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Architecture: Vision and Speech Encoders
• Vision Encoder (InternViT-300M): processes 

448×448 pixel images into 256 visual tokens; 
dynamic patching preserves fine details in 
high-res images.

• Video Processing: uniform frame sampling 
(4–16 frames) 

• Vision Adapter (2-layer MLP): projects high-
dimensional visual features into LLM token 
space 

• Speech Encoder (350 M params): 4× CNN 
downsampling + 24 Transformer layers (1024 
hidden size); uses Mel-filterbank inputs (25 ms 
window, 10 ms shift).

• Speech Adapter: extra 2× CNN downsampling 
to match dimension with the LLM.

• Together, these modules form a shared 
representation space for vision, text, and 
audio
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Problem Statement

• MLLMs excel at vision–language tasks, but struggle to extend these 
capabilities to speech, especially for open-sourced models.

• Speech integration is nontrivial since it encodes temporal dynamics, 
while vision encodes spatial structure, causing optimization conflicts 
across modalities.

• Conventional speech pipelines rely on modular Automatic Speech 
Recognition (ASR) + Text to Speech (TTS) systems, which introduce 
latency, loss of coherence, and fragmented learning.

• Core challenge: How to achieve end-to-end multimodal understanding and 
real-time speech interaction without degrading visual reasoning?

• VITA-1.5 tackles this via a progressive three-stage training strategy that 
incrementally aligns vision, language, and speech, while 
preserving performance in each modality. 
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VITA: Towards Open-Source 

Interactive Omni Multimodal 

LLM



Problem Statement
VITA: simultaneous processing of Video, 

Image, Text, and Audio modalities

Previous Methods:

1. Awakening is necessary

2. Uninterruptible

3. Audio Support Only

4. Lack of Open-Source Models
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Training Scheme
Base Model: Mixtral 8x7B

1. Stage I: 

Bilingual Instruction Tuning of LLM

2.  Stage II:

Multimodal Alignment

3.  Stage III:

Multimodal Instruction Tuning
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Training Scheme
Base Model: Mixtral 8x7B

1.   Stage I: 

Bilingual Instruction Tuning of LLM

Issue: 

Mixtral shows limited proficiency in 

understanding Chinese.

Goal: 

Enable bilingual (Chinese–English) skill.

Step 1 — Vocabulary expansion: 

Extend the base model’s vocab from 32,000 → 51,747 to include Chinese tokens.

Benefit of expansion: 

Fewer tokens per Chinese text segment → higher inference efficiency

Step 2 — Training data: 

Perform pure-text instruction tuning using 5M synthetic bilingual (Zh–En) pairs.

Outcome: 

Improved Chinese understanding while preserving English performance.10



Training Scheme
Base Model: Mixtral 8x7B

2. Stage II: 

Multimodal Alignment

Visual Alignment:
Backbone: InternViT-300M (448px input resolution).

Tokenization (images): 448×448 image 

→ 256 visual tokens via a 2-layer MLP connector

   → High-res images: Use dynamic patching

Videos treated as multi-image:

1) < 4 s: uniformly sample 4 frames total

2) 4–16 s: sample 1 frame per second

3) > 16 s: uniformly sample 16 frames total

No dynamic patching on video frames (prevents token explosion and keeps latency manageable).

Token budget intuition: per frame ≈ 256 tokens → total video tokens ≈ 256 × (sampled frames).

Exactly same in VITA 1.5!
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Training Scheme
Base Model: Mixtral 8x7B

2. Stage II: 

Multimodal Alignment

Visual Alignment:
Train Visual Connector on Image Description and VQ datasets

Visual Encoder, VITA (LLM) frozen, No Audio

Data Concatenation to 6K tokens for computational efficiency
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Training Scheme – Until Here
Base Model: Mixtral 8x7B

2. Stage II: 

Multimodal Alignment

Audio Modality:
Front-end features: 

Log-mel filterbank (mel-scale) 

 Breaks down the audio signal into individual frequency bands on 

 the mel frequency scale (nonlinear human perception for sound)

Encoder stack (~341M Params): 

4× CNN downsampling (reduces time resolution) 

24-layer Transformer

Connector: 

2-layer MLP: maps audio features into the LLM token space.
Exactly same in VITA 1.5!
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Training Scheme
Base Model: Mixtral 8x7B

2. Stage II: 

Multimodal Alignment

Audio Modality:
Token rate: ~12.5 Hz → 25 tokens per 2 seconds of audio.

