y

ViperGPT: Visual Inference via
Python Execution for Reasoning

Didac Suris*, Sachit Menon*, Carl Vondrick
ICCV 2023

Georgia
Tech

Outline

* Problem Statement

* Related Works

« Approach

« Experiments & Results

 Limitations, Societal Implications

« Summary of Strengths, Weaknesses, Relationship to Other Papers

Georgia
2/68 Gl" Tech.

then rely on symbolic Al programs that apply logic and semantic reasoning to identify
relationships among these objects.,

Color Cyan Pink

Q: Is the cylinder in front of the pink sphere?
Shape Cylinder Sphere

Position 5 2

Georgia
Tech

Video from: https://www.youtube.com/watch?v=HhymId8dr5Q&t=64s

Background: Neuro-symbolic reasoning

Neuro-symbolic reasoning is a composition of
pattern recognition (neural networks) + analytic thinking (symbolic Al).

NEURAL

NETWORKs SYMBOLIC

Georgia
4/68 GI‘ Techg

Figure from: https://generativeai.pub/neurosymbolic-ai-why-this-hybrid-tech-may-dominate-intelligent-systems-by-2027-f063f0a50bee

Problem Statement

Query: How many muffins can each kid have for it to be fair?

1. Recognize muffins 3. Count visible objects

» Llen(muffin_patches)=8

Ew 4 ‘ » Llen(kid_patches)=2
b —- ™ - 4. Reasoning
S Y . ' . > What does “fair” mean?
RS et gy N 2. Recognize Kids 5. Mathematical Operation
[‘ »8//2 = 4
. Result:4
&
v G S

Figure from: Suris, D., Menon, S., & Vondrick, C. (2023). Vipergpt: Visual inference via python execution for reasoning. In Proceedings of the IEEE/CVF international conference on computer vision (pp. 11888-11898).

Problem Statement

Query: How many muffins can each kid have for it to be fair?

End-to-end model (ex. VLM)
:Not interpretable

Tons of Dataset

Result:4
Ground Truth _
G §eo™

Figure from: Suris, D., Menon, S., & Vondrick, C. (2023). Vipergpt: Visual inference via python execution for reasoning. In Proceedings of the IEEE/CVF international conference on computer vision (pp. 11888-11898).

Problem Statement

Query: How many muffins can each kid have for it to be fair?

3. Count visible objects

; \
(h- Len(muffin_patches)=8 |
l : =
End-to-end model (ex. VLM) > len(kid_patches)=2 I
:Not interpretable ™ @ = === == === == "
Computers
can do this

easily!

g

5. Mathematical Operation

| »8//2 = 4

Tons of Dataset e ————
ResuLt:4‘

Ground Truth Georai
eorgila
7/68 Gl" T»s:t:hs,I

Figure from: Suris, D., Menon, S., & Vondrick, C. (2023). Vipergpt: Visual inference via python execution for reasoning. In Proceedings of the IEEE/CVF international conference on computer vision (pp. 11888-11898).

Problem Statement

» Language model excels at analytical reasoning
« Computer excels at mathematical operations

Vision model
___________ \
o Eazgiagieino_de_l -— Ir Pattern recognition I
Abstracting problems \ . A -
+ Analytical reasoning |’ _ _ _ Computer
——————————— Z 1 Mathematical operations |
R T =

Georgia
8/68 Gl" Tech.

Figure from: Suris, D., Menon, S., & Vondrick, C. (2023). Vipergpt: Visual inference via python execution for reasoning. In Proceedings of the IEEE/CVF international conference on computer vision (pp. 11888-11898).

Problem Statement

Language model Vision model

/ Abstracting problems
[+ Analytical reasoning
|

I
| Step-by-step thinking

| 1. Recognize muffins

2. Recognize Kids

| 3. Count visible objects

4. Reasoning

| 5. Mathematical Operation | |)
| | > len(muffin_patches)=8 I
| | »len(kid_patches)=2 |
l
\] | -
it -7 Nemoo - - - -

Figure from: Suris, D., Menon, S., & Vondrick, C. (2023). Vipergpt: Visual inference via python execution for reasoning. In Proceedings of the IEEE/CVF international conference on computer vision (pp. 11888-11898).

Problem Statement

Language model Vision model

7 Abstracting problems
+ implement pseudo code

Generated Code

def execute_command(image):
image_patch = ImagePatch(image)
muffin_patches = image_patch. find("muffin")
kid_patches = image_ patch.find("kid")
return str(len(muffin_patches) // len(kid_patches))

» len(muffin_patches)=8 I

» len(kid patches)=2 |
l

’____________

\ = :
10/68 N o - / \ »8//2 = 4 J Georgia

—————————————————————————————— «I1" Tech

Figure from: Suris, D., Menon, S., & Vondrick, C. (2023). Vipergpt: Visual inference via python execution for reasoning. In Proceedings of the IEEE/CVF international conference on computer vision (pp. 11888-11898).

Contribution

« Compositional
* Process Visual tasks, Reasoning tasks, and mathematical operation tasks separately.

* Interpretability

 All the steps are explicit as a code, with intermediate values.
* Flexibility

 |Incorporate any vision or language module.

« Only require changing API specification as a prompt.
* Training—free

» Generalizability
» Existing methods are highly domain-limited.
* ViperGPT can process any tasks (domain-free).

Grr §37

Related Works

* |n PoT, LLM is
used to translate
natural language
problems into
python programs
as intermediate
reasoning steps.

* ViperGPT extends
this ability to solve
complex,
multimodal
problems (object
recognition, depth
estimation, ..).

12/68

Question: Ketty saves 20000 dollars to the bank. After three years, the sum with compound interest rate is 1000 dollars more
than the sum with simple interest rate. What is the interest rate of the bank?

Assuming the interest rate is x. The sum after two years with
simple interest rate is 20000 + x * 20000 * 3 = 20000 +
60000x. The sum after two years with compoud interest rate
is 20000 * (1 + x) A 3 = 200000 + 60000 * x + 60000xA2 +
20000x~3. The difference can be written as 60000x/2 +
20000x”3 = 1000. In order to solve x, we can use the
quadratic formula. x = (-b +- sqrt(b”2 - 4ac)) / 2a, ,x =
(20000 +- 6160) / 120000, x = -0.051333. CoT

interest_rate = Symbol(‘x’)
§sum_in_two_years_with_simpIe_interest: 20000 +
interest_rate * 20000 * 3
'sum_in_two_years_with_compound_interest = 20000 * (1 +
interest_rate)**3

Since compound interest is 1000 more than simple interest.
ans = solve(sum_after_in_yeras_with_compound_interest -
'sum_after_two_years_in_compound_interest - 1000,
interest_rate) PoT

Il
A 4
v

-0.051333

X

e & L
Y X =0.24814

Georgia
Gl" Tech.

[1] Chen, W., Ma, X., Wang, X., & Cohen, W. W. (2022). Program of thoughts prompting: Disentangling computation from reasoning for numerical reasoning tasks. arXiv preprint arXiv:2211.12588.

Related Works

PAL: Program-aided language models?

« PAL and PoT were

simultaneously published
(3 days difference) with

almost same ideas.

* PAL generalizes to more
tasks (13 benchmarks)
with prompt-agnostic way.

 ViperGPT extends this
ability to solve complex,

multimodal problems

(object recognition, depth

estimation, ..).

13/68

[2] Gao, L., Madaan, A., Zhou, S., Alon, U., Liu, P., Yang, Y

Chain-of-Thought (Wei et al., 2022)

e ~

Q: Roger has 5 tennis balls. He buys 2 more cans of
tennis balls. Each can has 3 tennis balls. How many
tennis balls does he have now?

A: Roger started with 5 tennis balls. 2 cans of 3 tennis
balls each is 6 tennis balls. 5 + 6 = 11. The answer is 11.
Q: The bakers at the Beverly Hills Bakery baked 200

loaves of bread on Monday morning. They sold 93 loaves
in the morning and 39 loaves in the afternoon. A grocery

store returned 6 unsold loaves. How many loaves of
bread did they have left?

N /

Model Output

A: The bakers started with 200 loaves. They sold 93 in
the morning and 39 in the afternoon. So they sold 93 +
39 = 132 loaves. The grocery store returned 6 loaves. So
they had 200 - 132 - 6 = 62 loaves left.

X

The answer is 62.

Program-aided Language models (this work)

—(Input)} \
Q: Roger has 5 tennis balls. He buys 2 more cans of

tennis balls. Each can has 3 tennis balls. How many
tennis balls does he have now?

A: Roger started with 5 tennis balls.

tennis balls = 5

bought balls = 2 * 3

tennis balls. The answer is

answer = tennis balls + bought_balls

Q: The bakers at the Beverly Hills Bakery baked 200
loaves of bread on Monday morning. They sold 93 loaves
in the morning and 39 loaves in the afternoon. A grocery

store returned 6 unsold loaves. How many loaves of bread

Qﬁd they have left? Y
\

——(Model Output)
A: The bakers started with 200 loaves

laaves_haked = 200

loaves sold morning = 93

1aaves_sold_afternnon = 39

loaves returned = 6

The answer is

answer = loaves baked - loaves sold morning
- loaves sold afternoon + loaves returned

\F«)

& Neubig, G. (2023, July). Pal: Program-aided language models. In International Conference on Machine Learning (pp. 10764-10799). PMLR.

Related Works

 Faithful CoT provides rationale for each line of code.

« Similar approach with PAL/Pot, but Faithful CoT focuses more on interpretability by
decomposing the problems in more structured way.

« Similarly, ViperGPT also focuses on interpretability by presenting intermediate values

// 1. What is the density of an apple?

// The density of an apple is about 0.75 g/cm”3.

{// 2. What is the density of water?

/¢ Water has a density of 1 g/cm*3.

// Then, we represent these answers in Datalog:
s // 1. The density of an apple is about 0.75 g/cm"3.
Would an apple sink in .decl Has_density (Object:symbol, Density:float)
water? Has_density("apple", 0.75). No
// 2. Water has a density of 1 g/em*3.

Has density ("water", 1).

R {f How, we derive the final answer: Would an apple sink in water?

