
Molmo and PixMo
Open Weights and Open Data for State-of-the-Art Vision-Language Models
(CVPR) 2025

Allen Institute for AI & University of Washington

Presented by: - Vedaang Chopra

Fig:- Poster Presentation of Molmo Paper

Problem Introduction
and Motivation

Solution:- MOLOMO

• A state-of-the-art open VLM: First large-scale open-weights + open-
data + open-code (still the vision encoder is left out !)
demonstrating competitive performance

o Open weights

o Open data (PixMo)

o Open training code

What is the problem that this paper addresses ?

Git Repo: - https://github.com/allenai/molmo/tree/main

Website:- https://allenai.org/blog/molmo

• Problem: - Lack of open, transparent, and high-performing vision-language
models

o Category-1: - API Based: - GPT-4o, Claude, Gemini, Groq,

o Category-2: - Open Weights: - Qwen, InternVL, PaliGemma

o Category-3: - Open Weights & Data: - LLava, Cambrian, Xgen

https://github.com/allenai/molmo/tree/main
https://allenai.org/blog/molmo

Fig: - VLM Openness Comparison. We characterize the
openness of VLMs based on two attributes (open weights,
open data and code) across three model components (the

VLM and its two pre-trained components, the LLM backbone
and the vision encoder). In addition to open vs. closed, we

use the ”distilled” label to indicate that the data used to train
the VLM includes images and text generated by a different,
proprietary VLM, meaning that the model cannot be

reproduced without a dependency on the proprietary VLM.

Let's try to understand in a way of how a
model is actually built !!

Paper Flow — Understanding Molmo Like Training a Model

PixMo
(Data Stage)

● Previous

Datasets(History)

● Problems in

previous datasets

● PixMo- The new

dataset

● Ablations

Molmo
(Architecture Stage)

● Background and

Quick Architecture

History

● MOLMO

architecture

● Data

Preprocessing

● Ablations

Molmo
(Training Stage)

● Pre-Training

Details

● Post Training

Details

● Ablations

Conclusion
(What is the point of all this !!)

● Results and

Evaluation

● Ablations

● Conclusion

● Demo

● Discussion

● Q&A

Stage-1: - The Data
Phase

What datasets did previous architectures use ?

2022

Flamingo (DeepMind)

Introduced cross-attention

“Perceiver Resampler”: a frozen

vision encoder produces tokens

that a large LLM attends to via

learned cross-attention layers.

Enables multi-image &

interleaved sequences.

2021-22

ViLT, FLAVA

Single Transformer that fuses

patch + token embeddings early

(“fusion encoder”) for cross-

modal reasoning.

2021

CLIP (OpenAI)

Two separate encoders — one

for image (ViT/ResNet) and one

for text (Transformer). Trained

with contrastive loss on large

web data to align embeddings in

a shared space.

2020

ViT (Vision
Transformer)

Treats an image as a sequence

of patches + Transformer

encoder; no convolution layers.

Enabled scalable visual

representation learning.

2024

Qwen2-VL

High-performing, open-weight

decoder-only LLM family (scales

well, strong reasoning; drop-in

backbone for VLMs).

2023-24

Qwen-VL, InternVL

End-to-end large models

combining high-res vision

encoders, token resampling, and

multi-task heads (OCR, doc

reasoning).

2023-24

Qwen-VL, InternVL

End-to-end large models

combining high-res vision

encoders, token resampling, and

multi-task heads (OCR, doc

reasoning).

2023

LLaVA, InstructBLIP

Takes CLIP/BLIP-2 vision

encoders + LLM; aligns them via

visual instruction tuning (GPT-4-

generated conversations).

What datasets did previous architectures use ?

What were the problems with Previous Models/Datasets ?

Problem in Previous

Dataset

Problem Cause Models or dataset affected

1 Closed / Proprietary or
Synthetic Data Loops

Many instruction and alignment datasets were generated using GPT-4
/ GPT-4V, causing “distillation of proprietary systems” and preventing
reproducibility

ShareGPT4V · LLaVA · InstructBLIP ·
Qwen-VL-Chat · Gemini · PaLI-Gemma

2 Noisy and Shallow Web
Captions (Lack of Fine Detail)

Web-scraped alt-text is short (~5–10 words), inconsistent, and object-
level grounding is poor. This weakens fine-grained reasoning and
counting.