Audio alignment tasks 

Trained components: encoder + connector

ASR objective:

WenetSpeech (~10k hours; mainly Chinese, multi-domain).

GigaSpeech (~10k hours; mainly English, high-quality).

Audio captioning objective:

AudioSet-SL subset of WavCaps (~400k clips with captions).

Purpose of alignment: teach the model to map audio → text space (transcribe/describe) so the LLM can reliably consume audio-conditioned 

tokens during downstream multimodal instruction tuning.
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Training Scheme
Base Model: Mixtral 8x7B

3. Stage III: 

Multimodal Instruction Tuning

Training Data

Text Speech mix: 

Randomly replace ~50% of text questions with 

TTS-spoken versions (e.g., GPT-SoVITS) to 

create audio queries.

System prompts: 

Distinct prompts per data type

Noisy audio construction: 

Synthesize non-query clips by TTS’ing negative sentences to teach ignore/silent behavior.
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Training Scheme
Base Model: Mixtral 8x7B

3. Stage III: 

Multimodal Instruction Tuning

Training Data

State tokens (input control):

• <1> Query Audio → answer

• <2> Noisy/Non-query Audio 

→ trained with "noisy" text targets; at runtime treated as EOS/no-reply;

• <3> Query Text → answer.
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Implementation

Duplex Pipeline

Non-awakening Interaction:
The model can be activated and respond to user audio questions

in the environment without the need for a wake-up word or 

button.

1) Real-time Tracking of Environmental Sounds

-VAD: Voice Activity Detection (SileroVAD)

2)  Filtering out noisy audio.

-The model should only respond to effective human query 

audio.

-State Token <2>: If the input is of a non-query type, the 

model directly terminates the inference
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Implementation
Duplex Pipeline
Audio Interrupt Interaction:
Enables users to interrupt the model’s generation at any time with 

new questions.

- Real-time Tracking and Filtering of External Queries:

While generating responses, the system must simultaneously 

track and filter external queries in real time.

- Answering New Questions:

When a new question emerges, the system must cease its 

current generation, consolidate the historical context, and 

respond to the present query.

Duplex Pipeline: 

1. Two VITA models are deployed concurrently. 

2. Under a typical condition, the Generation model answers user queries. 

Simultaneously, the Monitoring model detects environmental sounds during the generation process. 

3. The Monitoring model disregards non-query user sounds, i.e., noisy audio, but ceases the Generation model’s

progress when it identifies query audio. 

4.   When ceased, the Monitoring model subsequently consolidates the historical context and 

responds to the latest user query.
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Results WER: Word Error Rate

What it measures: how many word-level edits 

(substitutions S, deletions D, insertions I) your ASR 

needs to turn its hypothesis into the reference.

WER = (S+D+I) / N_words

Example (English):

 Ref: “the cat sat on the mat” (6 words)

 Hyp: “the cat sat on mat”

 Edits: 1 deletion (“the” before “mat”) → S=0,D=1,I=0

WER = 1/6 ≈ 16.7%.

CER: Character Error Rate

What it measures: same idea, but at the character 

level (good for languages without spaces, like 

Chinese).

CER = (S+D+I) / N_chars

Example (English):

 Ref: “kitten” (6 chars)

 Hyp: “sitting”

 Optimal edits (Levenshtein): k→s (S=1), e→i (S=1), 

add “g” (I=1) → total 3 edits.

 CER = 3/6 = 50%.
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Problem Statement 

Freeze-Omni suggests: 

“Achieving speech modality alignment while the LLM is frozen 
throughout the training process, and obtaining low latency speech 

dialogue capabilities while keeping the intelligence of the 
backbone LLM.”