// The answer is Yes only if an apple is more dense than water.

.decl Answer ()

Translator Answer () :- Has density("apple", densityl), Has density("water", P
density2), densityl > density2. Deterministic
(LM) .output Answer Solver

14/68 3 ey
AL Tech.
[3] Lyu, Q., Havaldar, S., Stein, A., Zhang, L., Rao, D., Wong, E., ... & Callison-Burch, C. (2023, November). Faithful chain-of-thought reasoning. In The 13th International Joint Conference on Natural Language
Processing and the 3rd Conference of the Asia-Pacific Chapter of the Association for Computational Linauistics (IJCNLP-AACL 2023).

Related Works

* First shows that OpenAl’'s Codex can solve complicated tasks such as MIT
course problems.

* ViperGPT also utilizes Codex to implement actual code.

Input (Problems) Output (Answers, Visualizations, Explanations)
MIT Courses
Calculus e 20
. . p
Differential Eq. | . Z
Intro to Prob. /
Linear Af‘gebra Program Synthesis . / Lo
> ’ 2
Mafh for CS As-is / write a program / use sympy / use simulations "o s 20
Columbia U Course Calculus
E Zero-Shot Learning
| Comp. Lin. Alg. _ > Codex == —
70% automatic solve rate X-Projection of Lorenz Attractor
MATH Topics “ O 1 (B
| |
Preal g ebra Few-Shot Learning . ” X b
AIQEbra 80% automatic solve rate f £ “ i
Number Theory *
Counting and Prob. “ —= N2
Inter. Algebra * .
=20 —:15 =10 —I5 o é 10 1'5 2'9
Precalculus o T
Differential Equations Linear Algebra
1. Generate a random number x from a uniform distribution on the interval [0, 8]
2. Test the hypothesis that 8 = 2 by rejecting HO if x = 0.1 orx = 1.9
3. Simulate the probability of a type | error Explanation G .
15/68 Introduction to Probability and Statistics & ngflgla

[4] Drori, 1., Zhang, S., Shuttleworth, R., Tang, L., Lu, A., Ke, E., ... & Strang, G. (2022). A neural network solves, explains, and generates university math problems by program synthesis and few-shot learning at
human level. Proceedinas of the National Academy of Sciences. 119(32). e2123433119.

Related Works

* VISPROG and ViperGPT were 4 months difference with almost similar ideas.

« Unlike VISPROG that generates pseudocode that needs further interpretation,
ViperGPT directly generates executable python code.

[Natural Language Visual Reasoning

s RIGHT: , Compositional Visual Question Answering

IMAGE:

Question: Are there both ties and glasses in the picture?

Program:

BOXB=Loc(image=IMAGE, object="ties"')

ANSWERB=Count (box=B0OX8)

BOX1=Loc(image=IMAGE, cbject="glasses’)

ANSWER1=Count { box=B0OX1)

ANSWER2=Eval(“‘yes® if {ANSWER®} > @ and {ANSWER1} > @ else *no**)

Statement: The left and right image contains a total of six people and two boats.

Program: RESULT=ANSWER2
ANSWER®=Vqa(image=LEFT, question=‘How many people are in the image?’) Prediction: no
ANSWER1=Vqa(image=RIGHT, question=‘How many people are in the image?’) L

ANSWER2=Vqga(image=LEFT, question=‘How many boats are in the image?’)
ANSWER3=Vqa(image=RIGHT, question=‘How many boats are in the image?’)
ANSWER4=Eval(“{ANSWER@} + {ANSWER1} == 6 and {ANSWER2} + {ANSWER3} == 2’)
RESULT=ANSWER4

Prediction: False

Grr §37

[5] Gupta, T., & Kembhavi, A. (2023). Visual programming: Compositional visual reasoning without training. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (pp. 14953-14962).

N\

Visual Input =

7
/
Approach ; Queryq
I “Which pet is in
_ | the top left?”
* Input: Textual query g, Visual x !
——————————————— I
{« Code LLM: (q,API) =z \I I l
I - 7=LLM o ' ViperGPT
' API = API specification I
'\ « 7z = Generated code ! Code LLM
P At T
f+ Code Execution: ¢(x,z) =7 X
NS o

! * ¢ = Execution engine
I r = Result

* q = question, description
« x = RGB, video, depth

API Specification

(image) -» toech.Tensor:

def ewistsimage, object_name) -> bool:

Generated Code z

def process _query functiom{image}:
image patch = ImagePatch{image]
pets = image patch.find("pet™)
pets sorted = ...

return result /z

“Code Execution @ {

Python Interpreter
+

APl Implementation

* r = text, image crops,... (any type)

17/68

EINE (SN I S - -y,

J, l
\ RGSU't “Shiba Inu” ,'

Figure from: Suris, D., Menon, S., & Vondrick, C. (2023). Vipergpt: Visual inference via python execution for reasoning. In Proceedings of the IEEE/CVF international conference on computer vision (pp. 11888-11898).

Approach

« Used GPT-3 Codex for program generator .
* Why Codex?

* The generated code should work.

. - _ ViperGPT Generated Code z
y COdeX IS SpeCIflca”y tralned on def process_guery function{image):
image_patch = ImagePatch(image)
COde data' C'DdE LLM pets = image_patch.find("pet”)
?r pets sorted = ...
~ é;e;:urn result
AP| Specification .
P Code Execution ¢
|::|.'r;;|r::- -¥ tooch.Tensac: P?thnn Interpreter
dut :-'.."...'[:L-'ngu. uh]:::_m::lej =% ool : +
APl Implementation

Grr §37

Figure from: Suris, D., Menon, S., & Vondrick, C. (2023). Vipergpt: Visual inference via python execution for reasoning. In Proceedings of the IEEE/CVF international conference on computer vision (pp. 11888-11898).

Approach

* Feeds API specification as a prompt.

« Composed with 2 global classes
1. class ImagePatch

. ViperGPT Generated Code z
2' CIaSS Vldeosegment def process guery fumctiom{image}:
image_patch = ImagePatch(image)
C'DdE LLM pets = image_patch.find("pet”)
?r pets sorted = ...

return result

Jo ™m mm Em Em EE EE = = . . —y
/1 APl Specification \)
| P ICode Execution ¢
|
: det |::|.'r;;|r::- - torch. Tensar: I P?thnn Interpreter
def exists{image, object_name) - bool:
I e : I - .
: I APl Implementation
N e e e e e e e 7/

Grr §37

Figure from: Suris, D., Menon, S., & Vondrick, C. (2023). Vipergpt: Visual inference via python execution for reasoning. In Proceedings of the IEEE/CVF international conference on computer vision (pp. 11888-11898).

ViperGPT Generated Code 2
def process_query_funcrion(image):

image_patch = ImagePateh(image)
COd%_LLM pets = image_patch. find(pet”)

pets_sorted = ...
- o E— oy retumn result

API Specification ICode Execution ¢

(1mage) > toren Tensor:

Approach

Python Interpreter

(image, chject name) > boat

+
' AP! Implementation

* ImagePatch.find() method find object in the given image.
* Internally calls GLIP pretrained model in .find() method.

0 . . . class ImagePatch:
Query: HOW many meﬁnS Can eaCh kld have fOI’ |t tO be fall’? """A Python class containing a crop of an image centered around a particular object, as well as relevant information.
Attributes
Generated COde cropped_image : array_like
An array-like of the cropped image taken from the original image.
left : int
def coue o-mand@imag-): i — An int describing the position of the left border of the crop’s bounding box in the original image.

lower : int

1mage_patch = ImagePatch(lmage) An int describing the position of the bottom border of the crop’s bounding box in the original image.

muffin_patches = image_patch. find("muffin") , right : int
Neid_petichess= swagemmsat ot ind@l kK idis) m An int describing the position of the right border of the crop’s bounding box in the original image.

return str(len(muffin_patches) // len(kid_patches)) upper : int
An int describing the position of the top border of the crop’s bounding box in the original image.

Methods
- - —_— —_— —_— —_— —_— —_— —_— —_— —_— —_— —_— —_— —_— —_— —_— —_— —_— —_—
r g e e e (find(object _name: str)->List[ImagePatch] \
- Returns a list of new ImagePatch objects containing crops of the image centered around any objects found in the
muffin_patches = | . : oo ’ sl 2 e V4
3 e~ 2 i <ty LS MOk NCad® GRS CIaEAlC o —— - - - - - - e e e e o .
‘ Jmage_patch.flnd(muffin)J exists(object_name: str)->bool
e 7 - L Returns True if the object specified by object_name is found in the image, and False otherwise.
S P & verify_property(property: str)->bool
¢ Returns True if the property is met, and False otherwise.

best_text_match(option_list: List[str], prefix: str)->str
Returns the string that best matches the image.
simple_query(question: str=None)->str
Returns the answer to a basic question asked about the image. If no question is provided, returns the answer
to "What is this?".
compute_depth()->float
Returns the median depth of the image crop.
crop(left: int, lower: int, right: int, upper: int)->ImagePatch
Returns a new ImagePatch object containing a crop of the image at the given coordinates.

def __init__(self, image, left: int=None, lower: int=None, right: int=None, upper: int=None): ia
20/68 "nvInitializes an ImagePatch object by cropping the image at the given coordinates and stores the coordinates as attributes.

7 leci.

Figure from: Suris, D., Menon, S., & Vondrick, C. (2023). Vipergpt: Visual inference via python execution for reasoning. In Proceedings of the IEEE/CVF international conference on computer vision (pp. 11888-11898).

