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Introduction
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What is autonomous driving?

3 areas of cognition + example subtasks:

Perception

- Object detection + tracking

- Localization

- Scene understanding

Prediction

- Trajectory prediction

- Interaction modeling

- Intent prediction

Planning

- Route planning

- Behavior planning

- Trajectory/motion planning4



• Bounding boxes
• Semantic map
• List of waypoints

Traditional Modular Approaches

Specialized modules for tasks + intermediate representations between modules

Some intermediate representations:
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Traditional Modular Approaches

Advantages

● Responsibility Separation: Easier development, debugging, and validation per module

● Flexibility: Modules can be individually upgraded, replaced, or modified

● Interpretability: Transparent and easier to explain or audit for safety and regulations.

Challenges

● Error Propagation: Mistakes in perception could cascade through the rest of the pipeline.

● Integration Complexity: Ensuring fast and consistent communication between modules is difficult.

● Pre-defined interfaces: Need to engineer specific, symbolic interfaces between modules 
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Currently deployed paradigm in AVs is modular approach



End-to-End Approach

Idea: Directly map sensor inputs to actions with neural network
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End-to-End Approach

● Replaces the traditional modular pipeline with a single neural network that directly maps sensor 

inputs → driving actions

● Learns all intermediate representations (perception, prediction, planning) jointly and implictly, 

rather than as separate, explicitly defined interfaces

● Avoids accumulating errors as seen in modular approach

● Enables better reasoning across environments and driving conditions

● Challenges:

○ Harder to interpret/debug for safety

○ High computational cost/inference latency

○ More complex training/evaluation

○ Still requires extensive closed loop testing (open-loop dataset evaluation may not correlate with 

real-world driving performance
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EMMA and the E2E Generalist Model

EMMA: End-to-End Multimodal Model for Autonomous Driving (Waymo, 2024).

● Able to jointly perform range of tasks across perception/prediction/planning

● Leverages Gemini, a large-scale VLM (harness pre-trained extensive world 

knowledge)

How does language help?

● Allows for task prompting via textual inputs

● Enables complex reasoning via chain-of-thought

● Utilize semantic relationships between objects

Authors claim co-training on upstream tasks will boost trajectory planning 

performance
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Methods
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EMMA Architecture overview

Receive text/vision then output future waypoints
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EMMA Architecture Overview

EMMA takes three main inputs in text/vision domain:

1. High-level driving command (derived from Google Maps)

a. “turn right”, “go straight”, “turn left”, etc

2. Ego-vehicle history

a. Set of plain text representing waypoint coordinates (x, y)

3. Surround-view camera videos capturing the driving scene

a. Series of RGB images from each camera

Primary task (Planning) output:

● Set of BEV (Birds Eye View) 2D waypoints in textual representation (x,y)
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Text to Float Conversion and Specialized Tokens

EMMA explores two key methods to represent continuous motion outputs:

1. Text-to-Float Conversion: Converts text-based predictions (like “move 5 meters ahead”) into numeric 

trajectory coordinates.

2. Specialized Tokens: Uses dedicated tokens to directly represent control or position values within the model 

vocabulary. Location space discretized via learned or manually defined scheme.

Why prefer text over special tokens (or vice versa)?
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Text to Float Conversion and Specialized Tokens

Author Findings: Text-to-float conversion also allows smoother integration with 

Gemini’s language backbone while maintaining numeric precision.

Textual Representation Pros

- Already leverages Gemini’s pre-training, no need to change 

vocabulary

- All tasks share same unified language space 

- Special tokens for spatial locations would require some 

discretization which introduces complexity

Textual Representation Cons

- Large numbers or many decimal places will require more 

tokens

- Potential for invalid outputs (e.g., “9.0a” or “1.i3”)

Pros/Cons of each method?
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Planning with Chain of Thought Reasoning

Model is asked in this order:

1) R1, Scene description: Describe weather, traffic situation, road conditions, etc

a) Example: It is currently raining and the road is very wet

1) R2, Critical objects: Identify and locate important objects (vehicle, human)

a) Example: Pedestrian at [9.01, 3.22], vehicle at [11.58, 0.35]

1) R3, Behavior description of critical objects

a) Example: The pedestrian is preparing to cross street.

1) R4, Meta driving decisions: A summary of driving plan given previous 

observations.

a) Example: I should keep my current low speed.

Would these be sufficient for good driving rationale?15



How are the COT captions created?

