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Architecture: Vision and Speech Encoders

 Vision Encoder (InternViT-300M): processes

Discrete Toke affms: 448x448 pixel images into 256 visual tokens;
1serete JoRen dynamic patching preserves fine details in
"} Text{ji Speech L D:ml:r high-res images.
N 11} * Video Processing: uniform frame sampling
Lpe NAR ]_'Lp AR ] (4—16 frames)
Speech Decoder J | Speech Decoder * Vision Adapter (2-layer ML_P?: Ero'eots high-
| : dimensional visual features into LLM token
space
« Speech Encoder (350 M params): 4x CNN
downsampling + 24 Transformer layers (1024
. . hidden size); uses Mel-filterbank inputs (25 ms
| Vision Adapter I | Speech Adapter I WlndOW, 10 ms Shlﬂ)
« Speech Adapter: extra 2x CNN downsampling
Vision Encoder Speech Encoder to match dimension with the LLM.
e - Together, these modules form a shared
@ representation space for vision, text, and
Image Video Speech audio
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Problem Statement

- MLLMs excel at vision—language tasks, but struggle to extend these
capabilities to speech, especially for open-sourced models.

« Speech integration is nontrivial since it encodes temporal dynamics,
while vision encodes spatial structure, causing optimization conflicts
across modalities.

« Conventional speech pipelines rely on modular Automatic Speech
Recognition (ASR) + Text to Speech (TTS) systems, which introduce
latency, loss of coherence, and fragmented learning.

« Core challenge: How to achieve end-to-end multimodal understanding and
real-time speech interaction without degrading visual reasoning?

* VITA-1.5 tackles this via a progressive three-stage training strategy that
iIncrementally aligns vision, language, and speech, while
preserving performance in each modality.
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VITA: Towards Open-Source
Interactive Omni Multimodal
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Problem Statement

VITA: simultaneous processing of Video, Limitation I Limitation IT

Image, Text, and Audio modalities e e, e e %mwwmmm
_ B Vst ] {0 Whatis the capital of France?
. o ; : B SRt Tt '
Previous Mgthqu. ------ e 000 pumm e
1. Awakening is necessary VITA
2. Uninterruptible No Wake-up Word Needed interruption-Friendly
Interrupt and reply to

3. Audio Support Only ) o ot [ bz o | et P
cy clements. Here = Hewlnlfewwﬂedimc

your photogmaphic skills effectively.
4. Lack of Open-Source Models @ Tienie | P Howtouke | { Foaget i, it 1oo difficult. Take s look |
! vadeo | ook : =1 better videos? i at my current clothes and give me i
00 =Sie=asnss ' : e A some outfit suggestions. 4
aqQ istQuestion 2ed Question 3rd Question ]
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Training Scheme

Base Model: Mixtral 8x7B

1. Stage l:
Bilingual Instruction Tuning of LLM

2. Stage ll:
Multimodal Alignment

3. Stage lll:
Multimodal Instruction Tuning

State Token

StageI Stage IT P Query Audio Stage ITI
Imwalul‘:'hmg ; Visual (LeftyAudio (Right) Modality Alignment 0 Nesyauo  Mulimodl Insructon Tuning
MW | EEE UWEE ) EEECUREE | SO IHQ--- LLL}
o — | —— | ]
bvm ] ; [ VITA ] i [~{e VITA ] ‘ VITA ]
| !
,,,,,,,, MLP l MLP : MLP [
waE | == At |
R L L HCL L UL LE S HER: ESS EER SN
@ RES el 7 oty
Bilingual @ % "' R ‘lh.‘. Q
Pure Text Corp Image Video Text Audso Audso Image Video Text
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Training Scheme

Base Model: Mixtral 8x7B

State Token

Stage I Stage IT C Query Audio Stage ITI
LLM : Visual (LeftyAudio (Right) Modality Alignment ""—'_-‘] Noley Ao Multimodal Instruction Tuning
1 Stage I . Instruction Tuning s
| ) L LK WEE R TN LI °"‘I it L,",f:jz-i?_l.,! LE = 3’;!'__-_':!',?_;5.;5’;“!_?1 [}

Bilingual Instruction Tuning of LLM

Issue: o —! I
Mixtral shows limited proficiencyin ¥ s | © s )
understanding Chinese. B

Encoder '

Goal: ' ry

Ima Video Text

Enable bilingual (Chinese—English) skill.

Step 1 — Vocabulary expansion:

Extend the base model’s vocab from 32,000 — 51,747 to include Chinese tokens.
Benefit of expansion:

Fewer tokens per Chinese text segment — higher inference efficiency

Step 2 — Training data:

Perform pure-text instruction tuning using 5M synthetic bilingual (Zh—En) pairs.

Outcome:
10 Improved Chinese understanding while preserving English performance.

LLL] LLL O LLL LT
Auwdio g

Encod Modality Encoders

-o'b [ 1||n-|- @

Audso Audso Image Video Text
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Training Scheme

Base Model: Mixtral 8x7B

2. Stage Il
Multimodal Alignment

Visual Alignment:

Backbone: InternViT-300M (448px input resolution).

Tokenization (images): 448x448 image
— 256 visual tokens via a 2-layer MLP connector
— High-res images: Use dynamic patching

Videos treated as multi-image:
1) < 4 s: uniformly sample 4 frames total
2) 4-16 s: sample 1 frame per second
3) > 16 s: uniformly sample 16 frames total

State Token
| Query Autio Stage ITI
{"'] Noisy Audio Multimodal Instruction Tuning
B eyt ) www w
| ¥ 3 !

