
ViperGPT: Visual Inference via

Python Execution for Reasoning
Dídac Surís*, Sachit Menon*, Carl Vondrick

ICCV 2023

Presented by: Seulgi Kim, Hyunjeong Kim

• Problem Statement

• Related Works

• Approach

• Experiments & Results

• Limitations, Societal Implications

• Summary of Strengths, Weaknesses, Relationship to Other Papers

Outline

2/68

Background: Neuro-symbolic reasoning

3

Video from: https://www.youtube.com/watch?v=HhymId8dr5Q&t=64s

/68

Background: Neuro-symbolic reasoning

Figure from: https://generativeai.pub/neurosymbolic-ai-why-this-hybrid-tech-may-dominate-intelligent-systems-by-2027-f063f0a50bee

Neuro-symbolic reasoning is a composition of
pattern recognition (neural networks) + analytic thinking (symbolic AI).

4/68

Problem Statement

1. Recognize muffins

2. Recognize Kids

3. Count visible objects

⊳ What does “fair” mean?

4. Reasoning

5. Mathematical Operation

Figure from: Surís, D., Menon, S., & Vondrick, C. (2023). Vipergpt: Visual inference via python execution for reasoning. In Proceedings of the IEEE/CVF international conference on computer vision (pp. 11888-11898).

Task: Answering visual queries

5/68

Problem Statement

1. Recognize muffins

2. Recognize Kids

3. Count visible objects

⊳ What does “fair” mean?

4. Reasoning

5. Mathematical Operation

Existing methods approach this tasks with end-to-end training.

End-to-end model (ex. VLM)

:Not interpretable

Tons of Dataset

Ground Truth

Figure from: Surís, D., Menon, S., & Vondrick, C. (2023). Vipergpt: Visual inference via python execution for reasoning. In Proceedings of the IEEE/CVF international conference on computer vision (pp. 11888-11898).

6/68

Problem Statement

3. Count visible objects

5. Mathematical Operation

In existing methods, language models need to solve mathematical operations.

Computers

can do this

easily!

1. Recognize muffins

2. Recognize Kids

⊳ What does “fair” mean?

4. Reasoning

Tons of Dataset

Ground Truth

End-to-end model (ex. VLM)

:Not interpretable

Figure from: Surís, D., Menon, S., & Vondrick, C. (2023). Vipergpt: Visual inference via python execution for reasoning. In Proceedings of the IEEE/CVF international conference on computer vision (pp. 11888-11898).

7/68

Problem Statement

Language model

Vision model

Computer

Pattern recognition

Mathematical operations

Abstracting problems

+ Analytical reasoning

Figure from: Surís, D., Menon, S., & Vondrick, C. (2023). Vipergpt: Visual inference via python execution for reasoning. In Proceedings of the IEEE/CVF international conference on computer vision (pp. 11888-11898).

• Language model excels at analytical reasoning

• Computer excels at mathematical operations

8/68

Problem Statement

1. Recognize muffins

Figure from: Surís, D., Menon, S., & Vondrick, C. (2023). Vipergpt: Visual inference via python execution for reasoning. In Proceedings of the IEEE/CVF international conference on computer vision (pp. 11888-11898).

Language model Vision model

Computer

2. Recognize Kids

3. Count visible objects

4. Reasoning

5. Mathematical Operation

Proposed method: compositional approach

Pattern recognition

Mathematical operations

Abstracting problems

+ Analytical reasoning

Step-by-step thinking

9/68

Problem Statement
Proposed method: compositional approach

Figure from: Surís, D., Menon, S., & Vondrick, C. (2023). Vipergpt: Visual inference via python execution for reasoning. In Proceedings of the IEEE/CVF international conference on computer vision (pp. 11888-11898).

Language model Vision model

Computer

Pattern recognitionAbstracting problems

+ implement pseudo code

Mathematical operations

10/68

Contribution

• Compositional
• Process Visual tasks, Reasoning tasks, and mathematical operation tasks separately.

• Interpretability
• All the steps are explicit as a code, with intermediate values.

• Flexibility
• Incorporate any vision or language module.