CLIP · ALIGN · LAION-400M/5B ·
DataComp · OpenCLIP

3 Limited Grounding and Spatial
Reasoning Data

Earlier grounding/counting sets are small, single-target, or too easy,
while web-scale data lacks coordinates

CLIP · ALIGN · RefCOCO · RefCOCOg ·
CountBenchQA

4 Costly and Low-Quality Human
Captions

Human annotation expensive; workers produce short, repetitive, copy-
pasted captions (~11 words avg)

COCO · Visual Genome · Flickr30k ·
CC3M/CC12M

5 Missing Non-Photographic
Modalities (Docs / Charts /
Clocks)

Prior datasets mostly natural photos; lack structured visual reasoning
(documents, charts, diagrams, time)

CLIP · LAION · BLIP-2 · FLAVA · ViLT

6 Lack of Truly Open and
Reproducible Pipelines

Large VLMs trained on closed or undisclosed data; unclear
preprocessing → no reproducibility

Flamingo · ALIGN · Gemini · GPT-4V ·
PaLI-Gemma

7 Insufficient Multimodal
Breadth and Balance

Strong English and photographic bias; weak multilingual and multi-
domain coverage

LAION · ALIGN · DataComp

Part A:- Data Collection

PixMo (Pixels
for Molmo)

PixMo- Points
Pointing for grounding & counting03

● Goal-1: - Grounding: point to items described by

text

● Goal-2: - Counting: count by pointing each instance

● Goal -3: - Explanations: use points as visual

evidence in answers

PixMo-Ask Model Anything
Free-form Q&A for instruction

following
02 ● Goal: Teach the model to answer diverse, realistic

questions grounded in the image.

PixMo-Cap
Dense captions for pre-training01 ● Goal: Teach broad visual understanding with very

detailed descriptions.

PixMo- Docs
Code-generated

docs/charts/tables/diagrams
05 ● Goal: Teach OCR, chart/table reasoning, and doc

understanding.

PixMo- CapQA
QA from dense captions04 ● Goal: Expand QA coverage cheaply without VLMs.

PixMo- Clocks
Realistic time reading06 ● Goal: Robust time-telling from analog watch faces.

PixMo- Count
Open-domain counting with point

supervision
07 ● Goal: Counting across diverse web images.

PixMo-CAP

Goal: Teach broad visual understanding with very

detailed descriptions.

How it’s built:

● Images sourced across ~70 topics

(street signs, memes, food, drawings,

websites, blurry photos, …).

● Annotators speak descriptions for 60–

90s (voice forces more detail and

prevents copying from VLMs).

● Audio → ASR transcripts → a text-only

LLM cleans/summarizes to a final

caption (remove fillers, unify style).

Scale & stats:

● 712k images, 1.3M transcripts/captions;

~196 words/caption (vs 11 in COCO; 37

in Localized Narratives).

Why it’s novel/useful: The voice-first trick yields

richer, denser content and auditability (audio

receipts), crucial for learning fine detail.

PixMo-AskModel Anything

Goal: Teach the model to answer diverse, realistic

questions grounded in the image.

How it’s built:

● Annotator picks an image and writes a

question.

● Run OCR (non-VLM) + a PixMo-Cap-

trained captioner.

● A text-only LLM drafts an answer using

only OCR + caption (no VLM supervision).

● Annotator accepts/rejects/revises until

correct.

Scale: 162k QA pairs over 73k images.

Why it matters: Human-in-the-loop yields high-

quality, grounded answers without VLM

dependency.

PixMo-Points

Goal: To teach Molmo how to ground text in visual evidence,

count objects, and explain answers visually by pointing to

the exact regions in an image

How it is built: - Annotators write a short referring phrase

→ point to each instance → mark “not-present” if absent.

Extended pipeline adds text-annotated points so LLM uses

them in explanations.

Scale & stats:

● Core pointing: 2.3M question–points over 223k

images (main text)

● Data detail section: 229k images, 1.98M referring

expressions, 8.7 expressions/image, 5.5

points/expression, ~47.7 points/image, 359k “no-

target” instances.

● 79k point-explanation annotations on 14k images.

Why it’s novel/useful: ≈ 10 × larger than

RefCOCO/gRefCOCO; points = faster than boxes / masks;

enables “count-by-pointing” chain-of-thought and visual

explainability.