ViperGPT Generated Code 2
def proces ry_f

Code LLM
i

el I retumn result

API S ificati
peciication ICode Execution ¢

Python Interpreter

+
' AP! Implementation

« Specified Input and Output types

* Provided Docstring to explain the purpose of each method
« Specified Example code

« Exact code (x), Natural Language (0)

def find(self, object_name: str) -> List[ImagePatch]: B N spi A _
"""Returns a list of ImagePatch objects matching object_name contained in the crop if any are found. . ; SGUlglklm less « man fmd 77x42
Otherwise, returns an empty list. FIND(1) General Commands Manual FIND(1)
Parameters
object_name : str NAME
the name of the object to be found find — walk a file hierarchy
returns SYNOPSIS
List[ImagePatch] find [-H | -L | -P] [-EXdsx] [-f path] path ... [expression]
a list of ImagePatch objects matching object_name contained in the crop find [-H | -L | -P] [-EXdsx] -f ath [ath ;] [EXI'ESSiOI'l]
Exanples DESCRIPTION
>>> # return the children TI:ne find utility recursively qescends the directory tree for each path
>>> def execute_command(image) -> List[ImagePatch]: llsted, evaluatlng an expression (composed of the "prlmarles" and
>>> image_patch = ImagePatch(image) "operands” listed below) in terms of each file in the tree.
>>> children = image_patch.find("child")
>>> hil .
return chitdren The options are as follows:
. ViperGPT .find() method specification Similar to how human search methods in linux man page

Figure from: Suris, D., Menon, S., & Vondrick, C. (2023). Vipergpt: Visual inference via python execution for reasoning. In Proceedings of the IEEE/CVF international conference on computer vision (pp. 11888-11898).

ViperGPT Generated Code 2
def process_query_functio g
image_patch = ImagePatch(image)
Code LLM pets = image_patch. find('pet’)
m pets_sorted = ...
_— oy, retum resul
API Specification .
P I Code Execution ¢

Python Interpreter

det erista(insge, chject name) > bool

+
' AP! Implementation

Approach

* ImagePatch.compute depth() method returns depth of the center of the given

Image patch.
* Internally calls MiDaS pretrained model in .compute depth() method.

pizza.compute_depth()

Query: pizza front

Generated code

def execute_command(image):
image_patch = ImagePatch(image)
Pz e PAECheS=F mMade= pateh S indEpiZia = = = -
| pizza_patches.sort(key=lambda pizza: pizza.compute_ depth())

“patch_Fetlrf = pizZa_PatchHesoT
return patch_return

In:

Grr §37

Figure from: Suris, D., Menon, S., & Vondrick, C. (2023). Vipergpt: Visual inference via python execution for reasoning. In Proceedings of the IEEE/CVF international conference on computer vision (pp. 11888-11898)

ViperGPT Generated Code 2

def process_query_function(image):

image_patch = ImagePateh(image)
Code LLM pets = image_patch. find(pet”)
pets_sorted = ...

_— oy, retumn result

API Specification

Approach

I Code Execution ¢

Python Interpreter

+
' AP! Implementation

class VideoSegment:

Query: What did the boy do after he dropped the """A Python class containing a set of frames represented as ImagePatch objects, as well as relevant information.
Attributes
sparkles on the floor
video : torch.Tensor
A tensor of the original video.
start : int
An int describing the starting frame in this video segment with respect to the original video.
end : int
An int describing the ending frame in this video segment with respect to the original video.
num_frames->int
An int containing the number of frames in the video segment.

Methods
frame_iterator->Iterator[ImagePatch]
trim(start, end)->VideoSegment
Returns a new VideoSegment containing a trimmed version of the original video at the [start, end] segment.
select_answer(info, question, options)->str
Returns the answer to the question given the options and additional information.

def __init__(self, video: torch.Tensor, start: int = None, end: int = None, parent_start=0, queues=None):
"""Initializes a VideoSegment object by trimming the video at the given [start, end] times and stores the
start and end times as attributes. If no times are provided, the video is left unmodified, and the times are
set to the beginning and end of the video.

Parameters

video : torch.Tensor
A tensor of the original video.
start : int

Grr §37

Figure from: Suris, D., Menon, S., & Vondrick, C. (2023). Vipergpt: Visual inference via python execution for reasoning. In Proceedings of the IEEE/CVF international conference on computer vision (pp. 11888-11898).

Approach

» Python interpreter executes the generated code z.

 Certain perceptual function (ex. Depth estimation, object detection,..) is

processed by pretrained models.

ViperGPT

Code LLM
T

API Specification

[image) -* tooch.lenszoc:

def exists(image, object_name) -> bool:

Generated Code z

def process query function{image:
image_patch = ImagePatch(image)
pets = image patch.find{"pet™)
pets sorted = ...

return result

/
jCode Execution ¢

' Python Interpreter

=+
APl Implementation

g I

24/68

Figure from: Suris, D., Menon, S., & Vondrick, C. (2023). Vipergpt: Visual inference via python execution for reasoning. In Proceedings of the IEEE/CVF international conference on computer vision (pp. 11888-11898).

Cr

Georgia
Tech.

Experiments

ViperGPT evaluates its efficacy with 4 different setups:

Visual Grounding

Compositional Image-Question Answering

External knowledge dependent image-question answering
Video causal and temporal reasoning

W=

Grr §37

Experiments and Results

 Evaluates spatial understanding and visual understanding.
 Outperforms zero-shot models, but way worse than supervised models.

Query: pizza front

Generated code

def execute_command(image):
image_patch = ImagePatch(image)
pizza_patches = image_patch.find("pizza")
pizza_patches.sort(key=lambda pizza: pizza.compute_depth())

tch_return = pizza_patches[@]
g e Table 1. RefCOCO Results. We report accuracy on the REC task
Exectition and testA split. ZS=zero shot, Sup.=supervised.
pizza_patches = image_patch.find("pizza")
» pizza_patches= {List[ImagePatch]} IoU (%) T

RefCOCO RefCOCO+

it Rngan, G0 preppatag s () OWL-ViT [38] 30.3 29.4
] «» GLIP [31] 55.0 52.2
N ReCLIP [49] 58.6 60.5

ViperGPT (ours) 72.0 67.0

patch_return = pizza_patches[@]
return patch_return Result: s

Gir e
Fi e 3. Visual roundm on RefCOCO. '

Figure from: Suris, D., Menon, S., & ndnck C. (2023). Vipergpt: |suaI inference via python execution for reasoning. In Proceedings of the IEEE/CVF international conference on computer vision (pp. 11888-11898).

Experiments and Results

« Evaluates how well the model breaks down complex questions into simpler ones.
» Slightly better than zero-shot models, but worse than supervised models.

Accuracy (%) 1

va BLIP-2[30] 44.7
N ViperGPT (ours) 48.1

Query: Are there water bottles to the right of Execution

the bookcase that is made of wood?
In:

bookcase_patches= image_patch.
find("bookcase")
» bookcase_patches[@] = {ImagePatch}

water_bottle_patches = image_patch.
find("water bottle")
» water bottle_patches[@]

Generated code = {ImagePatches}

def execute_command(image):
image_patch = ImagePatch(image)
bookcase patches = image_ patch.find("bookcase")
for bookcase_patch in bookcase_patches:
is_wood = bookcase patch.verify property("bookcase", "wood")
if is_wood:
water_bottle_patches = image_patch.find("water bottle")
for water bottle_patch in water_ bottle_patches:
if water bottle_patch.horizontal_center > \
bookcase_patch.horizontal center:
return "yes"
return "no" » is wood = {bool} True
return "no"

» bookcase_patches[@].
horizontal_center = {float} 239.0

» water bottle_patches[@].
horizontal_center = {float} 6@8.5

...verify property("bookcase", "wood") » water_bottle_patch.horizontal_center >

bookcase_patch.horizontal_center =
{pool} True Result:“yes”

27/68 : ‘o . . ‘. = Georgia
Figure 4. Compositional image question answering on GQA. " Tech

Figure from: Suris, D., Menon, S., & Vondrick, C. (2023). Vipergpt: Visual inference via python execution for reasoning. In Proceedings of the IEEE/CVF international conference on computer vision (pp. 11888-11898).

Experiments and Results

« Evaluates how well the model query external knowledge to solve problem.
 Better than zero-shot models, also similar as supervised models.

Table 3. OK-VQA Results.

Query: The real live version of this toy Accuracy (%) T
does what in the winter?
Generated code
def execute_command(image): .
image = ImagePatch(image) Execution
toy = image.simple query("What is this toy?") » toy = {str} "bear"
result = llm_qguery("The real live wversion of
{3} does what in the winter?", toy) » guess = {str} "hibernate" PNP-VQA [52] 35.9
return result . . PICa [60] 43.3
Result: “hibernate @ BLIP-2 [30 45.9
BLIP-2 result: “ski” h [30] '
: . - . Flalrmlgo [1] 50-6
Figure 5. Programmatic chain-of-thought with external knowl- ViperGPT (ours) 51.9

edge for OK-VQA.

Grr §37

Figure from: Suris, D., Menon, S., & Vondrick, C. (2023). Vipergpt: Visual inference via python execution for reasoning. In Proceedings of the IEEE/CVF international conference on computer vision (pp. 11888-11898).

Experiments and Results

« Evaluates how well the model extrapolates to reasoning in video datasets.
 Better than supervised models (SOTA) despite seeing no video data.

Query: How does the black dog position himself

at the end?

Generated code

def execute_command(video, gquestion, possible_answers):

video_segment = VideoSegment(video)
last_frame = ImagePatch(video_segment, -1)
last_caption = last_frame.simple_guery("What is this?")
dogs = last_frame.find("doeg")
if len{dogs) == @:
dogs = [last_frame]

dog = dogs[@]
dog_action = dog.simple_guery("What is the dog doing?")
info = {

"Caption of last frame": last_caption,
"Dog looks like he is doing": dog_action

answer = select_answer({info, question, possible_answers)
return answer

29/68

Execution

last_frame =

ImagePatch(video_segment, =1)

» last_frame

{ImagePatch}

Figure 6. Temporal reasoning on NeXT-QA.

Table 4. NExT-QA Results. Our method gets overall state-of-the-
art results (including supervised models) on the hard split. “T”" and
“C” stand for “temporal” and “causal” questions, respectively.

Accuracy (%) 1
Hard Split - T Hard Split- C Full Set

&§ ViperGPT (ours) 49.8 56.4 60.0

\ 4
» Last_caption = {str} "a black dog
sitting in the grass"

dogs = last_frame.find("deg")
» dog = {ImagePatch}

dog_action = dog.simple_guery(
"What is the dog doing?")

» dog_action= {str} "sitting"

» answer = {str} "sit on the ground"

Result: “Siton theground”

Georgia
Gl" Tech.