[6 VITA ]

Stage I
LLM

Instruction Tuning

L L LK

4
VITA

e g —y ..l e N y
" WEE; . EEER AEE
" Modality Encoders
° o E @
Bilingual
Pure Text Corpus Audso Image Video Text

No dynamic patching on video frames (prevents token explosion and keeps latency manageable).

Token budget intuition: per frame = 256 tokens — total video tokens = 256 x (sampled frames).
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Training Scheme

Base Model: Mixtral 8x7B

Stage I Stage ITI
LLM . 9 g
2 Stage I I . Iastroction Tonig Multimodal Instruction Tuning
: = _ CLLE L L] -EE--- LLL]
Multimodal Alignment
“VITA ] VITA ]

Visual Alignment:
Train Visual Connector on Image Description and VQ datasets i : : . | .
Visual Encoder, VITA (LLM) frozen, No Audio ! P et B e e,
Data Concatenation to 6K tokens for computational efficiency s d det sy i

&

Image  Vadeo Text

Bilingual
Pure Text Corpus

Georgia
12 GI‘ Tech.



Training Scheme — Until Here

Base Model: Mixtral 8x7B
Stage I
LLM

State Token
| Query Audio Stage ITI
, Multimodal Instruction Tuning

| Nossy Audio

2. Stage ll: e L o .
. . L AR ! ; | ; '
Multimodal Alignment : '
" .
bvm ] [ VITA ] [& VITA ]
Audio Modality: | ‘
Front-end features: ] ii_‘: ' ....... .
Log-mel filterbank (mel-scale) e, RN
B Modality Encoders
Breaks down the audio signal into individual frequency bands on %
"III'-'- @
Audso Image  Vadeo Text

the mel frequency scale (nonlinear human perception for sound) , - s
Pure Text Corpus

Encoder stack (~341M Params):
4x CNN downsampling (reduces time resolution)

24-layer Transformer

Connector:
2-layer MLP: maps audio features into the LLM token space

Georgia
Gl" Tech.
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Training Scheme

Base Model: Mixtral 8x7B

2. Stage Il
Multimodal Alignment

Audio Modality:

Token rate: ~12.5 Hz — 25 tokens per 2 seconds of audio.

Audio alignment tasks
Trained components: encoder + connector

ASR objective:
WenetSpeech (~10k hours; mainly Chinese, multi-domain).
GigaSpeech (~10k hours; mainly English, high-quality).

Audio captioning objective:

AudioSet-SL subset of WavCaps (~400k clips with captions).

St I State Token
i StagqIT  Query Audi Stage ITI
LLM Visual (LeftyAudio (Righ L—-—) ° 9

Instruction Tuning

(_:';:1 Noisy Audio Multimodal Instruction Tuning
< | Query Text L::‘.ﬁ;..-i P

arrmmn—- o PR LETETTRTN
LR WEEREE 11 LLLE

\ »
bvm\ ] [ 4 VITA ]

[& VITA ]

mEN: | = T ey I - IS, As3 e
R L HEE CEEe LA L) EEER AEE
- !
& Visual B
L4 L Mhym
% Encoder I
@ - 5@
Bilingual
Pure Text Corpus Image  Video Text Audso Image  Vadeo Text

Purpose of alignment: teach the model to map audio — text space (transcribe/describe) so the LLM can reliably consume audio-conditioned

tokens during downstream multimodal instruction tuning.

14
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Training Scheme

Base Model: Mixtral 8x7B

3. Stage lll:
Multimodal Instruction Tuning

Training Data

Text—Speech mix:

Randomly replace ~50% of text questions with
TTS-spoken versions (e.g., GPT-SoVITS) to
create audio queries.

System prompts:
Distinct prompts per data type

Noisy audio construction:

State Token
STSLQS I Stage IT (775 Query Andio Stage III
! Visual (LeftyAudio (Right) Modality Alignment s ] i <ITuc y ,
Jastroction Teiag s e 2 odality Alig (-——1 Nowsy Audso Multimodal Instruction Tuning
W EETREE ) e |t e e

o] |

1 |G HEE EEw UL L)
© Viswal | Audio
% Encoder Encoder
a & -+

Bilingual
Pure Text Corpe Image Video Text Audso

Synthesize non-query clips by TTS'ing negative sentences to teach ignore/silent behavior.
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Training Scheme

Base Model: Mixtral 8x7B

Stage I Stage IT
hNmcl""L".’.'Vlhmmg Visual (Left)Audio (Right) Modality Alignment
3. Stagg II: | | p—— ey —
Multimodal Instruction Tuning , _
bvm« ] [ ~ VITA ] [ ~ VITA
Training Data | !
Jo ey | ¢
| weE waw A WA
- W =
State tokens (input control): -y e @ e
* <1> Query Audio — answer = R LR Ao

* <2> Noisy/Non-query Audio
— trained with "noisy" text targets; at runtime treated as EOS/no-reply;
* <3> Query Text — answer.
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Implementation

Duplex Pipeline o i —
:le'gyhud.ia
Non-awakening Interaction: Sl - SELH e ’
The model can be activated and respond to user audio questions
in the environment without the need for a wake-up word or VITA (Generation)
button.
_ . _ WA AEN T
1) Real-time Tracking of Environmental Sounds [ Modality Encoders \
-VAD: Voice Activity Detection (SileroVAD) e @ @

2) Filtering out noisy audio.

-The model should only respond to effective human query
audio.