PixMo-Points

PixMo- CAPQA

Goal: Give Molmo large-scale

question–answer data so it can

perform interactive, question-answer

style reasoning about images

How it’s built: A text-only language

model (LLM) is prompted to ask and

answer its own questions using only

the caption text as context.

Scale: 214k QA over 165k images.

Use: Adds natural question–answer

format supervision that improves

Molmo’s dialog and reasoning abilities.

PixMo-Docs

Goal: Teach OCR, chart/table reasoning, and doc understanding.

How it’s built (two-stage, all text-LLMs, no VLMs):

An LLM writes code that renders images (charts, tables, diagrams, mixed documents). Tooling: Matplotlib, Plotly, LaTeX, HTML, Vega-Lite,

Mermaid, Graphviz, Another LLM has privileged access to the code (not the image) to generate QA pairs with exact ground truth.

Scale & stats: 255k images, ~2.3M QA.

Use: - Instruction-tuning role: Provides the bulk of structured-reasoning supervision for Molmo during fine-tuning.

PixMo- Clocks
Goal: Teach Molmo to interpret analog watches → map hand positions to numerical time.

How it is built: - Programmatically render ~50 watch bodies × ~160 k faces set to random times; each image

paired with QA (“What time is it?”).

Scale & stats: 826 k examples (image + QA pair) · 50 body templates · 160 k faces · labels = exact HH:MM times.

Why it’s novel/useful: Realistic, photo-style watches with shadows & decorations → harder than simulator

datasets; links visual geometry to numerical reasoning.

PixMo-Count

Goal: A synthetic but realistic dataset that focuses on grounding, counting, and visual explanations via explicit 2 -D pointing.

How it is built: - Diverse web images collected across many object categories and environments. Run a non-VLM, OCR model over the images to locate

objects. For each image, identify the object class with the most detections (e.g., “cars” if most detections are cars). Record the count of that class (from 0–

10). Use object centers as point annotations for each detected instance. Automatically form a question–answer pair such as: Q: “How many cars are in the

image?” A: “5.”

Scale & stats: 36 k train images (0–10 counts) · 540 val + 540 test (verified).

Why it’s novel/useful: Adds point-level supervision for counting · harder & more diverse than CountBenchQA · enables explainable “count-by-pointing.”

What were the problems with Previous Models/Datasets ?

Problem in Previous Dataset How does PixMo Solve it ?

1 Closed / Proprietary or Synthetic

Data Loops

All PixMo data gathered without using any vision models — from human speech,

language-only LLM summarization, or direct programmatic generation

2 Noisy and Shallow Web Captions

(Lack of Fine Detail)

PixMo-Cap uses spoken human descriptions (~200 words avg) → richer, contextual,

fine-grained captions

3 Limited Grounding and Spatial

Reasoning Data

PixMo-Points (2.3 M point annotations) + PixMo-Count (hard counting set) enable

spatial and numerical reasoning

4 Costly and Low-Quality Human

Captions

Spoken-caption pipeline: annotators narrate images for 60–90 s; transcribed + LLM-

summarized → long, natural captions

5 Missing Non-Photographic

Modalities (Docs / Charts / Clocks)

PixMo-Docs & PixMo-Clocks — code-rendered charts, tables, diagrams, clocks

from LaTeX / Matplotlib / Plotly / Vega-Lite

6 Lack of Truly Open and

Reproducible Pipelines

Molmo releases full PixMo data + generation code, ensuring end-to-end

reproducibility and transparency.

7 Insufficient Multimodal Breadth

and Balance

PixMo covers multiple domains (images + documents + charts) and supports

multilingual captions, balancing modality and language diversity.

What does each subset of PixMo add to the model ?

Any Questions ?

Stage-2: - The Modelling
Phase

Background and Related
Works

How did the previous architectures look like ?

2022

Flamingo (DeepMind)

Introduced cross-attention

“Perceiver Resampler”: a frozen

vision encoder produces tokens

that a large LLM attends to via

learned cross-attention layers.

Enables multi-image &

interleaved sequences.

2021-22

ViLT, FLAVA

Single Transformer that fuses

patch + token embeddings early

(“fusion encoder”) for cross-

modal reasoning.