Figure from: Suris, D., Menon, S., & Vondrick, C. (2023). Vipergpt: Visual inference via python execution for reasoning. In Proceedings of the IEEE/CVF international conference on computer vision (pp. 11888-11898).

Discussion

» Performs better when requires more reasoning.

 Existing chain-of-thought rely on LLM to perform both reasoning and computation.
 ViperGPT excels at programmatically composing specialized vision, language,

math, and logic functions as subroutines.

Evaluation Requires reasoning?

Result

1. Visual Grounding *
Only requires visual understanding

Way worse than supervised models.

2. Compositional Image Question Answering * @
Reasoning based on the given image

Worse than supervised models.

3. External Knowledge-dependent Image
Question Answering Reasoning outside of the given image

Similar to supervised models.

4. Video Causal/Temporal Reasoning
Requires extrapolation of prior knowledge

30/68

State-of-the-art
Georgia
Tech.

More results

 ViperGPT effectively produces different logic for each case (US vs. UK)

Query: Return the car that is on the correct lane

Context: the picture was taken in the US
def execute_command(image):
cars = image.find("car")
for car in cars:
if car.horizontal_center > image.horizontal_center:
return car

return None Result: None

Context: the picture was taken in the UK
def execute_command(image):
cars = image.find("car")
for car in cars:
if car.horizontal_center < image.horizontal_center:
return car
return Mone

Result: @

Figure 8. Contextual programs. ViperGPT readily incorporates
additional context into the logic of the generated programs. G],"

Georgia
Tech.

Figure from: Suris, D., Menon, S., & Vondrick, C. (2023). Vipergpt: Visual inference via python execution for reasoning. In Proceedings of the IEEE/CVF international conference on computer vision (pp. 11888-11898).

31/68

Limitations & Societal Implications

Limitations Societal Implications

* Problem solving stage is interpretable, < Improve trustworthiness of Al system.
but we still do not know how the LLM - Can apply to real world problem by
generates the code. using generalization ability.

 Potential dangers: What if the code
includes “os.rmdir()”?

 Highly dependent on the performance
of Codex and pretrained large models.

Grr §37

Summary of Strengths, Weaknesses, Relationships

Sampled Reasoning Paths

Strength

* Does not have a ‘shortcut problem’
because of line-by-line code
execution.

Query: How many muffins can each kid have for it to be fair?

Generated Code

def execute_command(image):
image_patch = ImagePatch(image)
muffin_patches = image_patch.find("muffin")
kid_patches = image_patch.find("kid")
return str(len(muffin_patches) // len(kid_patches))

33/68

Figure from: Xia, J., Zang, Y., Gao, P, Li, Y., & Zhou, K. (2025). Visionary-r1: Mitigating shortcuts in visual reasoning with reinforcement learning. arXiv preprint arXiv:2505.14677.

[Question: what supermarket is this ad for?]

Vision
Encoder

|

Policy Model

Caption Reward Calculation

— S S S e e S S S S S S S S S = Su 2 5= 5 S & & &n & & &n & == =,

o, Info

<info> On the wall of a tiled hallway, there is a large
advertisement with a red background and an image of a
building. The text in the advertisement reads "Welcome to
Food's Greatest Stage" in bold white letters, with "Loblaws"
written in the lower right corner. The building in the
advertisement is a multi-story structure with several windows.

k‘ffinfo:-)

LN

o, Info

<info>This image shows a poster mounted on a tiled wall in
what appears to be an indoor public space, possibly a subway
or train station. </info>

- ———

Question

Loblaws — 1.0
o, Caption Reward

Question

e o o o o o

o, Caption Reward

Summary of Strengths, Weaknesses, Relationships

Strength Weaknesses
* Does not have ‘shortcut problem’ * Not enough evaluation metrics; only
because of line-by-line code evaluated with accuracy.
execution. » Not enough comparisons; for NExT-
* ViperGPT enables vision and QA, only evaluated with two models.

language to show capabilities beyond
what any individual model can do on
its own.

« Performance is generally worse or
slightly better in some cases when
compared with supervised models.

* As the pretrained models continue to
improve, ViperGPT's results will also
continue to improve in tandem.

Grr §37

Neuro-symbolic reasoning: ViperGPT vs.

gg %G PT | |
. V| r cused more on symbolic reasoning.
* HuggingGPT covered massive scope with more tools and expert neural networks.

IF | (Hen) Q' @ &

iy NEURAL NEURAL
) Q NETWORKS ' (- NETWORKS

®

5 -l
SYMBOLIC 4@ & @

Al NEURAL NEURAL
NETWORKS NETWORKS
35/68 ViperGPT HuggingGPT Gr %ggi};ia

Figure from: https://generativeai.pub/neurosymbolic-ai-why-this-hybrid-tech-may-dominate-intelligent-systems-by-2027-f063f0a50bee

HuggingGPT: Solving Al Tasks
with ChatGPT and its Friends in
Hugging Face

Yongliang Shen, Kaitao Song, Xu Tan, et al.
NeurlPS 2023

The HuggingGPT Concept

37/68

Core ldea

Use a Large Language Model (LLM) as an intelligent
controller to orchestrate and manage specialized Al
models from Hugging Face, combining their strengths
to solve complex tasks.

Key Insight

Instead of one model doing everything, let the LLM act
as "the brain" that understands tasks and delegates
work to expert models—each specialized in specific
domains like vision, audio, or text.

The Experts (Hugging Face Models)

I
/The Brain (LLM)

<>

Cr

Georgia
Tech.

How HuggingGPT Works

* The LLM analyzes the user's complex request (e.g., “make an image and
describe it”).

* It breaks the request down into a logical list of solvable sub-tasks (e.g., pose-
detection, pose-to-image, image-to-text, text-to-speech).

» The LLM consults the “model cards” (descriptions) on Hugging Face.
* It assigns the best expert model for each specific sub-task.

* The selected expert models are called and run their individual tasks.
» The results (e.g., an image file, text, or an audio file) are sent back to the LLM.

* The LLM collects and integrates all the results from the expert models.
* It generates a final, detailed, and human-like response for the user.

— /e e

38/68

Georgia
GI‘ Tech.

» Goes Beyond Text: Enables the LLM to "see," "hear," and "create" by using specialized models, solving
complex multi-modal tasks.

« Automatic Planning: Autonomously generates complex plans and coordinates multiple Al models to fulfill a
single, high-level user request.

« Combines Strengths: Leverages the LLM's powerful reasoning and planning abilities with the high-accuracy
performance of specialized "expert" models.

» Continuously Scalable: The system's capabilities can automatically grow and improve as new expert

models are added to the Hugging Face community.

Georgia
Tech

x '~ HuggingGPT LLM as Controller ~ HuggingFace
Can you describe this picture and count how r I Task ‘ [
many objects in the picture? Pl a‘s By
/ aning -

Prediction ~ facebook/
Tl == detr-resnet-101 l

; B 1I Model 7 - N
A text can describe the given image: a herd of . Selection P‘ [T Task Execution
giraffes and zebras grazing in a fields. In @ o o y,
addition, there are five detected objects as i

giraffe with score 99.9%, zebra with score 99.7%, zebra
with 99.9%, giraffe with score 97.1% and zebra with . ¥ nlpconnet/

score 99.2%. The bounding boxes are shown in the Prediction ... vit-gpt2-image-captioning
above image. | performed image classification, object

“ -
the predictions of ~ Generation |

detection and image caption on this image. Combining <
, = and ¥

models, | get the results for you.

Figure 1: Language serves as an interface for LLMs (e.g., ChatGPT) to connect numerous Al models
(e.g., those in Hugging Face) for solving complicated Al tasks. In this concept, an LLM acts as a
controller, managing and organizing the cooperation of expert models. The LLM first plans a list of
tasks based on the user request and then assigns expert models to each task. After the experts execute
the tasks, the LLM collects the results and responds to the user. G],"

Georgia

40/68
Tech.

Contribution

» The paper introduces a novel system, HuggingGPT, that leverages a Large Language Model
(LLM) as a central “brain” for planning and decision-making.

* The paper details a new protocol that enables the LLM to automatically invoke, coordinate,
and execute numerous expert models from the Hugging Face hub to solve specific sub-tasks.

* This system provides a new solution for tackling complex Al tasks that span multiple modalities
and domains (e.g., language, vision, speech, and cross-modality).

» The paper highlights the importance of task planning and model selection and formulates new
experimental evaluations to measure the capability of LLMs in these areas.

41/68

* The paper validates the system's potential through extensive experiments on challenging,
multi-step Al tasks, demonstrating a new path toward general Al solutions.

Cr

Georgia
Tech.

Branch 1: Unified End-to-End Multimodal Models
» Models like Flamingo, BLIP-2, and Kosmos-1 build a single, large system that directly combines vision

and language capabilities.

Branch 2: LLMs Integrated with Tools
» Models like Toolformer, Visual ChatGPT, and ViperGPT teach an LLM to use external tools or APls,

often by generating code to call them.

Georgia
Tech

 LLM as a "Controller,” not just a user: HuggingGPT uses the LLM to manage and route requests to many

different "expert" models, acting as a high-level planner.

» General and Flexible: It's not limited to specific tools. By reading model descriptions from Hugging Face, it

can plan tasks and use any expert model for any modality (vision, speech, etc.).

* Open and Scalable: New expert models from the Al community can be integrated easily just by adding their

description. This allows the system to continuously grow smarter without being rebuilt.