• Only require changing API specification as a prompt.

• Training—free

• Generalizability
• Existing methods are highly domain-limited.

• ViperGPT can process any tasks (domain-free).

11/68

Related Works
PoT: Program of Thoughts Prompting1

• In PoT, LLM is
used to translate
natural language
problems into
python programs
as intermediate
reasoning steps.

• ViperGPT extends
this ability to solve
complex,
multimodal
problems (object
recognition, depth
estimation, ..).

[1] Chen, W., Ma, X., Wang, X., & Cohen, W. W. (2022). Program of thoughts prompting: Disentangling computation from reasoning for numerical reasoning tasks. arXiv preprint arXiv:2211.12588.

12/68

Related Works
PAL: Program-aided language models2

• PAL and PoT were
simultaneously published
(3 days difference) with
almost same ideas.

• PAL generalizes to more
tasks (13 benchmarks)
with prompt-agnostic way.

• ViperGPT extends this
ability to solve complex,
multimodal problems
(object recognition, depth
estimation, ..).

[2] Gao, L., Madaan, A., Zhou, S., Alon, U., Liu, P., Yang, Y., ... & Neubig, G. (2023, July). Pal: Program-aided language models. In International Conference on Machine Learning (pp. 10764-10799). PMLR.

13/68

Related Works

• Faithful CoT provides rationale for each line of code.

• Similar approach with PAL/Pot, but Faithful CoT focuses more on interpretability by
decomposing the problems in more structured way.

• Similarly, ViperGPT also focuses on interpretability by presenting intermediate values.

Faithful Chain of thought Reasoning3

[3] Lyu, Q., Havaldar, S., Stein, A., Zhang, L., Rao, D., Wong, E., ... & Callison-Burch, C. (2023, November). Faithful chain-of-thought reasoning. In The 13th International Joint Conference on Natural Language

Processing and the 3rd Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics (IJCNLP-AACL 2023).

14/68

Related Works

• First shows that OpenAI’s Codex can solve complicated tasks such as MIT
course problems.

• ViperGPT also utilizes Codex to implement actual code.

Neural network solves, explains, and generates university math problems4

[4] Drori, I., Zhang, S., Shuttleworth, R., Tang, L., Lu, A., Ke, E., ... & Strang, G. (2022). A neural network solves, explains, and generates university math problems by program synthesis and few-shot learning at

human level. Proceedings of the National Academy of Sciences, 119(32), e2123433119.

15/68

Related Works
VISPROG: Visual Programming – Compositional visual reasoning without training5

[5] Gupta, T., & Kembhavi, A. (2023). Visual programming: Compositional visual reasoning without training. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (pp. 14953-14962).

• VISPROG and ViperGPT were 4 months difference with almost similar ideas.

• Unlike VISPROG that generates pseudocode that needs further interpretation,
ViperGPT directly generates executable python code.

16/68

Approach

• Input: Textual query 𝑞, Visual 𝑥

• Code LLM: 𝜋 𝑞, 𝐴𝑃𝐼 = 𝑧
• 𝜋 = LLM

• API = API specification

• 𝑧 = Generated code

• Code Execution: 𝜙 𝑥, 𝑧 = 𝑟
• 𝜙 = Execution engine

• 𝑟 = Result

where,

• 𝑞 = question, description

• 𝑥 = RGB, video, depth

• 𝑟 = text, image crops,… (any type)

Flowchart of ViperGPT

Figure from: Surís, D., Menon, S., & Vondrick, C. (2023). Vipergpt: Visual inference via python execution for reasoning. In Proceedings of the IEEE/CVF international conference on computer vision (pp. 11888-11898).

17/68

Approach
Program Generator 𝜋

• Used GPT-3 Codex for program generator 𝜋.

• Why Codex?
• The generated code should work.

• Codex is specifically trained on

 code data.

Figure from: Surís, D., Menon, S., & Vondrick, C. (2023). Vipergpt: Visual inference via python execution for reasoning. In Proceedings of the IEEE/CVF international conference on computer vision (pp. 11888-11898).