2021

CLIP (OpenAI)

Two separate encoders — one

for image (ViT/ResNet) and one

for text (Transformer). Trained

with contrastive loss on large

web data to align embeddings in

a shared space.

2020

ViT (Vision
Transformer)

Treats an image as a sequence

of patches + Transformer

encoder; no convolution layers.

Enabled scalable visual

representation learning.

2024

Qwen2-VL

High-performing, open-weight

decoder-only LLM family (scales

well, strong reasoning; drop-in

backbone for VLMs).

2023-24

Qwen-VL, InternVL

End-to-end large models

combining high-res vision

encoders, token resampling, and

multi-task heads (OCR, doc

reasoning).

2023-24

Qwen-VL, InternVL

End-to-end large models

combining high-res vision

encoders, token resampling, and

multi-task heads (OCR, doc

reasoning).

2023

LLaVA, InstructBLIP

Takes CLIP/BLIP-2 vision

encoders + LLM; aligns them via

visual instruction tuning (GPT-4-

generated conversations).

How did the previous architectures look like ?(contd..)

Model Architecture

• Molmo is a Vision-Language Model (VLM) — it takes
an image + text input and produces text output (a
caption, answer, explanation, or coordinates).

• It’s built in four main blocks:
a. Preprocessor – prepares the image (multi-scale

cropping).
b. Vision Encoder (ViT) – turns images into patch-level

features.
c. Connector – projects visual features into the same space

as words.
d. Language Model (LLM) – generates text from those

tokens.

Molmo: The Architecture

PROBLEM: -

• Vision Transformers (like CLIP’s ViT-L/14)
have a strict input rule: They only accept
square images of a fixed resolution (for
example 336 × 336 pixels).

• But real-world photos are rectangular, have
different resolutions, and often contain small
details (like text on signs, buttons, clocks,
charts). So if we just resized everything to
336×336:

a. Small details would blur or disappear.
b. Wide/tall scenes would get stretched or

squished.

What pre-processing on images Molmo does?

Solution: - Molmo fixes that with a multi-scale tiling strategy—the Preprocessor. We
pass multiple inputs to encoder.

1. We will compress the image to low level 336*336 px for global important
information

2. We will cut the image into several parts, each cut is 336*336 px, where cuts
overlap each other so that information is sent to the encoder properly

• The Vision Encoder is the part that
turns raw image pixels into a set of
meaningful numeric tokens that
represent the image’s contents —
texture, shape, objects, text, and layout.

• Molmo uses a Vision Transformer (ViT-
L/14, 336 px) — the same model used
in CLIP — but it adds some special
tweaks to make it work better for fine-
grained multimodal understanding.

• Molmo Vision Encoder(variants)-
• OpenAi; ViT-L/14 336px CLIP

model
• SigLiP
• MetaCLIP

Molmo: Vision Encoder

• The connector bridges the ViT and the LLM.
• Takes pooled patch vectors from ViT.
• Uses a small MLP (multi-layer perceptron) to

map them into the LLM’s embedding space (so
“visual tokens” and “word tokens” live in the
same world).

• Adds positional information so the LLM knows
where in the image each token came from.

Molmo: Connector and LLM Decoder

• The LLM is a decoder-only transformer, like GPT-
style models.

• The LLM takes input as [Vision tokens] + [Text
prompt tokens]

• The LLM auto-regressively generates text, one token
at a time, conditioned on both image and text
context.

• LLM’s, used by Molmo: -
• OLMo-7B-1024 preview (open source)
• OLMoE-1B-7B (most efficient from allenai)
• Qwen2 7B (best results)

How does the working look like in
MOLMO ? (example)

Step 1: The Input

● Real-world image: 1920 × 1080 × 3 (RGB); An image of a busy café street —

“Café Roma” signboard, tables, people, and parked cars.

● It has text (“Café Roma”), small details (menu board), and many objects (chairs,

people).

Step 2: Making the Image ViT-Friendly

Molmo can’t feed this rectangular image directly to the Vision Transformer (ViT), because
ViT only works on square 336×336 images.

So, Molmo creates:

● 1 low-resolution image → the entire scene scaled down to 336×336 (gives global
context).

● 8–12 high-resolution crops → zoomed-in squares (336×336 each) that cover
every part of the image.

Each crop overlaps its neighbor by about 56 pixels, so borders (like “Café”) don’t get cut

in half.

How does the inference look like in MOLMO ?