-State Token <2>: If the input is of a non-query type, the
model directly terminates the inference

17

Audio  Image  Video

Text

Aggregate Historical Context

- Interrupt Generation
Interruption

(<> LT T BREY <
Aggregation

[ VITA (Monitoring)

-

LLLLLLLE
} Audio Encoder \

Environmental Audio
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Implementation

Duplex Pipeline .

- - Agreregate Histoncal Context
Audio Interrupt Interaction: State Token N i:L. :mmuenem
Enables users to interrupt the model’'s generation at any time with == I
new questions. Do g Y G e LT EEY

. . . . . Aggregation

- Real-time Tracking and Filtering of External Queries: .
While generating responses, the system must simultaneously [ VITA (Generation) ] [ VITA (Monitoring) ]

track and filter external queries in real time.

EER O NN 5 EEENEEEE
- Answering New Questions: [ Modaliry Encoders | [ o Encoder |
When a new question emerges, the system must cease its A a il

Audio  Image  Video Text Environmental Audio

current generation, consolidate the historical context, and
respond to the present query.

Duplex Pipeline:
1. Two VITA models are deployed concurrently.
2. Under a typical condition, the Generation model answers user queries.
Simultaneously, the Monitoring model detects environmental sounds during the generation process.
3. The Monitoring model disregards non-query user sounds, i.e., noisy audio, but ceases the Generation model’s

progress when it identifies query audio.
#4. When ceased, the Monitoring model subsequently consolidates the historical context and Gr %ggi‘lgia
responds to the latest user query. |



Results

Method C-EVAL AGIEVAL MMLU GSMSK
CN CN & ENG  ENG ENG
Mixtral-8x7B Instruct ~ 53.30 41.92 70.35 63.99
Mixtral-8x7B Ours 56.68 46.17 70.98 75.66

Wenetspeech (CN) Librispeech (ENG)

Method
Test_Net Test_Meeting Dev_clean Dev_other est_clean est_other

VITA 12.15 16.53 7.57 16.57 814 18.41

Lo

Pellioicl
s GPT-40 N ] LaVA-Med (Yi-348) . Video-CC AM (Phi-3-148)
E ] I ieineni 15 Pro B | LaWA-Me-Yden (Dwenl 5-52H) WITA ([ Mawira] B=TH)
¥ L T in

5
- i 50
E S it
E @ iq g N
=
o

n

fabd  Nakd
a .
EARIE CH R Heach HallssiseBanch
enchmarks
19

Walk

|
Wit MAE

WER: Word Error Rate

What it measures: how many word-level edits
(substitutions S, deletions D, insertions I) your ASR
needs to turn its hypothesis into the reference.

WER = (S+D+1) / N_words

Example (English):

Ref: “the cat sat on the mat” (6 words)

Hyp: “the cat sat on mat”

Edits: 1 deletion (“the” before “mat”) — S=0,D=1,1=0
WER = 1/6 = 16.7%.

CER: Character Error Rate

What it measures: same idea, but at the character
level (good for languages without spaces, like
Chinese).

CER = (S+D+l) / N_chars

Example (English):

Ref: “kitten” (6 chars)

Hyp: “sitting”

Optimal edits (Levenshtein): k—s (S=1), e—i (S=1),
add “g” (I=1) — total 3 edits.

CER = 3/6 = 50%.
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Problem Statement

For interaction with LLM in Speech Modality,

Traditional method :
“Use a cascaded approach of ASR + LLM + TTS”
Limitation :
« High engineering complexity
« High interaction latency.

New method:
“By the parameters of the LLM are more or less fine-tuned,
Aligning the LLM with the speech modality”
Limitation :
« The forgetting problem to the LLM, resulting in a negative impact on its
intelligence
* an obvious gap in performance between spoken question-answering and
text-modality question-answering

Freeze-Omni suggests:

“Achieving speech modality alignment while the LLM is frozen
throughout the training process, and obtaining low latency speech
dialogue capabilities while keeping the intelligence of the
backbone LLM.”

21
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Freeze-Omni: A Smart and Low Latency
Speech-to-speech Dialogue Model with Frozen LLM

Xiong Wang' *, Yangze Li2, Chaoyou Fu?, Lei Xie?, Ke Li', Xing Sun!, Long Mal.t

ITencent Youtu Lab
2Audio, Speech and Language Processing Group (ASLP@NPU)
3Nanjing University
" Main Contribution 1 Corresponding Author

https://freeze-omni.github.io/

Abstract

The rapid development of large language models has brought many new smart
applications, especially the excellent multimodal human-computer interaction in
GPT-40 has brought impressive experience to users. In this background, researchers
have proposed many multimodal LLMs that can achieve speech-to-speech dialogue
recently. In this paper, we propose a speech-text multimodal LLM architecture
called Freeze-Omni. Our main contribution is the speech input and output modal-
ities can connected to the LLM while keeping the LLM frozen throughout the
training process. We designed 3-stage training strategies both for the modeling
of speech input and output, enabling Freeze-Omni to obtain speech-to-speech
dialogue ability using text-speech paired data (such as ASR and TTS data) and only
60,000 multi-round text Q&A data on 8 GPUs. Moreover, we can effectively
ensure that the intelligence of the Freeze-Omni in the speech modality is at the
same level compared with that in the text modality of its backbone LLM, while
the end-to-end latency of the spoken response achieves a low level. In addition,
we also designed a method to achieve duplex dialogue ability through multi-task
training, making Freeze-Omni have a more natural style of dialogue ability between
the users. Freeze-Omni mainly provides a possibility for researchers to conduct
multimodal LLM under the condition of a frozen LLM, avoiding various impacts
caused by the catastrophic forgetting of LLM caused by fewer data and training
resources.