Georgia
Tech

Approach

Please generate an image where a girl is reading a book, and her pose is the same as the boy in the image L 4
example.jpg, then please describe the new image with your voice. (i B A\
\. I'e 2 J] ! a girl sitting on a bed '
| Request | | i)
(__"ed J | _readingabook
: g i ext-1] = <resource-5>
Stage #1: Task Planning Stage #2: Model Selection [Text-1] 5
m___ m__ L e R N ;
| task: pose-det. || task: image-class. || task:image-totext 1| | | task: pose-det. i /| In-context task-model assignment: ('« - | 3 CG)))
I args: |1 args: |1 args: b 1 @h " ! i Bl
! . . (. [l P ustvl/yolos-tiny 1 -
BT _'_"ﬂ_aff;f:t‘fliffe_gi D | | Query _}1 i facebook/detr-resnet-101 ‘ [Image-1] = example.jpg [Image-2] = <resource-1> [Audio-1]
— 1 | AP TahaDouaji/detr-doc-table-detecti I I e e e e e e e
mal__ ,,l‘ﬂ,, = task dependency /-1 i task: object-det. it QTaha m::: C:d: n:c = F; EEey i The image you gave me is of "boy". The first thing | did was use = to analyze the pose of the boy in the image. |
| task: pose-to-image :.II“J ,,,,, ‘& mmm———— fe)____ ¥ _____ 1K args: | ntusene | fed that image, specifically located at [Image-1], into the model to get an output image of the pose, located at [Image-2]. Then | take that
(AraE: L :: task: object-det. ! E task: text-to-speech | i [MEFBACETEE | . i pose and generate a new image, located at [Image-3], using = and the instruction "a girl is reading". Next, |
T "_“‘“"d'"g girl :: arks h args: ol remmm- ST b, | ran object detection on the image generated in the previous step, to get predictions of the objects present in the image, including the box
| image: <resource-1> 11 image: <resource-2> ;| _ text: <resource-5z ta_sf’_";“_aﬁe_"i'f’_"_ B a—l= (=1} i location. These predictions were run through the = model. The box was drawn on the image, which is located at
) [Image-4]. Then, | used the predictions of a image classification model = and a image caption model a
- = model to generate the caption for newly generated image. It generated text: "a girl sitting on a bed
q reading a book". Lastly, | ran the = model to convert the generated text into audio, located at [Audio-1].
- Stage #3: Task Execution Stage #4: Response Generation \
R fommmmmmmmmmmmmmmmee , iT1] pose-det, ‘[T‘”f"bjzc"'sz"t . Figure 2: Overview of HuggingGPT. With an LLM (e.g., ChatGPT) as the core controller and
] Hybrid Endpoints openpose acebook/detr-resne . .
1 taskargs,model |} _TVOTE “CPOR I Bounding boxes (image-2] [bounding box] the expert models as the executors, the workflow of HuggingGPT consists of four stages: 1) Task
””””””””” H ingF: End int i iliti
oy H o e reener200) L HT2) pose-to-image HT5] image-to-text planning: LLM parses the user request into a task list and determines the execution order and
| obj-det. <resource-2> ! -
IL,,’ ,,,,,,,,,,,, J_)i : bym/sd-ctl-pose :‘DC?””_E*"-}/V“-BNE resource dependencies among tasks; 2) Model selection: LLM assigns appropriate models to tasks
y facebook/detr-resnet-101,) P 73, [i':;gg‘:acllass - tis*lcﬂt:t::::;h based on the description of expert models on Hugging Face; 3) Task execution: Expert models on
_______________ I ocal Endpoin ~ . L
1 eask, args, model i E (facebook/detr-resnet-101) R el PR e hybrid endpoints execute the assigned tasks; 4) Response generation: LL.M integrates the inference
ecsscooascaas b [classes with prob] [audio-1] results of experts and generates a summary of workflow logs to respond to the user.
- e 7

Grr §3v

3.1 Task Planning

Method 1 Method 2

Specification-based Instruction Demonstration-based Parsing

The LLM is required to follow a strict template for its The prompt includes several examples (demonstrations).
output.

These examples pair user requests with their correct,
This JSON plan includes four main slots: final JSON task plans.

e the job to do

m a unique number This helps "teach" the LLM the correct logic and format.

m which tasks must finish first

Elery the inputs for the task

» Main Goal: To analyze a complex user request and break it down into a structured, step-by-step plan in JSON format.
» Key Feature: Dependencies: This plan determines the execution order and dependencies for each task (e.g., Task 2
can't start until Task 1, which creates a needed image, is finished).

« Supports Multi-Turn Chat: The system can also include the {{ Chat Logs }} in the prompt, allowing it to remember and

use resources (like images or text) from earlier in the conversation.

Cr

Georgia
Tech.

3.1 Task Planning

46/68

Task Planning

Prompt

#1 Task Planning Stage - The AI assistant performs task parsing on user input, generating a list
of tasks with the following format: [{"task": task, "id", task_id, "dep": dependency_task_ids,
"args": {"text": text, "image": URL, "audio": URL, "video": URL}}]. The "dep" field

denotes the id of the previous task which generates a new resource upon which the current task
relies. The tag "<resource>-task_id" represents the generated text, image, audio, or video from
the dependency task with the corresponding task_id. The task must be selected from the following
options: {{ Available Task List }}. Please note that there exists a logical connections and order
between the tasks. In case the user input cannot be parsed, an empty JSON response should be
provided. Here are several cases for your reference: {{ Demonstrations }}. To assist with task
planning, the chat history is available as {{ Chat Logs }}, where you can trace the user-mentioned
resources and incorporate them into the task planning stage.

Demonstrations

Can you tell me how many
objects in el.jpg?

In e2.jpg, what’s the animal
and what’s it doing?

First generate a HED image
of e3.jpg, then based on the
HED image and a text “a
girl reading a book”, create
anew image as a response.

[{"task": "object-detection”, "id": 0, "dep": [-1], "args": {"im
age": "el.jpg" }}

[{"task": "image-to-text", "id": 0, "dep":[-1], "args": {"im
age": "e2.jpg" }}, {"task":"image-cls", "id": 1, "dep": [-1],

"args": {"image": "e2.jpg" }}, {"task":"object-detection”, "id":

2, "dep": [-1], "args": {"image": "e2.jpg" }}, {"task": "vi-

sual-quesrion-answering", "id": 3, "dep":[-1], "args": {"text":

"what’s the animal doing?", "image": "e2.jpg" }}]

[{"task": "pose-detection”, "id": 0, "dep": [-1], "args": {"im
age": "e3.pg" }}, {"task": "pose-text-to-image", "id": 1, "dep":

[0], "args": {"text": "a girl reading a book", "image": "<re-

source>-0" }}]

Cr

Georgia
Tech.

Task Args Candidate Models Descriptions Audio Tasks
NLP Tasks [espnet/kan- [“his model was trained by kan-bayashi
. . “This is a RoBERTa-b del Text-to-Speech text bayashi_ljspeech_vits, ...] using ljspeech/tts] recipe in...”, ...]
Text-CLS text [cardiffnip. /mf.mer-mben:a- [s ano a-base mo . . [TalTechNLP/voxlingual07- [“This is a spoken language recognition
basg.senﬁmen{‘] trained on 58M tweets ... ,] Audio-CLS audio . »
“bert-b NER i i BERT epaca-tdnn, ...] model trained on the..”, ...]
Token-CLS text [dslim/bert-base-NER, ...] [“bert-base- B aﬁne-mi:e . [jonatasgrosman/wav2vec2- [“Fine-tuned XLSR-53 large model for
model that is ready to...”, ...] ASR audio . T . I
« iready know T5. F 5 large-xlsr-53-english, ...] speech recognition in English ..", ...]
Text2text-Generation text [google/flan-t5-xl, ...] 1 you atready know -9, FLIAN-0I 1S Audio-to-Audio . [speechbrain/metricgan- [“MetricGAN-trained model for
Jjust better at everything..”, ...] audio . . »
; . plus-voicebank, ...] Enhancement...”, ...]
S zati text bart-1) [“BART model pre-trained on English
ummanzation X [bart-large-cnn, ...] language, and fine-tuned..”, ...] Video Tasks
. [“With TS5, we propose reframing all . , wp : ;
Translation text [t5-base, ...] NLP tasks into a unified..., .. Text-to-Video text [damo-vilab/text-to-video- [“his model is based on a mu,{(t-stage
d b b “Th he rob b el ms-1.7b, ...] text-to-video generation..”, ...]
. . rta-base- ‘This is the roberta-base mo . « .
Question-Answering text eepsel/rone . - . [MCG-NJU/videomae- [“VideoMAE model pre-trained on
, -:qu:AdZ/, | ! ﬁ[m;mnef us:t;' Ihe SQW;D;.O... s eee] Video-CLS video base, ... Kinetics-400 for 1600 epochs..”, ...]
. PygmalionAl/pygmalion- “ ymalion 15 a proof-of-concept - - -
Conversation text . dialogue model based on..”, ...] Table 13: The task list used in HuggingGPT. The first and second columns are the name and arguments
Text-Generation text lgp2, ...] [“Pretrained model on English .., ...] of the corresponding task. The third and fourth columns provide some examples of the candidate
« . . ; dels and their model descriptions
[“Automatic detection of blast cells in mo p :
Tabular-CLS text [matth/flowformer, ...] ALL data using transformers...”, ...]
CV Tasks
. [nlpconnect/vit-gpr2-image- [“This is an image captioning model
Tmage-to-Text image captioning, ...] trained by @ydshieh in flax...”, ...]
. [runwayml/stable-diffusion- [“Stable Diffusion is a latent
Text-to-Image !mage vi-5, ..] text-to-image diffusion model...”, ...]
. |dandelin/vilt-b32- [“Vision-and-Language Transformer
VoA text + image finetuned-vqa, ...] (VILT) model fine-tuned on..."”, ...]
. . [facebook/detr-resnet-50- [“DEtection TRansformer (DETR)
Segmentation mage panoptic, ...] model trained end-to-end on ..”, ...]
. [impira/layoutlm- [“This is a fine-tuned version of the
DQA text + image document-qa, ...] multi-modal LayoutLM model ..., ...]
Image-CLS image [microsoft/resnet-50, ...] [“ResNet model pre-trained on...”, ...]
. . [radames/stable-diffusion- [“Stable Diffusion is a latent
Image-to-image 1mage vi-5-img2img, ...] text-to-image diffusion model...”, ...]
. . . [facebook/detr-resnet-50, [“DEtection TRansformer (DETR)
Object-Detection image] model trained end-to-end on ...”, ...]
ControlNet-SD image [Hlyasviel/sd-controlnet- [“ControlNet is a neural network
8 canny, ...] structure to control diffusion...”, ...]
47/68

Georgia
Gl" Tech.

3.2 Model Selection

* Main Goal: For each task in the plan, select the most appropriate expert model from the thousands available on Hugging Face.