Step 3: Padding the Edges

If the grid doesn’t perfectly fit, black padding is added

to fill extra space.

Molmo tells the ViT whether each patch is:

● real image region,

● partially padded, or

● all padding (by adding padding-type

embeddings).

This ensures the model doesn’t confuse black

borders with actual dark areas of the image.

Step 4: ViT Patchification and Feature Extraction

Each crop (336×336) is divided into 14×14 px patches, so each crop becomes a

24×24 grid = 576 patches.

Every patch → converted to a 1024-dimensional feature vector by ViT’s patch

embedding layer.

Example (per crop):

Input: [336, 336, 3]
↓

Split into patches → [24, 24, 1024]
↓

Flatten → [576, 1024]

Molmo takes ViT outputs from two internal layers — one mid-level (for textures),

one late (for semantics) — and combines them → slightly better detail

understanding.

How does the inference look like in MOLMO ?

Step 5: 2×2 Attention Pooling

Now, 576 tokens per crop is too many.

So Molmo uses 2×2 attention pooling to compress

information while keeping local context.

Every 4 neighboring patches → 1 pooled token:

24×24 → 12×12 = 144 tokens per crop

Each token still has 1024 dimensions, but now

represents a small region (like a person’s face or part

of a table).

Step 6: Removing Redundant Overlaps

Since crops overlapped, some tokens describe the same pixels twice.

Molmo removes these duplicate areas, keeping only unique patches for the full

image.

So if 9 crops × 144 = 1296 tokens before cleanup,

after removing overlap → roughly 1100 unique visual tokens remain.

Step 7: Vision–Language Connector (The Bridge)

Each vision token is a 1024-D vector (from ViT),

but our LLM (Qwen2 or OLMo) uses 4096-D embeddings for text.

So Molmo adds a small MLP connector that maps:

[1100, 1024] → [1100, 4096]

Now all vision tokens “look” like text tokens — just numbers in the same space.

How does the inference look like in MOLMO ?

Step 8: Add Layout Tokens

To tell the LLM how the image was tiled, Molmo adds

special layout tokens:

<img_start_lowres> ... <img_end_lowres>

<img_start_hires> ... <row_end> ...
<img_end_hires>

This helps the model “know” that one token sequence

came from the top-left crop, another from bottom-right,

etc.

Final vision sequence length: about 1110 tokens

(4096-D each).

Step 9: Add the Text Prompt

Now the user asks a question —“What color is the car parked near the café?”

These words are tokenized into ~8 text tokens (4096-D each).

Molmo concatenates:

[Vision tokens][Text tokens]

→ [1110 + 8 = 1118 tokens, 4096-D each

How does the inference look like in MOLMO ?

Step 10: LLM Forward Pass (Decoder-Only Transformer)

Inside the LLM:

● Vision tokens → context memory (can look at each other freely).

● Text tokens → causal (each new word can attend to all vision tokens + previous text).

Now self-attention learns relationships like: So during generation, when predicting the next

token, the model “looks back” at the vision embeddings representing those regions.

Text

Token

Attends to Vision Tokens

“car” high attention on the

car region

“color” focuses on same

area

“café” attention on

signboard

“?” weak uniform

attention

Step 11: Output

The decoder outputs the next tokens one by one:

Vision + “What color is the car?”
↓

LLM attends to car patches
↓

Predicts “red”
↓

“The car is red.”

That’s how Molmo connects visual understanding to language reasoning.

Molmo: Architecture(Ablations)

Stage-3:- The Training
Phase

Part-A: - Pre - Training

What are the technical details related to pre-training MOLMO ?

Input Data The PixMo-Cap dataset — 712 K diverse images, 1.3 M human

voice-based transcripts and long captions (≈ 196 words per

caption)

Optimizer AdamW (β = 0.9, 0.95; ε = 1e-6).

Epochs /

Steps

~4 epochs over PixMo-Cap (~22 K steps for 7B model).

Precision Mixed precision (AMP): activations → bfloat16; weights & grad

reduce → float32 (for stability).

Parallelizatio

n

Fully Sharded Data Parallel (FSDP)

Epochs /

Steps

~4 epochs over PixMo-Cap (~22 K steps for 7B model).

Sequence

Length

Max 2304 tokens (vision + text).