1 Introduction

In recent years, the development of large language models has been extremely rapid. A series of large
language models represented by the GPT series [10, 1] of OpenAl has demonstrated extraordinary
capabilities. As speech interaction is one of the most natural forms of human-computer interaction,
combining speech input and output with an LLM can bring an extraordinary experience to users. The
traditional method is to use a cascaded approach of ASR + LLM + TTS to achieve the interaction
with LLM in speech modality. However, this approach often leads to a relatively high engineering
complexity and a considerable interaction latency. Nevertheless, GPT-4o [18] has changed this
situation, it provides an end-to-end speech interaction mode which has significantly improved the
user experience, triggering a research boom among researchers regarding multimodal LLMs for
speech-to-speech interaction.

In the field of general LLMs, many public models such as Llama 3.2 [8], Qwen2.5 [21], Mixtral [14],
eam tasks on them.
Therefore, in the research field of multimodal LLMs for speech-to-speech, works such as Mini-
Omni2 [24], LLaMA-Omni [9], and Moshi [7] have provided excellent references for researchers.

hers to develop d

etc. have provided very good opportunities for

Email: wangxiongts @ gmail.com, malonema @tencent.com
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Modeling of Speech Output

Overview T

/

Chunk Segment
Text Tokens
Hidden States | ||
f
Frame-wis {
Featur es
|
Adapte
Chunk-wise
Features T
Speech Encoder
Streaming
Speech Input

Streaming
Speech Output
Streaming Codec Decoder
1
Speech Token FIFO
?
kv-cache !
NAR Prefix Speech Decoder ——— NAR Speech Decoder AR Speech Decoder
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Modeling of Speech Input

Design for Duplex
Dialogue
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Modeling of Speech Input

1) The alignment between the speech input to text output,

Modeling of Speech Output

2) The alignment between the text input to speech output

Design for Duplex
3) By connecting the@ig\{@g@r@)onents with the LLM

The Ability of Speech Input to Speech Output
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Tech



Modeling of Speech Input

Text of Al

=5 s

FTI1

| Prompt Embedding " .

\
EEENE

Prompt Embedding @‘)/ e

DR (

Special Token

\

Stage 2 Stage 3

Georgia
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Modeling of Speech Input

Dataset : 110,000h internal speech

text paired ASR data including both Chinese and English

Transcript

EEEEE
_--iM
Utilizes a chunk-wise streaming speech Transcript (5 Adapter HiREE

encoder to transform the input speech P.a.ra.m et_er |
features into a high-dimensional Initialization

. T > Mg
representation. / ) SPeeChﬁ‘Encoder ! Peech’fncoder

* A multi-layer convolution with 4-times
down sampling and 24 layers of
transformers with a hidden size of
1024.

» # of Parameter : 350M

A 4

Special Token

\ 4

wav

Stage 2

Training :
* Loss Function: CTC
» Optimizer : Adamw [16] optimizer with a warm-up learning rate scheduler
* Learning Rate:
« Stage 1: 2e-4
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Modeling of Speech Input

Dataset : 110,000h internal speech

text paired ASR data including both Chinese and English

an adapter module maps the high-

dimensional Transcript
representation into the embedding
space of the backbone LLM. Qwen2-7B-Instruct D D D D D Text of Al

A multi-convolution layer with 2-times =

downsampling — - ‘ - —
| , | - |
: — A Adapter ' | i '
e B[E[E[E L i
' Initialization Special Token  Prompt Embedding
@) Speech Encoder @ Speech Encoder < < . m

\ 4

Several trainable special tokens are added
N to the input part to guide the LLM Ql
in completing the training process at this stage
wav wav way
Stage 1 Stage 2 Ste

Training :
* Loss Function: CTC
» Optimizer : Adamw [16] optimizer with a warm-up learning rate scheduler
* Learning Rate:
« Stage 1: 2e-4

. Stage 2: 1e-4 Gr Georgia
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Modeling of Speech Input

Dataset : the pairing of text input and speech output of the multi-round Q&A data

(60,000 multi-round Q&A data from moss-003-sft-data)
Transcript
DDDDD Text of Al ll-‘ > Text of A2
T T |
I“ e
T i | , T
e ! =X / N\
0800 EEER EEEE |
Special Token  Prompt Embedding ("‘)/  Prompt Embedding (%]
A
je 2 e3
Training :

* Loss Function: CTC

» Optimizer : Adamw [16] optimizer with a warm-up learning rate scheduler
* Learning Rate:

+ Stage 1: 2e-4 )
07+ Stage 2: 1e-4 Gl" Georgia
« Stage 3: 6e-4 Tech.



Results on Speech Input

Table 1: The ASR performance of the model corresponding to stage 2 in the modeling of speech input,
where {aishell-1 [4],test_net [26], test_meeting [26]} are Mandarin evaluation sets, measured in
CER (%), while {dev-clean,dev-other,test-clean,test-other} [19] are English evaluation sets, measured
in WER (%).