For interaction with LLM in Speech Modality,

New method: 

“By the parameters of the LLM are more or less fine-tuned, 

Aligning the LLM with the speech modality”

Limitation :

• The forgetting problem to the LLM, resulting in a negative impact on its 

intelligence

• an obvious gap in performance between spoken question-answering and 

text-modality question-answering

Traditional method : 

“Use a cascaded approach of ASR + LLM + TTS”

Limitation : 

• High engineering complexity 

• High interaction latency.
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Overview
Modeling of Speech Output

Modeling of Speech Input

Design for Duplex 

Dialogue
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Overview

1) The alignment between the speech input to text output,

2) The alignment between the text input to speech output

3) By connecting these two components with the LLM 

The Ability of Speech Input to Speech Output

Modeling of Speech Output

Design for Duplex 

Dialogue

Modeling of Speech Input
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Stage 1 Stage 2 Stage 3

Modeling of Speech Input
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Dataset : 110,000h internal speech-text paired ASR data including both Chinese and English

Stage 1 Stage 2 Stage 3

Modeling of Speech Input

Parameter

Initialization

Utilizes a chunk-wise streaming speech 

encoder to transform the input speech 

features into a high-dimensional 

representation.

• A multi-layer convolution with 4-times 

down sampling and 24 layers of 

transformers with a hidden size of

1024.

• # of Parameter : 350M

Training :

• Loss Function: CTC 

• Optimizer : Adamw [16] optimizer with a warm-up learning rate scheduler 

• Learning Rate:

• Stage 1: 2e-4
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Stage 1 Stage 2 Stage 3

Modeling of Speech Input

Parameter

Initialization

Several trainable special tokens are added 

to the input part to guide the LLM 

in completing the training process at this stage

Dataset : 110,000h internal speech-text paired ASR data including both Chinese and English

Qwen2-7B-Instruct

Training :

• Loss Function: CTC 

• Optimizer : Adamw [16] optimizer with a warm-up learning rate scheduler 

• Learning Rate:

• Stage 1: 2e-4

• Stage 2: 1e-4

an adapter module maps the high-

dimensional

representation into the embedding 

space of the backbone LLM.

A multi-convolution layer with 2-times 

downsampling
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Modeling of Speech Input

initialization 

parameter

Stage 1 Stage 2 Stage 3

Dataset : the pairing of text input and speech output of the multi-round Q&A data 

   (60,000 multi-round Q&A data from moss-003-sft-data)

Training :

• Loss Function: CTC 

• Optimizer : Adamw [16] optimizer with a warm-up learning rate scheduler 

• Learning Rate:

• Stage 1: 2e-4

• Stage 2: 1e-4

• Stage 3: 6e-4
27



Results on Speech Input

Dynamic Chunk Training enables the model to handle both streaming and offline conditions by training with 

variable chunk sizes.

Although a fixed chunk (e.g., 4) yields slightly lower error rates without dynamics, the dynamic approach offers far 

better generalization and flexibility.
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Modeling of Speech Output
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Stage 1 Stage 2 Stage 3

NAR Prefix Speech Decoder

Modeling of Speech Output
Dataset : 3,000h of text-speech paired data generated by a zero-shot TTS system

Codec Model : TiCodec

• customized the configuration 

so that the size of the 

codebook is 1024 with a single-

codebook

• frequency : 40Hz
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Stage 1 Stage 2 Stage 3

NAR Prefix Speech Decoder

Modeling of Speech Output
Dataset : 3,000h of text-speech paired data generated by a zero-shot TTS system

• 4-layer Llama decoder layers with 

a hidden size of 896

• The NAR and AR speech 

decoders use the same 

parameters

• # of parameter : 120M

• Frequency : 24000Hz

Training :

• Loss Function: CTC 

• Optimizer : Adamw [16] optimizer with a warm-up learning rate scheduler 

• Learning Rate:

• Stage 1: Same as TiCodec

• Stage 2: 5e-5
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Training :

• Loss Function: CTC 

• Optimizer : Adamw [16] optimizer with a warm-up learning rate scheduler 

• Learning Rate:

• Stage 1: Same as TiCodec

• Stage 2: 5e-5

• Stage 3: 5e-5

Stage 1 Stage 2 Stage 3

NAR Prefix Speech Decoder

Modeling of Speech Output
Dataset : the pairing of text input and speech output of the multi-round Q&A data 

   (60,000 multi-round Q&A data from moss-003-sft-data)

• 4-layer Llama decoder layers with 

a hidden size of 896

• The NAR and AR speech 

decoders use the same 

parameters

• # of parameter : 120M

• Frequency : 24000Hz

lies in closely coupling the speech 

decoder with the output of the LLM 

to reduce the occurrence of bad cases
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Results on speech output

Experimental Setup
• 1,000 utterances were randomly sampled, using text tokens and hidden states from the LLM as inputs to the speech 

decoder.

• The generated speech was evaluated by ASR accuracy (CER%) using paraformer-zh, under different top-k decoding 

settings.

• Two models were compared: Speech Decoder w/o Prefix (stage 2) and Speech Decoder with Prefix NAR (stage 3).

Prefix NAR Decoder improves alignment with the LLM and reduces CER, showing better robustness 

across all top-k values.
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Design for duplex dialogue
use multi-task for chunk-level state prediction

State 0 : the current LLM can continue to receive speech

State 1 : the LLM can interrupt the user and perform the generate stage

State 2 : there is no need to interrupt the user

Stop sending speech streams to Freeze-Omni 

and reset the VAD module.

Using a multi-task method to optimize the cross-entropy loss of both the state classification layer and the LLM.
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Design for duplex dialogue

• Started several models simultaneously 

• A user’s VAD was triggered, the speech would be 

sent to the server in the form of chunks

• Server would be responsible for scheduling which 

idle model should respond to the current chunk

• Separated all the kv-cache and CNN cache of the 

speech encoder and LLM

"model as a server" strategy for the speech-to-speech dialogue system

chunk 1 chunk 2

Response 1

…

“Any model in the server could respond to 

any chunk of any user”
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Results on spoken question answering

• Freeze-Omni achieves much higher accuracy than other speech-based models.

• Its performance is close to text-only LLMs (Qwen2-7B-Instruct), showing strong alignment between 

speech and text understanding.

• Demonstrates that Freeze-Omni preserves reasoning ability even from spoken input.
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Analysis on end-to-end latency
• Statistical latency: Time from LLM interruption to the first generated speech PCM chunk (automatically measurable).

• Non-statistical latency: Real-time delay from the end of user speech to LLM’s response start (manually measured).

• Main delay occurs before the first text token generation (~0.5 s).

• Speech decoding is extremely fast (tens of ms).

• Overall, Freeze-Omni achieves real-time conversational speed (~1.2 s), practical for interactive speech 

dialogue.
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Conclusion

• Freeze-Omni: 
a text–audio multimodal LLM enabling low-latency speech-to-speech dialogue without fine-tuning the LLM.

• Achieves strong performance across multiple evaluation tasks while keeping the LLM frozen.

Provide pathway developing strong performance speech modules to next research

Stage 1 Stage 2 Stage 3Stage 1 Stage 2 Stage 3

Speech OutputSpeech Input
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Architecture: Speech Decoders

• End-to-end speech generation: replaces external 
TTS modules (VITA-1.0) with internal decoders + 
TiCodec for waveform synthesis.

• Challenge: LLM natively outputs text tokens 
only. The new decoders enable output of speech 
tokens.

• Two-stage design: (why?)

• (1) NAR Decoder: processes text tokens in parallel 
and outputs initial speech-token distribution for 
global semantics 

• (2) AR Decoder: refines speech tokens step-by-step 
and improves fluency and naturalness.

• Both decoders: 4 LLaMA-style transformer layers

• Balances speed (NAR) and quality (AR) 

• The output speech tokens are then passed to TiCodec, 
which decodes speech tokens into 24 kHz waveform.
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Overview of Model Training

Training Data Overview

• Diverse datasets spanning image, video, text, and 
speech, in both Chinese and English.

• Image Captioning: ShareGPT4V, ALLaVA-Caption 
etc.

• Image QA & Reasoning: LLaVA-150K, LVIS-
Instruct etc.