Molmo: Pre-Training(Ablations)

• Dataset usage: Prompts Used:- Model is prompted with either "long caption:" (for detailed caption)

OR "transcript:" (for spoken-style output)

• For images with multiple captions/transcripts: all text tokens are concatenated in one sequence with

attention masks → each annotation attends only to its own text + image tokens. Saves compute (~ 2

× faster).

• Length Hint: Numerical token in prompt controls caption verbosity ("long caption 70:"); Improves

recall/precision trade-off.

• Text-only Dropout: Drop text tokens to force reliance on visual tokens (better grounding).

• Connector Fast Warmup: Higher LR + short warmup → no need for separate connector pre-training,

since cleaner data

• Full FP32 weights + AMP: Prevents numerical instability at scale.

Part- B: - Post - Training

What are the technical details for post tuning ?

Input Data Combines PixMo (AskModelAnything, Points, Count, Docs,
Clocks, CapQA) + 15+ academic datasets (VQA, ChartQA,
DocVQA, etc.).

Optimizer AdamW (β = 0.9, 0.95; ε = 1e-6).

Epochs /
Steps

~4 epochs over PixMo-Cap (~22 K steps for 7B model).

Precision Mixed precision (AMP): activations → bfloat16; weights & grad
reduce → float32 (for stability).

Parallelizati
on

Fully Sharded Data Parallel (FSDP)

Sampling
rule: -

Proportional to √(dataset size) to avoid dominance by large
synthetic sets.Pointing data heavily up-weighted.

What are some other fine-tuning strategies?

Problem: - When fine-tuning on 15+ different datasets (VQA,

DocVQA, ChartQA, PixMo-Points, etc.), each dataset has different

answer styles, different output formats, and different question tones.

This was not done for Pixmo datasets !

If you train them together without separation: The model might

confuse formats (e.g., answering a chart question like a VQA

question), or lose conversational tone because benchmark answers

are short and mechanical.

Solution→ Introduce lightweight text prefixes (“style tags”). These

are short tokens inserted at the start of the input prompt, telling the

model what kind of data/task this example belongs

Dataset: Example Input

VQA v2.0 vqa2: What is the man

holding?

TextVQA textvqa: What does the sign

say?

ChartQA chartqa: What were the

total sales in 2020?

When Fine-tuning:-

Input sequence (simplified)

[IMG_START] ...vision tokens... [IMG_END]
"chartqa:" "What" "was" "the" "sales" ... "?"
→ model predicts "The", "sales", "were", "10",
"billion", "."

For pointing:

<point x="42.3" y="55.1" alt="dog">dog</point>

Model learns to chain-of-thought count by pointing sequentially.

What are the key details from both the training phases ?

● All components (ViT, Connector, LLM) remain

trainable, but with smaller LRs(during fine tuning) and
higher LRs(during pre training)

● FSDP + AdamW + cosine decay (same setup) for pre

and post training

Stage Purpose Data Key Tricks Output

Pre-
Training

Align vision & language PixMo-Cap (dense
captions)

Length hints, overlap crops, text-only dropout,
connector fast warmup

Generates detailed image
captions

Fine-
Tuning

Teach reasoning &
instruction following

PixMo + academic
datasets

Style tags, multi-task batching, up-weight
pointing

Answers, counts, and
points to objects

Any Questions ?

Evaluation

Benchmark What It Is Skill Tested Example Question

1 AI2D — Science

Diagrams

Multiple-choice questions about science diagrams (arrows,

labels, parts, flows).

Diagram reading; spatial and semantic

relations

“Which arrow shows heat flow?”

2 ChartQA — Charts

& Plots

Question answering over bar, line, and pie charts. OCR; numerical reading; basic

arithmetic/aggregation

“What is the 2019 sales for

Europe?”

3 VQA v2.0 —

Everyday Photos

Visual question answering on natural images with short

answers.

General visual understanding;

commonsense reasoning

“What color is the bus?”

4 DocVQA —

Documents (Scans,

Forms)

QA on document images such as forms, receipts, and

pages.

OCR; layout and document structure

understanding

“What is the total due?”

5 InfoQA —

Infographics

QA over infographic-style visuals mixing text and images. OCR; reasoning over mixed text and

visual elements

“According to the infographic,

which country leads in X?”

6 TextVQA —

Reading Text in the

Wild

QA on natural photos where recognizing text is essential. Scene text detection, recognition, and

grounding

“What does the street sign say?”