Model aishell-1 test_net test_meeting dev-clean dev-other test-clean test-other
Wav2vec2-base [2] - - - 6.0 13.4 - -
Mini-Omni?2 [24] - - - 4.8 9.8 4.7 94
Freeze-Omni
+ chunk = oo 2.15 8.57 10.09 3.29 7.4 3.24 7.68
+ chunk =4 2.79 12.6 14.2 4.16 10.21 4.05 10.48
+ w/o dynamic  2.48 11.8 13.46 4.03 9.45 3.82 9.79

Dynamic Chunk Training enables the model to handle both streaming and offline conditions by training with
variable chunk sizes.
Although a fixed chunk (e.g., 4) yields slightly lower error rates without dynamics, the dynamic approach offers far

better generalization and flexibility. Gr Georgia
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Modeling of Speech Output

|

Upsample Decoder

I

Speech Token

]

Subsample Encoder

|

Al
Stage 1

29

o =
|
@j NAR Speech Decoder &5 AR Speech Decoder

T

Tokenizer of LLM

I

Input Text

Stage 2

kv-cache

DDDQDDDSW“

b e S S

|
OEOREEE

Hidden State of LLM

T
ﬁmmmmmmn

AL YAA

Text Token

Stage 3

Cr

Token
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Modeling of Speech Output

Dataset : 3,000h of text-speechl paired data generated by a zero-shot TTS system

A 4

v

Speech
it | o
T T

Upsample Decoder " NAR Speech Decoder C‘j AR Speech Decoder

! T

Codec Model : TiCodec Speech Token W

+ customized the configuration I i
so that the size of the

codebook is 1024 with a single- Subsmple Encoder Tokenizer of LLM
codebook T T
» frequency : 40Hz N M | Input Text
Stage 1 Stage 2
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Modeling of Speech Output

Dataset : 3,000h of

text

Speech

A 4

T

Upsample Decclder

T

Speech Token

T

R

paired data generated by a zero-shot TTS system

Subsample Encher

I

Training :

A 4

Stage 1

* Loss Function: CTC

» Optimizer : Adamw [16] optimizer with a warm-up learning rate scheduler

* Learning Rate:
» Stage 1: Same as TiCodec

31

« Stage 2: 5e-5

v

Cj NAR Speech Decoder

|
T

Tokenizer of LLM
i

[

A 4

Input Text

Speech

Token

T

'&‘j AR Speech Decoder

4-layer Llama decoder layers with

ah

idden size of 896

The NAR and AR speech
decoders use the same

par

ameters

# of parameter : 120M

Sta

Fre

ge

%Jency . 24U0URZ

kv-cache

OEAEAEEE 3 Embed

Hidden State of LLM

St
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Modeling of Speech Output

Dataset : the pairing of text input and speech output of the multi-round Q&A data
(60,000 multi-round Q&A data from moss-003-sft-data)

lies in closely coupling the speech
decoder with the output of the LLM
to reduce the occurrence of bad cases

/

|

OEEAERE

Hidden State of LLM

" NAR Prefix Speech Decoder |

kv-cache

Speech
Token

Speech
j Token
\R Speech Decoder
2 2
Training :

* Loss Function: CTC

» Optimizer : Adamw [16] optimizer with a warm-up learning rate scheduler
* Learning Rate:

32

» Stage 1: Same as TiCodec
« Stage 2: 5e-5
+ Stage 3: 5e-5

Text Token

Stage 3

4-layer Llama decoder layers with
a hidden size of 896

The NAR and AR speech
decoders use the same
parameters

# of parameter : 120M

Frequency : 24000HZ
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Results on speech output

Experimental Setup
« 1,000 utterances were randomly sampled, using text tokens and hidden states from the LLM as inputs to the speech

decoder.
« The generated speech was evaluated by ASR accuracy (CER%) using paraformer-zh, under different top-k decoding

settings.
« Two models were compared: Speech Decoder w/o Prefix (stage 2) and Speech Decoder with Prefix NAR (stage 3).

Table 2: The CER(%) of the speech decoder on 1,000 evaluation utterances under different top-k.

top-k
Method 1 2 3 4 5
Speech Decoder w/o Prefix 527 4.64 4.76 4.66 5.03
Speech Decoder 39 365 353 3.62 3.71

Prefix NAR Decoder improves alignment with the LLM and reduces CER, showing better robustness
across all top-k values.

Georgia
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Design for duplex dialogue

use multi-task for chunk-level state prediction

State 0 : the current LLM can continue to receive speech

State 1 : the LLM can interrupt the user and perform the generate stage Stop sending speech streams to Freeze-Omni
State 2 : there is no need to interrupt the user and reset the VAD module.

State Label 0 0 lor2

Predict State D D o D
] [ [
- b -
Input Chunk DDDD DDDD D[:H:H:I

Using a multi-task method to optimize the cross-entropy loss of both the state classification layer and the LLM.

Georgia
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Design for duplex dialogue

"model as a server" strategy for the speech-to-speech dialogue system

uuuuuu

Chunk-wise

Streaning
mmmmmm

35

=

Started several models simultaneously

A user’s VAD was triggered, the speech would be

sent to the server in the form of chunks

Server would be responsible for scheduling which

idle model should respond to the current chunk

Separated all the kv-cache and CNN cache of the

speech encoder and LLM

“Any model in the server could respond to
any chunk of any user”

Cr
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Results on spoken question answering

36

Table 3: The accuracy (%) of different models in question answering on three sets. The models in the
first four rows all use speech as input, while the models in the last two rows use text as input. The
backbone LLLM of Freeze-Omni is Qwen2-7B-Instruct, and the backbone LLLM of Moshi is Helium.
Both Freeze-Omni and Qwen2-7B-Instruct use greedy search in the generate stage with zero-shot,
and the accuracy is calculated using the output text. Except for Freeze-Omni and Qwen2-7B-Instruct,
previous evaluation results are derived from corresponding references.