» Core Challenge: An LLM's prompt has a limited context length (token limit), so it's impossible to show all available models at

once.

* Final Choice: The descriptions of only these Top-K models are put into the prompt. The LLM then reads these descriptions and

makes the final choice for the task.

Y’ 1.Filter by Task

The system first filters the entire Hugging Face hub, keeping only

the models that match the required task (e.g., 'image-to-
text').

N
~M 2.Rank & Select

It then ranks these filtered models by their total number of
downloads and selects the 'Top-K' (e.g., the top 10) most popular
ones.

Cr

Georgia
Tech.

3.2 Model Selection

49/68

Model Selection

Prompt

#2 Model Selection Stage - Given the user request and the call command, the Al assistant helps the
user to select a suitable model from a list of models to process the user request. The Al assistant
merely outputs the model id of the most appropriate model. The output must be in a strict JSON
format: {"id": "id", "reason": "your detail reason for the choice"}. We have a list of models for
you to choose from {{ Candidate Models }}. Please select one model from the list.

Candidate Models

{"model_id": model 1d #1, "metadata”: meta-info #1, "description”: description of model #1 }
{"model_id": model id #2, "metadata": meta-info #2, "description": description of model #2}

{"model_id": model id #K, "metadata": meta-info #K, "description": description of model #K }

Cr

Georgia
Tech.

3.3 Task Execution

The "Placeholder" Solution

The plan uses a placeholder symbol for the input, like "

<resource>-1", to show it depends on the output of task 1. % Tasks with no dependencies are run in parallel (at the same

time) to improve efficiency.

J
(® 2.During Execution

The system dynamically replaces this placeholder with the actual

‘b The system uses a hybrid endpoint (a mix of local and
public models) for better speed and stability.

resource (e.g., the file path of the new image) generated by task 1.

» Main Goal: To run the chosen expert models with the correct inputs and handle the flow of data between dependent tasks.
* Key Challenge: Resource Dependencies

50/68 * Atask often needs the output from a previous task (e.g., an image generated by task 1 is needed for task 2). Gr %ggi’lgia

3.4 Response Generation

FINAL PROMPT CONTAINS:

s N\ e ™

The user's original request The full JSON task plan the LLM created
\ v \ J
' A s ™
The list of models it selected for each task The structured inference results (e.g., bounding boxes,
generated text) from all the executed models

» Main Goal: To synthesize the outputs from all the executed expert models into a single, coherent, natural language response for the
user.

* Method: Comprehensive Context Prompting - The LLM is called one final time with a complete summary of the entire process.

* The LLM's Job: To interpret and summarize all these results in a way that directly and thoughtfully answers the user's initial question,

not just list the data.

Grr §37

3.4 Response Generation

Prompt

#4 Response Generation Stage - With the input and the inference results, the Al assistant needs to
describe the process and results. The previous stages can be formed as - User Input: {{ User Input
} }, Task Planning: {{ Tasks }}, Model Selection: {{ Model Assignment }}, Task Execution: {{
Predictions }}. You must first answer the user’s request in a straightforward manner. Then describe
the task process and show your analysis and model inference results to the user in the first person.
If inference results contain a file path, must tell the user the complete file path. If there is nothing in
the results, please tell me you can’t make it.

Response Generation

Table 1: The details of the prompt design in HuggingGPT. In the prompts, we set some injectable
slots such as {{ Demonstrations }} and {{ Candidate Models }}. These slots are uniformly replaced
with the corresponding text before being fed into the LLM.

Grr §37

4. Experiments

£§3 Test Setup @ Qualitative Results (How it Performed)

{©} LLM Controllers Tested a

gpt-3.5-turbo text-davinci-003 m

€3 LLM Settings (for Reliability)

temperature=0

Makes the LLM's output more stable and predictable.

logit_bias=0.2

Increases the probability of outputting "{" and }"}",
ensuring it generates the required JSON format.

53/68

& DESCRIBE & COUNT

Correctly planned 3 tasks (image classification,
captioning, object detection) and used 3
different models.

&’ COMPLEX DEPENDENCIES

For a complex "pose-to-image-to-speech"
request, it correctly planned 6 tasks and, most
importantly, handled the dependencies (e.g.,
text-to-image task waited for the pose-
detection task to finish).

© EMERGENT PROBLEM-SOLVING

For a simple request like "Describe this image
in detail," the system autonomously planned
and executed 5 different tasks (captioning,
classification, detection, etc.) and combined all
the results into one detailed paragraph.

Cr

Georgia
Tech.

54/68

Task Planning:
1 1: {'task': 'pose-detection’, 'id": 0, 'dep': [-1], 'args": {'image":
iexamplel.jpg‘}}

KZ (’task': 'image-to-text', 'id": 1, 'dep': [-1], 'args":
i{'image‘: 'example2.jpg'}}

3. {"task": "pose-text-to-image", "id": 2, "dep": [0, 1], "args":
{"text":"<resource>-1", "image": "<resource>-0"}}

<resource>-0

<resource>-1

Query: based on the pose image of examplel.jpg and the description of example2.jpg, please generate
a new one.

o

Response: Based on the pose image of "y examplel.jpg and the description of 'y example2.jpg, | have
generated a new image | ! s5f8.ipg for you. The process of generating this image involved using the

model to extract the pose information from the basketball image, and then using the
to generate a description of the boy in the image. Finally, | used

the =~ model to combine the pose information and the description to
generate the final image. The complete path of the generated image is | I s5f&.jpg. If you have any other
questions, please let me know.

Execution Results:

lllyasviel/
sd-controlnet-

g openpose
a young boy is

riding a bike with a basket

Figure 9: Qualitative analysis of multi-model cooperation with resource dependency.

Query: generate a video with the title "An astronaut is walking in space"” and dub it.

1
1

1

1

: Response: Sure. | have generated a video with the title 'An astronaut is walking in space' and dubbed it.

1 The workflow | used is as follows: First, | used the text-to-video model ' =

: 'to generate a video from the text. The inference result is the generated video' :] Jvideos/5696.mp4'.
I Second, | used the text-to-speech model ' = ' to generate an audio

: from the text. The inference result is the generated audio ' h Jaudios/3f9e.flac ". Finally, | combined the

: video and audio to generate the dubbed video. | hope this answers your question. Is there anything else | can
1 help you with?
1
1
1
1
1
1
1
1
1
1
1
1
1

! Task Planning:

1 1:{"task": "text-to-video", "id": 0, "dep": [-1], "args": {"text": "An astronaut is walking in space" }

: 2: {"task": "text-to-speech", "id": 1, "dep": [-1], "args": {"text": "An astronaut is walking in space" }}
1

: Execution Results:

1 1. {"generated video": "/videos/5696.mp4"} 2. {"generated audio": "/audios/3f9e.flac"}

Query: read the image example.jpg for me. INVOICE NO : 18301/102/T70305

,
1
1
1
1
Response: Sure. | have read the image example.jpg for you. The inference result is 'INVOICE NO : :
18301/102/T0305'. The model used for this task is * , which is best suited for :
the task of image-to-text as it is fine-tuned on the SROIE dataset which is specifically designed for this task. |
Then | have converted the text to audio, the generated audio is ﬁ Jaudios/da5s.wav CG») :
and the model used for this taskis = , which is a FastSpeech 2 text-to- |
speech model which is suitable for the task of text-to-speech. Is there anything else | can help you with? :

Task Planning:
1: {"task": "image-to-text", "id": 0, "dep": [-1], "args™: {"image": "example.jpg"}}
2: {"task": "text-to-speech", "id": 1, "dep": [0], "args": {"text": "<resource-0>"}

Execution Results:
1. {"generated text": "INVOICE NO : 18301/102/T0305"} 2. {"generated audio": "/audios/da5s.wav"}

Figure 10: Qualitative analysis of multi-model cooperation on video and audio modalities.

Cr

Georgia
Tech.

Quantitative Evaluation

B 1. Created a Dataset

Built a new dataset of user requests.

L% 2. Classified Task Complexity

Requests were grouped into three sub-types:

SINGLE TASK SEQUENTIAL TASK GRAPH TASK

One simple request (e.g., A multi-step request where A complex request with
"classify this image"). order matters. multiple dependencies.

Main Goal: To scientifically measure the Task Planning capability of different LLMs when acting as the system’s “brain.”

Used Smart Metrics: For complex "Graph Tasks," a simple score isn't enough (multiple plans can be correct). So, they created

Georgia

Tech.

a "GPT-4 Score" by using GPT-4 itself as a "judge" to score the quality of a plan.
55/68 Gr

Quantitative Evaluation

Task Type Diagram Example Metrics
Single Task Show me a :'I;I;Itly image of Precjsfcn(; uI::g;H’ F1,
. Replace the cat with a dog Precision, Recall, F1
Sequentla] Task [Task 1 H Task 2]—{ Task 3] in cxample.jpg e%glli(:rf)istz;ce
Given a collection of image
A: ajpg, B: b.jpg, C: c.jpg, : ok
Graph Task please tell me which image Precg;%ﬁ%ig?; -
is more like image B in
terms of semantic, A or C?
LLM Acct Pret Recallt F11 LLM ED| PreT RecalT FI17
Alpaca-7b 6.48 35.60 6.64 4.88 Alpaca-7b 0.83 22.27 23.35 22.30
Vicuna-7b 23.86 4551 26.51 29 .44 Vicuna-7b 0.80 19.15 28.45 22.89
GPT-3.5 5262 62.12 52.62 54.45 GPT-3.5 0.54 61.09 45.15 51.92

Table 3: Evaluation for the single task. “Acc”
and “Pre” represents Accuracy and Precision.

56/68

Table 4: Evaluation for the sequential task. “ED”

means Edit Distance.

Cr

Georgia
Tech.

The Core Finding: The "Brain" is the Bottleneck

» The capability of the central LLM controller is the single most important factor for success.

» Massive Performance Gap: On complex Graph Tasks, GPT-3.5 (F1 score: 51.9) dramatically outperformed

open-source models like Vicuna-7b (F1 score: 18.7).