18/68

Approach
Prompt to the Program Generator 𝜋

• Feeds API specification as a prompt.

• Composed with 2 global classes
1. class ImagePatch

2. class VideoSegment

Figure from: Surís, D., Menon, S., & Vondrick, C. (2023). Vipergpt: Visual inference via python execution for reasoning. In Proceedings of the IEEE/CVF international conference on computer vision (pp. 11888-11898).

19/68

Approach
Prompt to the Program Generator 𝜋: class ImagePatch

• ImagePatch.find() method find object in the given image.

• Internally calls GLIP pretrained model in .find() method.

Figure from: Surís, D., Menon, S., & Vondrick, C. (2023). Vipergpt: Visual inference via python execution for reasoning. In Proceedings of the IEEE/CVF international conference on computer vision (pp. 11888-11898).

20/68

Approach
Prompt to the Program Generator 𝜋: class ImagePatch

• Specified Input and Output types

• Provided Docstring to explain the purpose of each method

• Specified Example code

• Exact code (x), Natural Language (o)

ViperGPT .find() method specification Similar to how human search methods in linux man page

Figure from: Surís, D., Menon, S., & Vondrick, C. (2023). Vipergpt: Visual inference via python execution for reasoning. In Proceedings of the IEEE/CVF international conference on computer vision (pp. 11888-11898).

21/68

Approach
Prompt to the Program Generator 𝜋: class ImagePatch

• ImagePatch.compute_depth() method returns depth of the center of the given
image patch.

• Internally calls MiDaS pretrained model in .compute_depth() method.

Figure from: Surís, D., Menon, S., & Vondrick, C. (2023). Vipergpt: Visual inference via python execution for reasoning. In Proceedings of the IEEE/CVF international conference on computer vision (pp. 11888-11898).

22/68

Approach
Prompt to the Program Generator 𝜋: class VideoSegment

Figure from: Surís, D., Menon, S., & Vondrick, C. (2023). Vipergpt: Visual inference via python execution for reasoning. In Proceedings of the IEEE/CVF international conference on computer vision (pp. 11888-11898).

23/68

Approach
Program Executor 𝜙

• Python interpreter executes the generated code 𝑧.

• Certain perceptual function (ex. Depth estimation, object detection,..) is
processed by pretrained models.

Figure from: Surís, D., Menon, S., & Vondrick, C. (2023). Vipergpt: Visual inference via python execution for reasoning. In Proceedings of the IEEE/CVF international conference on computer vision (pp. 11888-11898).

24/68

Experiments

ViperGPT evaluates its efficacy with 4 different setups:

1. Visual Grounding

2. Compositional Image-Question Answering

3. External knowledge dependent image-question answering

4. Video causal and temporal reasoning

Experiment design

25/68

Experiments and Results
1. Visual Grounding

• Evaluates spatial understanding and visual understanding.

• Outperforms zero-shot models, but way worse than supervised models.

Figure from: Surís, D., Menon, S., & Vondrick, C. (2023). Vipergpt: Visual inference via python execution for reasoning. In Proceedings of the IEEE/CVF international conference on computer vision (pp. 11888-11898).

26/68

Experiments and Results
2. Compositional Image Question Answering

Figure from: Surís, D., Menon, S., & Vondrick, C. (2023). Vipergpt: Visual inference via python execution for reasoning. In Proceedings of the IEEE/CVF international conference on computer vision (pp. 11888-11898).

• Evaluates how well the model breaks down complex questions into simpler ones.

• Slightly better than zero-shot models, but worse than supervised models.

27/68

Experiments and Results
3. External Knowledge-dependent Image Question Answering

Figure from: Surís, D., Menon, S., & Vondrick, C. (2023). Vipergpt: Visual inference via python execution for reasoning. In Proceedings of the IEEE/CVF international conference on computer vision (pp. 11888-11898).

• Evaluates how well the model query external knowledge to solve problem.

• Better than zero-shot models, also similar as supervised models.

28/68

Experiments and Results
4. Video Causal/Temporal Reasoning

Figure from: Surís, D., Menon, S., & Vondrick, C. (2023). Vipergpt: Visual inference via python execution for reasoning. In Proceedings of the IEEE/CVF international conference on computer vision (pp. 11888-11898).