What is the point of that Benchmark ?

Benchmark What It Is Skill Tested Example Question

7 RealWorldQA —

Zero-shot Natural

Photos

QA on diverse, real-world images unseen in training. Zero-shot generalization; robust visual

understanding

“Is the person wearing a

helmet?”

8 MMMU — Multi-

Domain Reasoning

Academic-style reasoning tasks across many subjects. Multi-step reasoning with images “Given the labeled circuit, which

bulb is brightest?”

9 MathVista — Visual

Math Reasoning

Math problems involving visual diagrams or figures. Math reasoning; geometry; multi-step

logic

“What is the angle at point B?”

10 CountBenchQA —

Counting in Images

Counting objects in natural or cluttered scenes. Object counting; grounding “How many red chairs are

there?”

11 PixMo-Count —

Hard Counting

A more difficult counting benchmark with messy, real

scenes.

Robust counting; localization under

noise

“Count the people wearing

helmets.”

12 Human Preference

(Elo)

Human evaluation via pairwise preference comparisons

(~15k prompts, ~870 raters).

Overall multimodal answer quality and

alignment with human judgment

“Which model gave a better

explanation?”

What is the point of that Benchmark(contd.) ?

Table 1. We present academic benchmark
results for 10 common datasets, plus a new
counting benchmark, PixMo-Count, which

features more challenging natural images
than CountBenchQA. We categorize models

into four groups: (top) proprietary models
accessible only via API calls, (upper middle)
models with released weights but closed

data, (lower middle) models with released
weights and training data (noting some of

these use distillation (†) from proprietary
VLMs via synthetic data), and (bottom) the
Molmo family of models.

What did we
achieve ?

Overall Performance

● Molmo-72B ranks #2 overall (just

behind GPT-4o) → Beats Gemini

1.5 Pro, Gemini 1.5 Flash, and

Claude 3.5 Sonnet.(Elo ranking)

● Molmo-7B and MolmoE-1B models

perform between GPT-4V and GPT-

4o while being fully open.

● Achieves state-of-the-art among

open models — and all weights,

data, and code are released.

What is the conclusion of these results ?

Where Molmo Excels

● Visual Understanding & Captioning :- Excellent at describing complex natural

images; ranks top on these benchmarks.

● Counting & Grounding: - Best-in-class due to new point-then-count reasoning

and 2D pointing data.

● Diagram & Chart Interpretation:- Performs near top; overlapping multi-crops

preserve fine visual details.

● Document & OCR Tasks:- After multimodal training, a small drop in text-only

skills (recovered by fine-tuning with Tulu-3).

Average / Needs Improvement

• Reasoning & Math :- Weaker reasoning and math logic; model not trained with

enough structured reasoning data.

• Fine OCR & Text-heavy Scenes:- Slightly behind Qwen2-VL, which is heavily

optimized for OCR.

• Text-Only Knowledge / Coding:- After multimodal training, a small drop in text-

only skills (recovered by fine-tuning with Tulu-3).

What it is: Third-party human preference
leaderboard (pairwise votes → Elo).

What Molmo did:

● Molmo-72B beats all fully open/open-

weight models there, but sits below top

proprietary models.

● In Molmo’s own controlled Elo study

(Section 5), Molmo-72B ranks #2 overall

(just behind GPT-4o).

Other Results: - CHATBOT ARENA

• Setup: Train on synthetic watch faces
(PixMo-Clocks), test in the wild (COCO,
OpenImages, ‘Clock Movies’).

• Prompt: “What time is being shown?
Answer as HH:MM.”

• Result: Most VLMs—open and closed—
struggle.

• Molmo models dominate VLMs
(overall/hour/minute accuracy), though a
specialized single-task clock model still
wins.

Other Results: - CLOCK Reading

Conclusion

Molmo set out to prove that multimodal reasoning can be achieved openly — with transparent data,
modular architecture, and reproducible training recipes.

Key Contributions: -

• PixMo Dataset: High-quality, LLM-assisted but auditable multimodal data — bridging web-scale
diversity with detailed grounding (captions, points, documents, clocks, counts).

• Molmo Model: Simple yet powerful architecture — multiscale overlapping crops + attention pooling
connector + open LLM — that achieves competitive reasoning without closed data.