• OCR & Diagram Understanding: Anyword-3M etc.

• Video Tasks: ShareGemini and synthetic video-QA 
data 

• Speech Data: 110k hours speech–transcription, 
which trains and aligns speech encoder with the 
LLM. 3k hours text–speech, which trains speech 
decoder for end-to-end speech synthesis.

• Text-only Data

Three-Stage Progressive Training 
Strategy

• Challenge: Modality conflicts as 
training on speech can degrade visual 
understanding if done jointly.

• Solution: Gradual integration of 
modalities to preserve previously 
learned strengths.
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Stage 1: Vision-Language 
Training
Goal: Establish strong alignment between 
vision and language before adding 
speech.

Stage 1.1 Vision Alignment:

• Train only the visual adapter using 20 
% of caption data.

• Purpose: let LLM start linking visual 
features with text space.

Stage 1.2 Vision Understanding:

• Unfreeze vision encoder + adapter + 
LLM.

• Use all caption data to teach descriptive 
image-to-text generation.

Stage 1.3 Vision SFT (Instruction 
Tuning):

• Use full QA datasets + 20 % caption 
data.

• Fine-tune all modules to follow 
instructions and answer visual 
questions.

Outcome: Model develops rich visual 
grounding + instruction-following ability 
across images & videos.

LLM: Qwen2-7B

Vision Encoder: InternViT-300M
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Stage 2: Audio Input Tuning
Goal: Extend vision-language model to 
understand speech inputs.

Stage 2.1 Audio Alignment:

• Train on 11 k hrs speech–text pairs.

• (a) Speech encoder: CTC loss for 
speech-to-text alignment.

• (b) Freeze LLM and train speech 
adapter + guidance tokens to feed 
audio features into LLM.

Stage 2.2 Audio SFT:

• Adds spoken question-text answer 
tasks

• Train all modules (vision + audio 
encoders/adapters + LLM).

• Add modality classifier head to tell 
speech vs text inputs.

Outcome: Model gains robust speech 
comprehension, enabling real multimodal 
QA.
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Stage 3: Audio Output 
Tuning

Goal: Enable speech generation while preserving vision–
language and audio-understanding capabilities.

Training data: 3 000 hours of text–speech pairs 

Stage 3.1 Codec Training:

• Train TiCodec (single-codebook, 1024 entries).

• Encoder maps waveform to discrete speech tokens; 
decoder maps tokens back to waveform.

• During inference, only the codec decoder is used

Stage 3.2 NAR + AR Decoder Training:

• Freeze LLM weights.

• Use text embeddings (from LLM) and speech tokens 
(from codec encoder).

• NAR decoder: produces global semantic features in 
parallel.

• AR decoder: predicts high-fidelity speech tokens 
sequentially.

Outcome: Model gains end-to-end speech generation 
with real-time response and retained multimodal 
reasoning.
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Evaluation: Image Understanding
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Evaluation: Video Understanding
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Evaluation: Automatic Speech Recognition (ASR)
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Conclusion: Strengths & Limitations

Strengths

• Unified multimodal integration: Seamlessly aligns 
vision, language, and speech through progressive 
three-stage training.

• End-to-end speech interaction: Supports real-time 
speech input and output without external ASR/TTS 
modules.

• Strong visual reasoning: Maintains relatively strong 
image and video understanding even after audio 
integration.

• Cross-lingual speech understanding: 
Demonstrates robust ASR in both English and 
Mandarin, showing language-agnostic generalization.

• Efficient modular design: Modality-specific adapters 
and frozen LLM backbone prevent catastrophic 
forgetting during multi-stage tuning.

Weaknesses / Limitations

• Video reasoning gap: Performance lags behind 
proprietary models due to coarse frame sampling and 
limited temporal modeling.

• Synthetic speech supervision: Reliance on TTS-
generated speech data limits diversity and 
naturalness.

• Limited data transparency: Internal speech corpora 
are not publicly available, affecting reproducibility.

• Scalability ceiling: Model size and compute budget 
constrain its ability to match closed-source models 
trained on multi-million-hour datasets.
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