• Evaluates how well the model extrapolates to reasoning in video datasets.

• Better than supervised models (SOTA) despite seeing no video data.

29/68

Discussion

Evaluation Requires reasoning? Result

1. Visual Grounding

Only requires visual understanding Way worse than supervised models.

2. Compositional Image Question Answering

Reasoning based on the given image Worse than supervised models.

3. External Knowledge-dependent Image

Question Answering Reasoning outside of the given image Similar to supervised models.

4. Video Causal/Temporal Reasoning

Requires extrapolation of prior knowledge State-of-the-art

Why it works?

• Performs better when requires more reasoning.

• Existing chain-of-thought rely on LLM to perform both reasoning and computation.

• ViperGPT excels at programmatically composing specialized vision, language,
math, and logic functions as subroutines.

30/68

More results
Think different based on contexts

Figure from: Surís, D., Menon, S., & Vondrick, C. (2023). Vipergpt: Visual inference via python execution for reasoning. In Proceedings of the IEEE/CVF international conference on computer vision (pp. 11888-11898).

• ViperGPT effectively produces different logic for each case (US vs. UK)

31/68

Limitations & Societal Implications

Limitations

• Problem solving stage is interpretable,
but we still do not know how the LLM
generates the code.

• Potential dangers: What if the code
includes “os.rmdir()”?

• Highly dependent on the performance
of Codex and pretrained large models.

Societal Implications

• Improve trustworthiness of AI system.

• Can apply to real world problem by
using generalization ability.

32/68

Summary of Strengths, Weaknesses, Relationships

33/68

Strength

• Does not have a ‘shortcut problem’
because of line-by-line code
execution.

Figure from: Xia, J., Zang, Y., Gao, P., Li, Y., & Zhou, K. (2025). Visionary-r1: Mitigating shortcuts in visual reasoning with reinforcement learning. arXiv preprint arXiv:2505.14677.

Summary of Strengths, Weaknesses, Relationships

Strength

• Does not have ‘shortcut problem’
because of line-by-line code
execution.

• ViperGPT enables vision and
language to show capabilities beyond
what any individual model can do on
its own.

• As the pretrained models continue to
improve, ViperGPT’s results will also
continue to improve in tandem.

Weaknesses

• Not enough evaluation metrics; only
evaluated with accuracy.

• Not enough comparisons; for NExT-
QA, only evaluated with two models.

• Performance is generally worse or
slightly better in some cases when
compared with supervised models.

34/68

35/68

Neuro-symbolic reasoning: ViperGPT vs.
HuggingGPT
• ViperGPT focused more on symbolic reasoning.

• HuggingGPT covered massive scope with more tools and expert neural networks.

Figure from: https://generativeai.pub/neurosymbolic-ai-why-this-hybrid-tech-may-dominate-intelligent-systems-by-2027-f063f0a50bee

ViperGPT HuggingGPT

HuggingGPT: Solving AI Tasks

with ChatGPT and its Friends in

Hugging Face
Yongliang Shen, Kaitao Song, Xu Tan, et al.

NeurIPS 2023

The HuggingGPT Concept

37/68

How HuggingGPT Works

Task
Planning

• The LLM analyzes the user's complex request (e.g., “make an image and
describe it”).

• It breaks the request down into a logical list of solvable sub-tasks (e.g., pose-
detection, pose-to-image, image-to-text, text-to-speech).

Model
Selection

• The LLM consults the “model cards” (descriptions) on Hugging Face.

• It assigns the best expert model for each specific sub-task.

Task
Execution

• The selected expert models are called and run their individual tasks.

• The results (e.g., an image file, text, or an audio file) are sent back to the LLM.

Response
Generation

• The LLM collects and integrates all the results from the expert models.

• It generates a final, detailed, and human-like response for the user.

38/68

Key Capabilites & Impact

• Goes Beyond Text: Enables the LLM to "see," "hear," and "create" by using specialized models, solving

complex multi-modal tasks.