Model Modality Web Q. LlaMA Q. Audio Trivia QA
SpeechGPT(7B) [27] Audio&Text 6.5 21.6 14.8
Spectron(1B) [17] Audio&Text 6.1 22.9 -
Moshi(7B) [7] Audio&Text 26.6 62.3 22.8
Freeze-Omni(7B) Audio&Text 44.73 72 53.88
Helium [7] Text Only 32.3 75 56.4
Qwen2-7B-Instruct Text Only 45.13 77.67 63.93

Freeze-Omni achieves much higher accuracy than other speech-based models.

Its performance is close to text-only LLMs (Qwen2-7B-Instruct), showing strong alignment between

speech and text understanding.
Demonstrates that Freeze-Omni preserves reasoning ability even from spoken input.

Cr
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Analysis on end-to-end latency

« Statistical latency: Time from LLM interruption to the first generated speech PCM chunk (automatically measurable).
* Non-statistical latency: Real-time delay from the end of user speech to LLM’s response start (manually measured).

Table 4: Detailed information of statistical latency. Among them, 50% represents the median, and
90% represents the percentile at 90. The unit of the results in the table is (ms). All results are
completed using pytorch with bfloat16 inference on a single NVIDIA A100 GPU.

Latency description Avg. 50% 90 %
LLM interrupted — LLM generate first text token chunk 478 468 750
First text token chunk — Prefill of speech decoder 15 15 17
Prefill of speech decoder — Generate first speech token chunk 237 235 252
First speech token Chunk — Decode first PCM hunk 11 11 13
Total 745 753 1020

« Main delay occurs before the first text token generation (~0.5 s).

« Speech decoding is extremely fast (tens of ms).

« Overall, Freeze-Omni achieves real-time conversational speed (~1.2 s), practical for interactive speech
dialogue.

Georgia
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Conclusion

* Freeze-Omni:
a text—-audio multimodal LLM enabling low-latency speech-to-speech dialogue without fine-tuning the LLM.

* Achieves strong performance across multiple evaluation tasks while keeping the LLM frozen.

Provide pathway developing strong performance speech modules to next research

Transcript
entof A Tetof A2 e o % ] o
e ‘ 7 7 . . kv-cache ‘
- . = bsele Decoces 7 NAR Speech Decoder AR Speech Decoder /“\NAR Refix Speech Decoder ——— MM
st S ‘menn | ENEEE  (mEEE an—. e D*DLD” i
: , Special Token Prompt Embedding 1 | Prompt Embedding (% ! 1 e =
£ Sposch Encoer 1 Spesch coder S Esssmee, 0 S subsampe i S Hilen e L B
. | LDLDD7,
W Tnput Text Text Token
b < ® ® ©
wav wav wav wav
Stage 1 Stage 2 Stage 3 Stage 1 Stage 2 Stage 3
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History

MiniOmni2 VITA1.5
January 3rd, 2025

October 15th, 2024

FreezeOmni
November 1st, 2024

Fu et al, VITA: Towards Open-Source Interactive Omni Multimodal LLM https://arxiv.org/htm|/2408.05211v1 & %‘ggﬁgla

Wang et al, Freeze-Omni: A Smart and Low Latency Speech-to-speech Dialogue Model with Frozen LLM https://arxiv.org/html/2411.00774v1
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Xie et al, Mini-Omni2: Towards Open-source GPT-40 with Vision, Speech and Duplex Capabilities https://arxiv.org/abs/2410.11190
Fu et al, VITA-1.5: Towards GPT-40 Level Real-Time Vision and Speech Interaction https://arxiv.org/abs/2501.01957
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Architecture: Speech Decoders

Discrete Token "'-"'

571 Text/J} Speech Cud-_::r:_!]-mnd:r

........

MAR AR
Speech Decoder Speech Decoder

______________________

| Vision Adapter I | Speech Adapter I

Vision Encoder Speech Encoder
@ 1'I|-|-
Image Video Speech

40

 End-to-end speech generation: replaces external

TTS modules (VITA-1.0) with internal decoders +
TiCodec for waveform synthesis.

Challenge: LLM natively outputs text tokens
only. The new decoders enable output of speech
tokens.

Two-stage design: (why?)

(1) NAR Decoder: processes text tokens in parallel
and outputs initial speech-token distribution for
global semantics

(2) AR Decoder: refines speech tokens step-by-step
and improves fluency and naturalness.

Both decoders: 4 LLaMA-style transformer layers
Balances speed (NAR) and quality (AR)

The output speech tokens are then passed to TiCodec,
which decodes speech tokens into 24 kHz waveform.

Georgia
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Overview of Model Training

Training Data Overview

41

Diverse datasets spanning image, video, text, and
speech, in both Chinese and English.

Image Captioning: ShareGPT4V, ALLaVA-Caption
etc.

Image QA & Reasoning: LLaVA-150K, LVIS-
Instruct etc.

OCR & Diagram Understanding: Anyword-3M etc.

Video Tasks: ShareGemini and synthetic video-QA
data

Speech Data: 110k hours speech—transcription,
which trains and aligns speech encoder with the
LLM. 3k hours text—speech, which trains speech
decoder for end-to-end speech synthesis.

Text-only Data

Three-Stage Progressive Training
Strateqy

« Challenge: Modality conflicts as
training on speech can degrade visual
understanding if done jointly.

» Solution: Gradual integration of
modalities to preserve previously
learned strengths.
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YlAdycC 1. VIoIOlN~Ladligyuayc

Training

Goal: Establish strong alignment between
vision and language before adding
speech.

