA. We categorize models
into four groups: (top) proprietary models
accessible only via API calls, (upper middle)
models with released weights but closed
data, (lower middle) models with released
weights and training data (noting some of
these use distillation (1) from proprietary
VLMs via synthetic data), and (bottom) the
Molmo family of models.
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Overall Performance Where Molmo Excels

Molmo-72B ranks #2 overall (just e Visual Understanding & Captioning :- Excellent at describing complex natural
behind GPT-40) — Beats Gemini images; ranks top on these benchmarks.
1.5 Pro. Gemini 1.5 Flash. and e Counting & Grounding: - Best-in-class due to new point-then-count reasoning

and 2D pointing data.

e Diagram & Chart Interpretation:- Performs near top; overlapping multi-crops
preserve fine visual details.

e Document & OCR Tasks:- After multimodal training, a small drop in text-only
skills (recovered by fine-tuning with Tulu-3).

Claude 3.5 Sonnet.(Elo ranking)

Molmo-7B and MolmoE-1B models
perform between GPT-4V and GPT- Average / Needs Improvement
40 while being fully open.

* Reasoning & Math :- Weaker reasoning and math logic; model not trained with
enough structured reasoning data.
*  Fine OCR & Text-heavy Scenes:- Slightly behind Qwen2-VL, which is heavily

Achieves state-of-the-art among optimized for OCR.
open models — and all weights, +  Text-Only Knowledge / Coding:- After multimodal training, a small drop in text-
data, and code are released. only skills (recovered by fine-tuning with Tulu-3).
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Other Results: - CHATBOT ARENA

What it is: Third-party human preference
leaderboard (pairwise votes — Elo).

What Molmo did:

e Molmo-72B beats all fully open/open-
weight models there, but sits below top
proprietary models.

e |n Molmo’s own controlled Elo study
(Section 5), Molmo-72B ranks #2 overall
(just behind GPT-40).

95% CI  opennness

model score
Gemini-Exp-114 [103] 1278
ChatGPT-4o-latest (20240903) [90] 1256
Gemini-1.5-Pro-002 [ 103] 1220
Gemini-1.5-Flash-002 [ 103] 1219

GPT-40-2024-05-13 [90] 1213
Claude 3.5 Sonnet (20240620) [ 7] 1187
Claude 3.5 Sonnet (20241022) [7] 1184

Gemini-1.5-Pro-001 [103] 1158
GPT-4-Turbo-2024-04-09 [85] 1157
Gemini-1.5-Flash-8B-Exp-0827 [103] 1137
GPT-40-2024-08-06 [90] 1131

Gemini-1.5-Flash-8B-001 [103] 1133
GPT-40-mini-2024-07-18 [59] 1124

Molmo-72B 115
Qwen2-VL-T2B [111] 113
InternVL2-26B [ 104] 1096
Pixtral-12B-2409 [ 3] 1085
Llama-3.2V-90B-Instruct 5] 1085
Gemini-1.5-Flash-001 [103] 1087

Molmo-7B-D 1076
Yi-Vision [4] 1070
Claude 3 Opus [7] 1073
Qwen2-VL-7B [111] 1068

Llama-3.2V-11B-Instruct [5] 1061

+28/-27 APl only
+13/-13 APl only
+15/-14 APl only
+15/-17 APl only
+9/-9 API only
+9/-7 API only
+15/<15 APl only
+9/-8 APl only
+7/-10 APl only
+15/-13 APl only
+18/-20 APl only
+10/-15 APl only
+7/9 APl only
+18/-17  Fully Open
+15/-17 Open Weight
+11/-10 Open Weight
+13/-14 Open Weight
+12/-14 Open Weight
+8/-8 API only
+15/-18  Fully Open
+21/-26  Distilled
+6/-8 APl only
+15/-14 Open Weight
+14/-14 Open Weight

Table 9. Chatbot Arena’s vision leaderboard for English
queries, The table is up to date as of Nov, 13, 2024. We show

up to 20 rows for clarty.
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Other Results: - CLOCK Reading

* Setup: Train on synthetic watch faces
(PixMo-Clocks), test in the wild (COCO,
Openlmages, ‘Clock Movies’).

*  Prompt: “What time is being shown?
Answer as HH:MM.”

* Result: Most VLMs—open and closed—
struggle.

*  Molmo models dominate VLMs
(overall/hour/minute accuracy), though a
specialized single-task clock model still
wins.

madel acc. hour acc. min. acc.
GPT-40-0513 [90] 2.7 14.2 8.6
Gemini 1.5 Pra [103] 0.9 1.6 51
Claude-3.5 Sonnet | 7] 6.6 223 175
PaliGemma-mix-3B [ 10] 6.1 210 15.8
Phi3 5-Wision-48 [ 1] 1.9 120 16
Qwen2-VL-T2B [111] 9.1 249 18.4
InternVL2-Llama-3-76B [104] 33 16.3 9.9
Pixtral-12B | 3] 1.7 1.9 6.7
Llama-3.2V-90B-Instruct [5) 34 179 1.1
LLaVA-1.5-13B [69] 0. 1.6 57
xGen-MM-interleave-48 [ 19] 2.0 1.9 8.0
Cambrian-1-34B [106] 1.8 11.1 7.2
LLaVA OneVision-72B [59] 5.7 179 15.4
MolmoE- 1 B 63.8 79 74,1
Mo 300 4.2 6.3 738
Mo 1-1 0ns.2 T8.6 T
Mo B 65.6 7.1 T3.7
Specialized single-task model [121] 789 842 £29

Table 10. Clock reading benchmark results. We report the av-
erages of overall, hour and minute accuracies, each evaluated on
three different test sets based on COCO, Openlmages and Clock
Movies, respectively. Bold numbers represent the highest VLM

We categorize models into five groups: (first) API-only, (second)
open-weight, (third) open-weight and open-data, (four) the Molmo
family and (five) the specialized clock reading model.
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Conclusion



What is the conclusion from all this ?

Molmo set out to prove that multimodal reasoning can be achieved openly — with transparent data,
modular architecture, and reproducible training recipes.

Key Contributions: -

» PixMo Dataset: High-quality, LLM-assisted but auditable multimodal data — bridging web-scale
diversity with detailed grounding (captions, points, documents, clocks, counts).

*  Molmo Model: Simple yet powerful architecture — multiscale overlapping crops + attention pooling
connector + open LLM — that achieves competitive reasoning without closed data.

* Openness: Every stage — data, code, checkpoints, evaluation — is public and reproducible, setting a
new standard for transparency in VLMs.
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Quick Demo!



Discussion



Where Do We Go From Here?

Q1:- PixMo introduces separate datasets for every new capability (counting, clock reading, document QA). Do
we risk fragmenting ‘intelligence’ into narrow subskills instead of achieving general reasoning?

Q-2:- If data diversity matters more than sheer scale, what does an ideal next-generation multimodal dataset
look like — curated, synthetic, or mixed?

Q-3:- With all the VLM architecture seen, can we conclude now that if we combine techniques we will get the
best model ?

Q-4:- While training how much emphasis to text v/s image(dropout layer in MOLMOQ's LLM) ?

Q-5:- Is data still the bottleneck — or is the current problem in our architecture or context for models?

Q-6:- As VLMs evolve toward multimodal agents (seeing, hearing, acting), what defines true intelligence —
performance on datasets, or the ability to generalize without new data?

Q-7:- Papers like Imagebind, Unified-10-2, combine modalities under a shared token space, does that mark the
end of modular encoders and connectors like in Molmo — or will modularity remain important for
specialization?
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