• Automatic Planning: Autonomously generates complex plans and coordinates multiple AI models to fulfill a

single, high-level user request.

• Combines Strengths: Leverages the LLM's powerful reasoning and planning abilities with the high-accuracy

performance of specialized "expert" models.

• Continuously Scalable: The system's capabilities can automatically grow and improve as new expert

models are added to the Hugging Face community.

39/68

40/68

Contribution

• The paper introduces a novel system, HuggingGPT, that leverages a Large Language Model
(LLM) as a central “brain” for planning and decision-making.

Proposed HuggingGPT Fram

• The paper details a new protocol that enables the LLM to automatically invoke, coordinate,
and execute numerous expert models from the Hugging Face hub to solve specific sub-tasks.

Inter-Model Cooperation Protocol

• This system provides a new solution for tackling complex AI tasks that span multiple modalities
and domains (e.g., language, vision, speech, and cross-modality).

Generalized, Multi-Modal Task Solving

• The paper highlights the importance of task planning and model selection and formulates new
experimental evaluations to measure the capability of LLMs in these areas.

Evaluation of LLM Planning

• The paper validates the system's potential through extensive experiments on challenging,
multi-step AI tasks, demonstrating a new path toward general AI solutions.

Demonstrated Capability

41/68

Related Work

Branch 1: Unified End-to-End Multimodal Models

• Models like Flamingo, BLIP-2, and Kosmos-1 build a single, large system that directly combines vision

and language capabilities.

Branch 2: LLMs Integrated with Tools

• Models like Toolformer, Visual ChatGPT, and ViperGPT teach an LLM to use external tools or APIs,

often by generating code to call them.

42/68

How HuggingGPT is Different

• LLM as a "Controller," not just a user: HuggingGPT uses the LLM to manage and route requests to many

different "expert" models, acting as a high-level planner.

• General and Flexible: It's not limited to specific tools. By reading model descriptions from Hugging Face, it

can plan tasks and use any expert model for any modality (vision, speech, etc.).

• Open and Scalable: New expert models from the AI community can be integrated easily just by adding their

description. This allows the system to continuously grow smarter without being rebuilt.

43/68

Approach

44/68

3.1 Task Planning

• Main Goal: To analyze a complex user request and break it down into a structured, step-by-step plan in JSON format.

• Key Feature: Dependencies: This plan determines the execution order and dependencies for each task (e.g., Task 2

can't start until Task 1, which creates a needed image, is finished).

• Supports Multi-Turn Chat: The system can also include the {{ Chat Logs }} in the prompt, allowing it to remember and

use resources (like images or text) from earlier in the conversation.

3.1 Task Planning

46/68

47/68

3.2 Model Selection

• Main Goal: For each task in the plan, select the most appropriate expert model from the thousands available on Hugging Face.

• Core Challenge: An LLM's prompt has a limited context length (token limit), so it's impossible to show all available models at

once.

• Final Choice: The descriptions of only these Top-K models are put into the prompt. The LLM then reads these descriptions and

makes the final choice for the task.

3.2 Model Selection

49/68

3.3 Task Execution

• Main Goal: To run the chosen expert models with the correct inputs and handle the flow of data between dependent tasks.

• Key Challenge: Resource Dependencies

• A task often needs the output from a previous task (e.g., an image generated by task 1 is needed for task 2).50/68

3.4 Response Generation

• Main Goal: To synthesize the outputs from all the executed expert models into a single, coherent, natural language response for the

user.

• Method: Comprehensive Context Prompting - The LLM is called one final time with a complete summary of the entire process.

• The LLM's Job: To interpret and summarize all these results in a way that directly and thoughtfully answers the user's initial question,

not just list the data.

51/68

3.4 Response Generation

52/68

4. Experiments

53/68

54/68

Quantitative Evaluation

Main Goal: To scientifically measure the Task Planning capability of different LLMs when acting as the system’s “brain.”

Used Smart Metrics: For complex "Graph Tasks," a simple score isn't enough (multiple plans can be correct). So, they created

a "GPT-4 Score" by using GPT-4 itself as a "judge" to score the quality of a plan.
55/68

Quantitative Evaluation

56/68

Quantitative Evaluation

The Core Finding: The "Brain" is the Bottleneck

• The capability of the central LLM controller is the single most important factor for success.