Stage 1.1 Vision Alignment:

« Train only the visual adapter using 20
% of caption data.

* Purpose: let LLM start linking visual
features with text space.

Stage 1.2 Vision Understanding:

« Unfreeze vision encoder + adapter +
LLM.

« Use all caption data to teach descriptive
image-to-text generation.

Stage 1.3 Vision SFT (Instruction
Tuning):

« Use full QA datasets + 20 % caption
data.

. _Fine-tur_1e all modules to fpllow
mstru_ctlons and answer visual
questions.

Outcome: Model develops rich visual
grounding + instruction-following ability
across images & videos.

LLM: Qwen2-7B

Vision Encoder: InternViT-300M \M} Discrete Speech Token

Icon
description

.| Discrete Text Token

: _-_E Continuous Task Token

\
6 Training

Stage 1 :
. .- {* Frozen
Vision-Language Training h
Stage 1.1 | Stage 1.2 | Stage 1.3
Vision Alignment | Vision Understanding | Vision SFT
I I e . I .
....................... , EHEE - NEN: | §EN - ENE
: [
i I /dl\ : dal
“uM (| v |[@ LM
| |
Fr A 1 : Al 1 1 : g
qfﬁi‘-‘n Adapter ] I Qﬁsiun Adapter ] :Qisiun Adapter J
| [
¥ . |
. Visual | & Visual A Visual
Encoder : Encoder : Encoder
@ @ e B e @
| [
: [
Image Video Text | Image Video Text : Image Video Text
I
20% Caption data 100% Caption data 20% Caption & 100% QA
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Icon
description

Stage 2: AUdio Input Tuning :::1' Discrete Text Token
:_.E Discrete Speech Token
Goal: Extend vision-language model to i

1 _-_E Continuous Task Token

understand speech inputs. 6.
Training
Stage 2.1 Audio Alignment: T stage 2T b
* Train on 11 k hrs speech-text pairs. Audio Input Tuning ,
« (a) Speech encoder: CTC loss for Stage 2.1 Stage 2.2 I
speech-to-text alignment- Audio Alignment Audio SFT D Speech Query H
I
* (b) Freeze LLM and train speech | I — Text Query "
adapter + guidance tokens to feed T | :] D State Head I
audio features into LLM. ot — !
! I
Stage 2.2 Audio SFT: % | 6 LLM ] !
I
* Adds spoken question-text answer / peech } s o 1 T @& ‘ "
tasks Encoder | ho q Vision Adapter ] ?Speech Adapter ii
Lo
« Train all modules (vision + audio ale | - A Vieual { Speech "
encoders/adapters + LLM). s i GuTijZ];CE il 0 Encoder 0 Encoder ii
. Add modality classifier head to tell Speech | Token Speech @ E%] o "
speech vs text inputs. | . H
a . - g -h
Outcome: Model gains robust speech (@) | (b) Image  Video fext peee ii
comprehension, enabling real multimodal Speech-transcription pairs Speech/Text Caption (4%) & OA (20%) 1

QA. I

Georgié
o Gl" Tech.



YldycC v. AUUIO UVULlpPpUlL Icon
. description
Tuning

.| Discrete Text Token

___________________________ "W Discrete Speech Token

Outcome: Model gains end-to-end speech generation
with real-time response and retained multimodal

reasoning. Text-Speech Data

Georgia
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Goal: Enable speech generation while preserving vision— | ange 3 7 Continuous Task Token
| .
language and audio-understanding capabilities. | Audio Output Taning 6
. . . | Trainin
Training data: 3 000 hours of text—speech pairs | | - <
. - | Stﬂge 3.1 ' STﬂgE- 32 ’{* Frozen
Stage 3.1 Codec Training: | ; | .
o _ _ | Codec I NAR + AR
- Train TiCodec (single-codebook, 1024 entries). I Training | Decoder Training
« Encoder maps waveform to discrete speech tokens; | |
decoder maps tokens back to waveform. : : W
 During inference, only the codec decoder is used I - "III"" " o —
. . | | AR
Stage 3.2 NAR + AR Decoder Training: : Codec | T Speech Decoder )
« Freeze LLM weights. | Decoder : ( —
* Use text embeddings (from LLM) and speech tokens | T mwm . : : :
(from codec encoder). » "!.!!,' 5 Speech Decoder |
* NAR decoder: produces global semantic features in : Codec i §1LM Embedding
parallel. I T |
I
AR decoder: predicts high-fidelity speech tokens | 'IIIII-I- | %
sequentially. | }
: Speech I Text
| |
|
|




Evaluation: Image Understanding

Table 2: Evaluation on Image Understanding Benchmarks. VITA-1.5 shows performance compa-
rable to the leading open-source models and advanced closed-source counterparts. MMB refers to
MMBench, MMS to MMStar, Hal to HallusionBench, MathV to MathVista, and OCR to OCRBench.
Note that after the training of Stages 2 (Audio Input Tuning) and 3 (Audio Output Tuning), VITA-1.5

retains almost its original visual-language capabilities in Stage 1 (Vision-Language Training).