* Room to Grow: On a high-quality, human-annotated dataset, even GPT-4 showed a "substantial gap" from a

perfect score, proving that improving the LLM's planning ability is a key area for future research.

LLM GPT-4 Scoret Pret Recallt F17 LLM Sequential Task Graph Task
Alpaca-7b 13.14 16.18 2833 20.59 Acct EDJ Acct F11
Vicuna-7b 19.17 13.97 28.08 18.66 Alpaca-7b 0 0.96 4.17 4.17
GPT-3.5 50.48 5490 4923 5191 Viewna-7b - 7.45 089 1012 7.84
' ' : : : GPT-3.5 18.18 076 20.83 1645
Table 5: Evaluation for the graph task. GPT-4 4136 0.61 5833 49.28

Georgia
Tech

» The authors tested if adding more examples (few-shot demonstrations) to the prompt could improve the

"brain's" planning performance.
* Finding 1 (Number): Performance improves with 1-4 examples but then quickly plateaus.
 Finding 2 (Variety): Increasing the variety of task types in the examples moderately improves performance.

» Conclusion: This shows that simply adding more examples cannot overcome the core reasoning limitations

of a less-capable LLM. The "brain's" inherent power is what matters most.

Single Task Sequential Task Graph Task
70—
— 70_
2 60- 607
qd 60
& 50 | 50
Metric 50 Metric
E Accuracy ED LLM
© 404 Fl-score Fl-score 40 GPT-3.5
E LLM 4D- LLM GPT-4
o 30+ —8— GPT-3.5 -8 GPT-3.5 Metric
—#— GPT-4 30 —#— GPT-4 304 —8— Fl-score
T T T T T T T T T T T T T T T T T T
0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5
Number of Shots Number of Shots Number of Shots

_ _) . _ _ Georgia
Figure 3: Evaluation of task planning with different numbers of demonstrations. Tech

Human Evaluation

2 TEST () METRICS

Human experts evaluated the Passing Rate, Rationality, and

entire system's performance on Success Rate.
130 diverse requests.

Main Finding: The Bottleneck Effect

Task Planning

91.22%

Highly Successful Pass Rate

/\ But... Failures in Later Stages
(like Model Selection or Task Execution)
Final End-to-End Success Rate

63.08%

W Significant Drop

€P COMPARISON

GPT-3.5 significantly
outperformed open-source LLMs
(like Alpaca-13b and Vicuna-13b)
across all stages.

Sequential Task Graph Task
AcctT ED| Acc 1 F11

Alpaca-7b 0 0.96 4.17 4.17
Vicuna-7b 7.45 0.89 10.12 7.84
GPT-3.5 18.18 0.76 20.83 16.45
GPT-4 41.36 0.61 58.33 49.28

Table 6: Evaluation on the human-annotated dataset.

LLM

LLM Task Planning Model Selection Response
Passing Rate T Rationality T Passing Rate t Rationality T Success Ratet
Alpaca-13b 51.04 32.17 - - 6.92
Vicuna-13b 7941 5841 - - 15.64
GPT-3.5 91.22 78.47 93.89 84.29 63.08

Table 8: Human Evaluation on different LLMs. We report two metrics, passing rate (%) and rationality
(%), in the task planning and model selection stages and report a straightforward success rate (%) to
evaluate whether the request raised by the user is finally resolved.

* This proves that while planning is a major hurdle, a powerful LLM is critical for every stage of the process. GI' %ggfgm

NLP > Named Entity Recognition

Query: please recognize named entities in the sentence ["

that is to end the state of hostility , " Thursday's overseas
edition of the People's Daily quoted Tang as saying.]

Response: | have recognized named entities in the sentence
'that is to end the state of hostility , ' Thursday's overseas
edition of the People's Daily quoted Tang as saying.'. The
entities recognized are 'People's Daily' and 'Tang'. Both of
them are organizations and people respectively. The model |
usedis' ¥ ', which is a fine-tuned BERT
model that is ready to recognize named entities in the
sentence. The inference results are very accurate, with a score
of 0.9992 for 'People's Daily' and 0.998 for "Tang'.

NLP > Text Generation

Query: please complete a sentence [COVID-19 is transmitted
via droplets, air-borne, |

Response: | have completed the sentence, the result is
'COVID-19 is transmitted via droplets, air-borne, and contact
routes'. | useda ~ model, a domain-
specific generative Transformer language model pre-trained on
large-scale biomedical literature.

60/68

CV > Depth Estimate

Query: please estimate the depth of ks4j.jpg

Response: | have estimated the depth of the image located at

examples/ks4j.jpg using the *

model. This

model is specifically trained on 1.4 million images and is a
Dense Prediction Transformer (DPT) model. The generated

depth image can be found at '

ja5s.jpg'.

CV > Document Question Answering

Query: look at the document doc.jpg, what is the purchase amount?

Response: Sure. | have used ~ model to analyze the
document | doc.ipg you provided. After the analysis, | have found that the purchase
amount is $1,000,000,000. As for the workflow, | have used a deep learning model to
analyze the document and extract the purchase amount. The model | used is a
convolutional neural network, which is trained on a large dataset of documents. The
inference results are the purchase amount of $1,000,000,000. If you need more
information, please let me know.

CV > Image to Image
Query: give me a similar image with example.|pg

Sure. For your request, | used the model ~
to generate an image from the image you provided. The generated image is located at

. /images/5373.jpg. If there is nothing in the results, | will tell you that | can't make it.

Is there anything else | can help you with?

Video > Generation

Query: please generate a video based on "Spiderman is surfing"

Response: Sure, | can do that. | have generated a video based on your prompt "Spiderman is surfing". The
video is saved at the following path: " [videos/4076.mp4". 1. Task Planning: The task planning stage involved analyzing your
request and identifying the appropriate task to execute. In this case, the task was "text-to-video". 2. Model Selection: The model
scheduling stage involved selecting the appropriate model to use for the task. In this case, the only available model was ~

. 3. Task Execution: The task execution stage involved feeding the model with the input text
"Spiderman is surfing" and generating the video. The inference result was a generated video saved at the path
4076.mp4". | hope this response meets your requirements.

Audio > Generation

Query: please read the sentence "Hi there, | am ChatGPT empowered by Huggingface family! Yes, | can provide more than one
thousand models for dozens of tasks. For more fun and creativity, | have invited Diffusers family to join our team. Feel free to

experience it!" for me.

Response: Sure, | can do that. For your request, | used the ~

file from the text you provided. The generated audio file is located at ' b /audios/d5f3.wav CG)))
was chosen because it is the best choice for the task of text-to-speech as it is a FastSpeech 2 model which is specifically designed
for text-to-speech tasks. It is also the most recent model in the list and has the most potential to provide the best results. | hope

this answers your question. Is there anything else | can help you with?

" [videos/

model to generate an audio
'. The model

Query #1:Please generate a canny image based on example.jpg

Response #1: | have generated a canny image for you based

on the image located at example.jpg. The task process involved

selecting the ~ model for image processing, as it

covers common image processing functions. The inference

results include a generated image, which can be found at
images/df8t.jpg.

Task Planning #1:

1: {"task": "image-to-text", "id": 0, dep: [-1], "args": {"image":
"example.jpg"}}

2: {"task": "control-canny", "id": 0, dep: [-1], "args": {"image":
"example.jpg"}}

Execution Results #1:
1. {"generated text": "a herd of giraffes and zebras grazing in a
field"}

2. {"generated image": "images/df8t.jpg"}

Query #2: then based on the above canny image and a prompt
"a photo of a zoo", generate a new image.

Response #2: | have received your request to generate a
canny image of a photo of a zoo. | have selected the model

L as it is the best model for this
task. | have processed the image and generated a new image
located at _ images/ja2f.jpg. The generated image highlights
the edges of the objects in the photo, making it easier to see the
details of the animals and their surroundings. Overall, the task
was to convert a text prompt 'a photo of a zoo' into a canny
image using the selected model.

Task Planning #2:
1: {"task": "canny-text-to-image", "id": 0, dep: [-1], "args":

{"text":"a photo of a zoo", "image": "example.jpg"}}

Execution Results #2:

1. {"generated image": "images/ja2f.jpg"}

61/68

Query #3: please detect objects in the above image

Response #3:
Sure, here is the result of your command. | hava successfully
detected objects in the image you provided. The detected
objects are giraffes and zebras. | used the ~

model for object detection, which is specifically
designed for object detection tasks and has a ResNet-101
backbone, which is a powerful feature extractor. Additionally,
the DETR architecture used in this model is an end-to-end object
detection model that has shown promising results in various
benchmarks. | have generated an image with predicted boxes
around the detected objects. You can find the generated image
at the following path: | " images/dif2.jpg. The predicted objects
and their corresponding scores are as follows: - Giraffe with a
score of 0.999- Zebra with a score of 0.998- Zebra with a score
of 0.998- Giraffe with a score of 0.969- Zebra with a score of
0.997. | hope this information is helpful to you.

Task Planning #3:

1: {'task': 'object-detection', 'id": 0, 'dep':
[-1], 'args': {'image': 'images/ja2f.png'}}

Execution Results #3:

1. {'generated image with predicted box'":
'fimages/dif2.jpg', 'predicted": [{'box':
{'xmax': 760, 'xmin': 515, 'ymax': 437,
'ymin': 136}, 'label': 'giraffe', 'score':
0.9992127418518066}, {'box': {’xmax":
561, 'xmin': 510, 'ymax': 447, 'ymin': 357},

'label': 'zebra', 'score":

0.9983904361724854}, {'box': {’xmax":
324, 'xmin': 178, 'ymax': 446, 'ymin': 336},

'label': 'zebra', 'score":

0.9986028075218201}, {'box': {’xmax":
297, 'xmin'": 4, 'ymax': 372, 'ymin': 213},

'label': 'giraffe’, 'score':
0.9694724082946777}]}

Cr

Georgia
Tech.

Query: Describe this image example.jpg in as much
detail as possible.

Response: The image you provided appears to
show a family of four dogs playing in the grass. For
this task, | ran multiple CV tasks, including image-to-
text, image-classification, object-detection, visual-
question-answering, and document-question-
answering. | chose specific models for each task that
were best suited to addressing your query, based on
their training and performance characteristics.