• Massive Performance Gap: On complex Graph Tasks, GPT-3.5 (F1 score: 51.9) dramatically outperformed

open-source models like Vicuna-7b (F1 score: 18.7).

• Room to Grow: On a high-quality, human-annotated dataset, even GPT-4 showed a "substantial gap" from a

perfect score, proving that improving the LLM's planning ability is a key area for future research.

57/68

Ablation Study

• The authors tested if adding more examples (few-shot demonstrations) to the prompt could improve the

"brain's" planning performance.

• Finding 1 (Number): Performance improves with 1-4 examples but then quickly plateaus.

• Finding 2 (Variety): Increasing the variety of task types in the examples moderately improves performance.

• Conclusion: This shows that simply adding more examples cannot overcome the core reasoning limitations

of a less-capable LLM. The "brain's" inherent power is what matters most.

58/68

Human Evaluation

• This proves that while planning is a major hurdle, a powerful LLM is critical for every stage of the process.

60/68

61/68

Strengths

• Extreme Extensibility and Scalability: The system is not limited to a fixed set of capabilities. You can add a new

state-of-the-art model for any task (e.g., a new 3D generation model) simply by making its description available. It can

theoretically grow and improve every day as the community adds new models to Hugging Face.

• Optimal Tool Usage: Instead of relying on a single, generalist multi-modal model, HuggingGPT can always select

the absolute best, most specialized, state-of-the-art model for a specific sub-task, leading to potentially higher quality

results.

• Separation of Concerns: The architecture cleanly separates general reasoning (the LLM’s job) from specialized

execution (the expert models’ job). This is a powerful and flexible engineering paradigm that can be adapted for many

domains beyond just AI models (e.g., using web APIs, databases, or scientific instruments as tools).

• Complex Task Decomposition: The system shows a remarkable emergent ability to break down vague, complex

human requests into a logical sequence of concrete, machine-executable steps. This planning capability is a

significant step towards more autonomous AI.

63/68

Limitations

• The "Brain" as a Central Bottleneck

• The system's performance is strictly capped by the planning and reasoning capability of the LLM

controller. As the quantitative results showed, even GPT-4 is not a perfect planner.

• Efficiency & High Latency

• The system is slow. It requires multiple sequential interactions with the LLM (for planning, selection, and

generation), which adds significant time costs (latency) to every request.

• Token Length Limits

• The LLM's limited context window (max tokens) makes it impossible to review all available models. This

forces the system to use imperfect shortcuts, like only considering the "top-K downloaded" models.

• Instability & Brittleness

• The workflow is a "fragile chain." Because LLMs can be uncontrollable and fail to follow instructions

perfectly, a single malformed output or error at any stage can cause the entire process to fail.

64/68

Conclusion

• The HuggingGPT system is proposed to solve complex AI tasks by using language as a universal interface.

• It proves a new concept: An LLM can act as a "controller" or "brain" to manage and orchestrate specialized

expert models from ML communities like Hugging Face.

• The LLM's reasoning is key: It allows the system to dissect user intent, decompose tasks, assign the best

model, and integrate the final results into a single answer.

• This approach paves a new pathway toward AGI by successfully leveraging the collective power of the

entire machine learning community.

65/68

Conclusion

How can we build Artificial General Intelligence:

• Path A: The Polymath

• Do we build a single, massive, end-to-end model that tries to learn every skill (e.g., Kosmos, LLaVA)?

• Path B: The Architect

• Do we build a generalist reasoning “brain” that delegates tasks to an ever-growing ecosystem of

specialist tools (e.g., HuggingGPT, Toolformer)?

66/68

How this work is going

These early works led to today's LLM Agents and Tool Use, evolving in three main directions:

1. Native Tool Use (Function Calling)

• What: Models (like Gemini) are trained to call specific functions (e.g., get_weather()).

• Why: More robust, reliable, and integrated.