Method LLM MMB MMS MMMU MathV Hal AI2ZD OCR MMVet MME Avg
VILA-1.5 Vicuna-v1.5-13B 68.5 44.2 41.1 42.5 393 699 460.0 45.0 1718.2 52.1
LLaVA-Next Yi-34b 77.8 51.6 48.8 40.4 348 789 5740 50.7 2006.5 58.3
CogVLM2 Llama3-8B-Instruct 70.7 50.5 42.6 38.6 413 734 7570 57.8 1869.5 58.8
InternL.M-Xcomposer2 InternL M2-7B 77.6 56.2 414 59.5 410 812 5320 46.7 22204 61.2
Cambrian Nous-Hermes-2-Yi-34B  77.8 54.2 50.4 50.3 416 795 591.0 53.2 20499 614
InternVL-Chat-1.5 InternLM2-20B 79.7 57.1 46.8 54.7 474 806 720.0 554 2189.6 65.1
Ovisl.5 Gemma2-9B-It 77.3 58.1 49.7 65.6 48.2 845 7520 53.8 2125.2 66.9
InternVL2 InternLM2.5-7b 79.4 61.5 51.2 58.3 450 836 7940 54.3 2215.1 67.3
MiniCPM-V 2.6 Qwen2-7B 78.0 57.5 49.8 60.6 48.1 82.1 8520 60.0 2268.7 68.5
Proprietary
GPT-4V - 65.5 50.4 59.3 48.2 393 714 678.0 49.0 1790.3 58.5
GPT-40 mini - 76.0 54.8 60.0 524 46.1 778 785.0 66.9 2003.4 66.3
Gemini 1.5 Pro - 73.9 59.1 60.6 57.7 456 T79.1 7540 64.0 2110.6 67.2
GPT-40 - 82.8 61.6 62.8 56.5 5.7 774 663.0 66.5 23287 693
Claude3 5 Sonnet - 7R85 622 659 616 499 R0?2 T8RO 66.0 19200 69 3
Qurs
VITA-1.0 Mixtral-8x7B 71.8 46.4 473 44.9 397 731 678.0 41.6 2097.0 578
VITA-1.5 (Stage 1) Qwen2-7B 77.1 59.1 53.1 66.2 441 803 7520 51.1 2311.0 67.1
VITA-1.5-Audio (Stage 3) Qwen2-7B 76.7 59.9 52.1 66.2 449 793 7320 49.6 2352.0 66.8
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Evaluation: Video Understanding

Table 3: Evaluation on Video Understanding Benchmarks. Although VITA-1.5 still lags behind
models like GPT-40 and Gemini-1.5-Pro, it performs comparably to many open-source models. Note
that after the training of Stages 2 (Audio Input Tuning) and 3 (Audio Output Tuning), VITA-1.5

retains almost its original visual-language capabilities in Stage 1 (Vision-Language Training).

Method LLM Video-MME w/o sub Video-MME w/sub MVBench TempCompass

Video-LLaVA Vicuna-v1.5-13B 399 41.6 49.8
SHIME Llama3-8B-Instruct 45.3 47.2 - -
LongVA Qwen2-7B 52.6 54.3 - 57.0
VILA-1.5 Llama3-8B-Instruct - - - 58.8
InternLM-XComposer-2.5 InternL. M2-7B - - - 62.1
LLaVA-OneVision Qwen2-7B 58.2 61.5 56.7 64.2
InternVL-2 InternLM2.5-7b - - - 66.0
MiniCPM-V-2.6 Qwen2-7B 60.9 63.7 - 66.3
Proprietary
GPT-40-mini - 64.8 68.9 -
Gemini-1.5-Pro - 75.0 81.3 - 67.1
GPT-40 - 71.9 77.2 - 73.8
Ours

VITA-1.0 Mixtral-8x7B 55.8 59.2 - 62.3
VITA-1.5 (Stage 1) Qwen2-7B 56.8 59.5 56.8 65.5
VITA-1.5 (Stage 3) Qwen2-7B 56.1 58.7 554 66.7
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Evaluation: Automatic Speech Recognition (ASR)

Table 4: Evaluation on ASR Benchmarks. VITA-1.5 has demonstrated strong performance in both
Mandarin and English ASR tasks. It outperforms specialized speech models, achieving better results
in both languages.

Model CN (CER)) Eng (WER|))
aishell-1 test net test meeting devclean devother testclean test other
Wav2vec2-base - - - 6.0 13.4 - -
Mini-Omini2 - - - 4.8 0.8 4.7 0.4
Freeze-Omini 2.8 12.6 14.2 4.2 10.2 4.1 10.5
Ours
VITA-1.0 - 12.2 16.5 7.6 16.6 8.1 18.4
VITA-1.5 2.2 8.4 10.0 33 7.2 34 7.5
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Conclusion: Strengths & Limitations

Strenqgths

48

Unified multimodal integration: Seamlessly aligns
vision, language, and speech through progressive
three-stage training.

End-to-end speech interaction: Supports real-time
spedeclh input and output without external ASR/TTS
modules.

Strong visual reasoning: Maintains relatively strong
image and video understanding even after audio
integration.

Cross-lingual speech understanding:
Demonstrates robust ASR in both English and
Mandarin, showing language-agnostic generalization.

Efficient modular design: Modality-specific adapters
and frozen LLM backbone prevent catastrophic
forgetting during multi-stage tuning.

Weaknesses / Limitations

* Video reasonin

_ gap: Performance lags behind
Pro_ rietary models due to coarse frame sampling and
imited temporal modeling.

» Synthetic speech supervision: Reliance on TTS-

generated speech data limits diversity and
naturalness.

Limited data transparency: Internal speech corpora
are not publicly avallable, affecting reproducibility.

Scalability ceiling: Model size and compute budget
constrain its ability to match closed-source models
trained on multi-million-hour datasets.
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