For image-to-text, | chose the =
model. This model generates

an image caption with the given image. | applied this
model to the input image and the developed output
was: a family of four dogs are playing in the grass
For image-classification, | selected the

model. This model is trained on
natural images dataset and it can predict the label of
the image output. | applied this model to the image
and get the results showing the risk of each label. It
shows the highest risk at "Rhodesian ridgeback" with
a score of 93.8%
For object-detection, | used *

. This model is trained on COCO
panoptic segmentation for object detection. | used
this model to generate an image file with the
predicted box. The generated image with predicted
box is at: Jimages/sd48.jpg
Regarding your request for image segmentation, |
have completed the task using a pre-trained model
called = .The
segmentation mask shows the different regions of
the image that belong to different classes. In this
case, the model has identified two main classes in the
image, which are "dog", "grass" and "tree". The
generated image with the segmentation mask can be
found at [/images/tdsl.jpg
For visual question answering, | used *~

model. This model is a Vision-
and-Language Transformer (ViLT) model, which is
fine-tuned on VQAV2. It is suitable for visual-
question-answering tasks, and is likely to provide
accurate results for the given image. For the question
"what are in the image?" It reply with a prediction
"dogs" and the confidence is 84.9%.

Task Planning:

1. {"id": "0", "dep": [-1], "task": "image-to-text",
"args": {"image": "example.jpg" }},

2. {"id": "1", "dep": [-1], "task": "image-classification",
"args": {"image": "example.jpg" }},

3. {"id": "2", "dep": [-1], "task": "object-detection",
"args": {"image": "example.jpg" }},

4, {"id": "3", "dep": [-1], "task": "image-
segmentation"”, "args": {"image": "example.jpg" }},
5. {"id": "4", "dep": [-1], "task": "visual-question-
answering", "args": {"text": "describe this image in

detail", "image": "example.jpg" }},

Execution Results:

1. {"generated_text": "a family of four dogs are
playing in the grass "}

2. [{'score': 0.938717246055603, 'label': 'Rhodesian
ridgeback'}, {'score': 0.01652258075773716, 'label':
'boxer'}, {'score': 0.006381669547408819, 'label':
'Great Dane'}, {'score': 0.006234415341168642,
'label': 'vizsla, Hungarian pointer'}, {'score":
0.005944834090769291, 'label': 'bull mastiff'}]

3. [{"generated image with predicted box": "/images/
sd48.jpg","predicted": [{"box":{"xmax": 463, "xmin":
373, "ymax": 267, "ymin": 199}, "label": "bus",
"score": 0.9981155395507812}, {"box": {"xmax": 292,
"xmin": 124, "ymax": 224, "ymin": 175}, "label":
"airplane", "score": 0.9983609318733215}, {"box":
{"xmax": 554, "xmin": 487, "ymax": 277, "ymin": 226},
"label": "person", "score": 0.9910836219787598}]}

4. {"generated image with segmentation": "/images/
t4sl.jpg", "predicted": [{"score": 0.989, "label":
"grass"}, {"score": 0.999, "label": "dog"}, {"'score":
0.999, "label": "tree"},{"score": 0.999, "label": "dog"}]
5. [{'answer': 'dogs', 'score': 0.8488452434539795},
{'answer': 'dog', 'score': 0.04168461635708809}]

Georgia
Gl" Tech.

Extreme Extensibility and Scalability: The system is not limited to a fixed set of capabilities. You can add a new
state-of-the-art model for any task (e.g., a new 3D generation model) simply by making its description available. It can

theoretically grow and improve every day as the community adds new models to Hugging Face.

Optimal Tool Usage: Instead of relying on a single, generalist multi-modal model, HuggingGPT can always select
the absolute best, most specialized, state-of-the-art model for a specific sub-task, leading to potentially higher quality

results.

Separation of Concerns: The architecture cleanly separates general reasoning (the LLM’s job) from specialized
execution (the expert models’ job). This is a powerful and flexible engineering paradigm that can be adapted for many

domains beyond just Al models (e.g., using web APIls, databases, or scientific instruments as tools).

Complex Task Decomposition: The system shows a remarkable emergent ability to break down vague, complex
human requests into a logical sequence of concrete, machine-executable steps. This planning capability is a
significant step towards more autonomous Al.

Georgia
Tech

* The "Brain" as a Central Bottleneck
* The system's performance is strictly capped by the planning and reasoning capability of the LLM
controller. As the quantitative results showed, even GPT-4 is not a perfect planner.

- Efficiency & High Latency
» The system is slow. It requires multiple sequential interactions with the LLM (for planning, selection, and
generation), which adds significant time costs (latency) to every request.

* Token Length Limits
* The LLM's limited context window (max tokens) makes it impossible to review all available models. This
forces the system to use imperfect shortcuts, like only considering the "top-K downloaded" models.

* Instability & Brittleness
» The workflow is a "fragile chain." Because LLMs can be uncontrollable and fail to follow instructions
perfectly, a single malformed output or error at any stage can cause the entire process to fail.

Georgia
Tech

* The HuggingGPT system is proposed to solve complex Al tasks by using language as a universal interface.
* It proves a new concept: An LLM can act as a "controller" or "brain" to manage and orchestrate specialized
expert models from ML communities like Hugging Face.

 The LLM's reasoning is key: It allows the system to dissect user intent, decompose tasks, assign the best
model, and integrate the final results into a single answer.

* This approach paves a new pathway toward AGI by successfully leveraging the collective power of the

entire machine learning community.

Georgia
Tech

How can we build Artificial General Intelligence:
* Path A: The Polymath

» Do we build a single, massive, end-to-end model that tries to learn every skill (e.g., Kosmos, LLaVA)?
* Path B: The Architect

» Do we build a generalist reasoning “brain” that delegates tasks to an ever-growing ecosystem of

specialist tools (e.g., HuggingGPT, Toolformer)?

Georgia
Tech

These early works led to today's LLM Agents and Tool Use, evolving in three main directions:
1. Native Tool Use (Function Calling)
« What: Models (like Gemini) are trained to call specific functions (e.g., get_weather()).
Why: More robust, reliable, and integrated.
2. Autonomous Agent Frameworks (e.g., LangChain)
« What: The "controller" idea in a continuous loop. Agents plan, act, reflect, and re-plan to achieve complex goals
(e.g., "Write a research report").
3. Natively Multi-Modal Models (e.g., Gemini)
 What: The LLM becomes the expert (it can "see" and "hear" directly), reducing the need for many external models.
The Future: Convergence The most powerful systems (like Gemini Advanced) combine all three: multi-modal input, native

tools, and an agentic loop.

Georgia
Tech

The Quality Proxy: The system ranks candidate models by their number of downloads on Hugging
Face. What are the potential risks of using "popularity" as a proxy for "quality" and "suitability" in model
selection?

The Future of LLM Training: This paper uses a pre-trained, text-only LLM. If you were to train a new
LLM from scratch specifically for this "coordinator” role, what kind of data would you train it on to make it
a better planner and tool user?

Beyond Al Models: This framework uses Hugging Face models as its tools. What other "toolsets" could
you plug into this architecture? What would a "TravelAgentGPT" that uses APIs from Expedia, Kayak,
and Uber look like? Or a "ScientistGPT" connected to computational chemistry tools?

Is This "Real” Reasoning?: Is HuggingGPT demonstrating true problem-solving, or is it a very clever
feat of prompt engineering that creates a powerful illusion of understanding by stitching together tools it

doesn't truly comprehend? Where do you draw the line?

Georgia
Tech

	Slide 1: ViperGPT: Visual Inference via Python Execution for Reasoning Dídac Surís*, Sachit Menon*, Carl Vondrick ICCV 2023
	Slide 2: Outline
	Slide 3: Background: Neuro-symbolic reasoning
	Slide 4: Background: Neuro-symbolic reasoning
	Slide 5: Problem Statement
	Slide 6: Problem Statement
	Slide 7: Problem Statement
	Slide 8: Problem Statement
	Slide 9: Problem Statement
	Slide 10: Problem Statement
	Slide 11: Contribution
	Slide 12: Related Works
	Slide 13: Related Works
	Slide 14: Related Works
	Slide 15: Related Works
	Slide 16: Related Works
	Slide 17: Approach
	Slide 18: Approach
	Slide 19: Approach
	Slide 20: Approach
	Slide 21: Approach
	Slide 22: Approach
	Slide 23: Approach
	Slide 24: Approach
	Slide 25: Experiments
	Slide 26: Experiments and Results
	Slide 27: Experiments and Results
	Slide 28: Experiments and Results
	Slide 29: Experiments and Results
	Slide 30: Discussion
	Slide 31: More results
	Slide 32: Limitations & Societal Implications
	Slide 33: Summary of Strengths, Weaknesses, Relationships
	Slide 34: Summary of Strengths, Weaknesses, Relationships
	Slide 35: Neuro-symbolic reasoning: ViperGPT vs. HuggingGPT
	Slide 36: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face Yongliang Shen, Kaitao Song, Xu Tan, et al. NeurIPS 2023
	Slide 37: The HuggingGPT Concept
	Slide 38: How HuggingGPT Works
	Slide 39: Key Capabilites & Impact
	Slide 40
	Slide 41: Contribution
	Slide 42: Related Work
	Slide 43: How HuggingGPT is Different
	Slide 44: Approach
	Slide 45: 3.1 Task Planning
	Slide 46: 3.1 Task Planning
	Slide 47
	Slide 48: 3.2 Model Selection
	Slide 49: 3.2 Model Selection
	Slide 50: 3.3 Task Execution
	Slide 51: 3.4 Response Generation
	Slide 52: 3.4 Response Generation
	Slide 53: 4. Experiments
	Slide 54
	Slide 55: Quantitative Evaluation
	Slide 56: Quantitative Evaluation
	Slide 57: Quantitative Evaluation
	Slide 58: Ablation Study
	Slide 59: Human Evaluation
	Slide 60
	Slide 61
	Slide 62
	Slide 63: Strengths
	Slide 64: Limitations
	Slide 65: Conclusion
	Slide 66: Conclusion
	Slide 67: How this work is going
	Slide 68: Discussion