2. Autonomous Agent Frameworks (e.g., LangChain)

• What: The "controller" idea in a continuous loop. Agents plan, act, reflect, and re-plan to achieve complex goals

(e.g., "Write a research report").

3. Natively Multi-Modal Models (e.g., Gemini)

• What: The LLM becomes the expert (it can "see" and "hear" directly), reducing the need for many external models.

The Future: Convergence The most powerful systems (like Gemini Advanced) combine all three: multi-modal input, native

tools, and an agentic loop.

67/68

Discussion

• The Quality Proxy: The system ranks candidate models by their number of downloads on Hugging

Face. What are the potential risks of using "popularity" as a proxy for "quality" and "suitability" in model

selection?

• The Future of LLM Training: This paper uses a pre-trained, text-only LLM. If you were to train a new

LLM from scratch specifically for this "coordinator" role, what kind of data would you train it on to make it

a better planner and tool user?

• Beyond AI Models: This framework uses Hugging Face models as its tools. What other "toolsets" could

you plug into this architecture? What would a "TravelAgentGPT" that uses APIs from Expedia, Kayak,

and Uber look like? Or a "ScientistGPT" connected to computational chemistry tools?

• Is This "Real" Reasoning?: Is HuggingGPT demonstrating true problem-solving, or is it a very clever

feat of prompt engineering that creates a powerful illusion of understanding by stitching together tools it

doesn't truly comprehend? Where do you draw the line?

68/68

	Slide 1: ViperGPT: Visual Inference via Python Execution for Reasoning Dídac Surís*, Sachit Menon*, Carl Vondrick ICCV 2023
	Slide 2: Outline
	Slide 3: Background: Neuro-symbolic reasoning
	Slide 4: Background: Neuro-symbolic reasoning
	Slide 5: Problem Statement
	Slide 6: Problem Statement
	Slide 7: Problem Statement
	Slide 8: Problem Statement
	Slide 9: Problem Statement
	Slide 10: Problem Statement
	Slide 11: Contribution
	Slide 12: Related Works
	Slide 13: Related Works
	Slide 14: Related Works
	Slide 15: Related Works
	Slide 16: Related Works
	Slide 17: Approach
	Slide 18: Approach
	Slide 19: Approach
	Slide 20: Approach
	Slide 21: Approach
	Slide 22: Approach
	Slide 23: Approach
	Slide 24: Approach
	Slide 25: Experiments
	Slide 26: Experiments and Results
	Slide 27: Experiments and Results
	Slide 28: Experiments and Results
	Slide 29: Experiments and Results
	Slide 30: Discussion
	Slide 31: More results
	Slide 32: Limitations & Societal Implications
	Slide 33: Summary of Strengths, Weaknesses, Relationships
	Slide 34: Summary of Strengths, Weaknesses, Relationships
	Slide 35: Neuro-symbolic reasoning: ViperGPT vs. HuggingGPT
	Slide 36: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face Yongliang Shen, Kaitao Song, Xu Tan, et al. NeurIPS 2023
	Slide 37: The HuggingGPT Concept
	Slide 38: How HuggingGPT Works
	Slide 39: Key Capabilites & Impact
	Slide 40
	Slide 41: Contribution
	Slide 42: Related Work
	Slide 43: How HuggingGPT is Different
	Slide 44: Approach
	Slide 45: 3.1 Task Planning
	Slide 46: 3.1 Task Planning
	Slide 47
	Slide 48: 3.2 Model Selection
	Slide 49: 3.2 Model Selection
	Slide 50: 3.3 Task Execution
	Slide 51: 3.4 Response Generation
	Slide 52: 3.4 Response Generation
	Slide 53: 4. Experiments
	Slide 54
	Slide 55: Quantitative Evaluation
	Slide 56: Quantitative Evaluation
	Slide 57: Quantitative Evaluation
	Slide 58: Ablation Study
	Slide 59: Human Evaluation
	Slide 60
	Slide 61
	Slide 62
	Slide 63: Strengths
	Slide 64: Limitations
	Slide 65: Conclusion
	Slide 66: Conclusion
	Slide 67: How this work is going
	Slide 68: Discussion