• Openness: Every stage — data, code, checkpoints, evaluation — is public and reproducible, setting a
new standard for transparency in VLMs.

What is the conclusion from all this ?

Quick Demo !

Discussion

Q1:- PixMo introduces separate datasets for every new capability (counting, clock reading, document QA). Do

we risk fragmenting ‘intelligence’ into narrow subskills instead of achieving general reasoning?

Q-2:- If data diversity matters more than sheer scale, what does an ideal next-generation multimodal dataset

look like — curated, synthetic, or mixed?

Q-3:- With all the VLM architecture seen, can we conclude now that if we combine techniques we will get the

best model ?

Q-4:- While training how much emphasis to text v/s image(dropout layer in MOLMO’s LLM) ?

Q-5:- Is data still the bottleneck — or is the current problem in our architecture or context for models?

Q-6:- As VLMs evolve toward multimodal agents (seeing, hearing, acting), what defines true intelligence —

performance on datasets, or the ability to generalize without new data?

Q-7:- Papers like Imagebind, Unified-IO-2, combine modalities under a shared token space, does that mark the

end of modular encoders and connectors like in Molmo — or will modularity remain important for

specialization?

Where Do We Go From Here?

	Slide 1: Molmo and PixMo Open Weights and Open Data for State-of-the-Art Vision-Language Models (CVPR) 2025
	Slide 2
	Slide 3: Problem Introduction and Motivation
	Slide 4: What is the problem that this paper addresses ?
	Slide 5
	Slide 6: Let's try to understand in a way of how a model is actually built !!
	Slide 7: Paper Flow — Understanding Molmo Like Training a Model
	Slide 8: Stage-1: - The Data Phase
	Slide 9: What datasets did previous architectures use ?
	Slide 10: What datasets did previous architectures use ?
	Slide 11: What were the problems with Previous Models/Datasets ?
	Slide 12: Part A:- Data Collection
	Slide 13: PixMo (Pixels for Molmo)
	Slide 14: PixMo-CAP
	Slide 15: PixMo-AskModel Anything
	Slide 16: PixMo-Points
	Slide 17: PixMo-Points
	Slide 18: PixMo- CAPQA
	Slide 19: PixMo-Docs
	Slide 20
	Slide 21: PixMo- Clocks
	Slide 22: PixMo-Count
	Slide 23: What were the problems with Previous Models/Datasets ?
	Slide 24: What does each subset of PixMo add to the model ?
	Slide 25: Any Questions ?
	Slide 26: Stage-2: - The Modelling Phase
	Slide 27: Background and Related Works
	Slide 28: How did the previous architectures look like ?
	Slide 29: How did the previous architectures look like ?(contd..)
	Slide 30: Model Architecture
	Slide 31: Molmo: The Architecture
	Slide 32: What pre-processing on images Molmo does?
	Slide 33: Molmo: Vision Encoder
	Slide 34: Molmo: Connector and LLM Decoder
	Slide 35: How does the working look like in MOLMO ? (example)
	Slide 36: How does the inference look like in MOLMO ?
	Slide 37: How does the inference look like in MOLMO ?
	Slide 38: How does the inference look like in MOLMO ?
	Slide 39: How does the inference look like in MOLMO ?
	Slide 40: Molmo: Architecture(Ablations)
	Slide 41: Stage-3:- The Training Phase
	Slide 42: Part-A: - Pre - Training
	Slide 43: What are the technical details related to pre-training MOLMO ?
	Slide 44: Molmo: Pre-Training(Ablations)
	Slide 45: Part- B: - Post - Training
	Slide 46: What are the technical details for post tuning ?
	Slide 47: What are some other fine-tuning strategies?
	Slide 48: What are the key details from both the training phases ?
	Slide 49: Any Questions ?
	Slide 50: Evaluation
	Slide 51: What is the point of that Benchmark ?
	Slide 52: What is the point of that Benchmark(contd.) ?
	Slide 53: What did we achieve ?
	Slide 54: What is the conclusion of these results ?
	Slide 55: Other Results: - CHATBOT ARENA
	Slide 56: Other Results: - CLOCK Reading
	Slide 58: Conclusion
	Slide 59: What is the conclusion from all this ?
	Slide 60: Quick Demo !
	Slide 61: Discussion
	Slide 62: Where Do We Go From Here?