• Automated tool w/o human labels for scalability
• Leverage pre-existing expert prediction/perception models
• Meta driving decisions computed via some heuristic based on ego vehicle GT 

trajectory

12 categories of meta driving decisions16



EMMA - Generalist Training and Multi-Task 
Learning

Size Weighted Dataset 

Sampling:
17

EMMA trains on 3 other tasks



EMMA Generalist Training (Spatial Reasoning)

3D object detection:

Use a fixed text prompt (“detect every object in 3D”) to get the boxes:

Interesting finding: sorting 3D boxes by depth improves detection quality
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EMMA Generalist Training (Road Graph Estimation)
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Predicting Drivable Lanes:

Outputs an ordered set of polyline waypoints

where (x,y) are floats converted to text

What is a road graph?

Collection of road elements where the edges are relationships between each element



Polyline Ground Truth Label Generation

Fixed sampling vs Dynamic 
Sampling

Given a set of points how to choose which points 
to represent as the polyline?

Fixed sampling

- Set number of points to sample from a curve

Dynamic Sampling

- Variable # of points based on lane shape
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Global vs Ego-Origin Frame

What coordinate frame to represent the polyline 
points in?

Global frame

- Lane points derived from fixed HD map’s 
global coords

Ego-Origin Frame

- Points are sampled relative to the ego-origin 
frame each timestep



EMMA Generalist Training (Scene Understanding)

Identify Temporary Blockages:

Model is asked “Is the road head temporarily blocked?”

Text denoting other objects on road, Troad_user is given as another training input.
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Experiments
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Datasets - nuScenes

1. Contains 1000 scenes in diverse settings
2. Each scene spans over 20 seconds
3. Dataset provides full 360-degree view
4. Contains data from 6 cameras, 5 radars, 

and 1 LiDAR. 

Caesar et. al., “nuScenes: A multimodal dataset for autonomous driving”
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Datasets - WOMD and WOD

1. The Waymo Open Motion Dataset (WOMD) is primarily made 
for object trajectories

2. Contains 103,000 driving scenarios, further split into 1.1M 
examples.

3. 1 second for input context, 8 seconds for evaluation
4. Contains map features such as traffic signal states and lane 

characteristics
5. The authors also validate 3D object detection task on Waymo 

Open Dataset (WOD) benchmark for object detection, 
containing camera, LiDAR, and 3D box data.

LiDAR labels

Sun et. al., “Scalability in Perception for Autonomous Driving: Waymo Open Dataset”
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Datasets - Internal datasets

1. Internal motion planning dataset
a. 24 million scenes, each 30 seconds 

long
b. Sample one frame per scenario for 

training

1. Internal dataset for detection
a. 12 million examples

1. Internal road graph dataset
a. 8 million examples
b. Sample one example every 30 seconds
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End-to-End Motion Planning experiments

1. Simple training strategy - given 
camera images, ego vehicle 
history, and driving intent, predict 
the future ego waypoints.

2. MotionLM and Wayformer used as 
baselines.

3. MotionLM requires detailed input 
(agent location history, road 
graphs) while EMMA is relatively 
simple.

4. MotionLM & Wayformer sample 
trajectories to report final guess

1. Results on WOMD:
a. Models primarily trained 

on WOMD
b. EMMA+ represents 

WOMD + internal dataset
c. EMMA† represents PaLI-

X instead of Gemini

EMMA trained on WOMD beats MotionLM. EMMA 
w/ CoT doesn’t beat Wayformer for 5s prediction 
time. EMMA+ has best performance.
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End-to-End Motion Planning experiments

1. Authors compare 
performances on nuScenes

1. Predict over next 3 seconds 
based on 2 seconds of 
historical data, evaluate 
using L2 norm (lower the 
better) 

1. EMMA outperforms pre-
existing supervised and self-
supervised approaches, 
without using EMMA+
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Chain-of-Thought reasoning experiments 

1. Experiments conducted on internal datasets
2. Task: use 2 seconds of history to predict 5 

seconds into the future
3. CoT provides a 6.7% overall improvements (l2 

norm) over standard end-to-end planning 
4. Improves explainability of the model
5. The approach scales well with increasing data
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Visualizations
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Visualizations
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3D Object Detection

1. 3D object detection evaluated on the WOD 
benchmark

1. Since EMMA cannot generate confidence 
scores, its F1 scores are compared with the 
precision-recall curves of other models

1. EMMA achieves mediocre performance, but 
EMMA+ performs competitively

“With sufficient data and a large enough model, a 
multimodal approach can surpass specialized expert 
models in 3D detection quality”
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Road Graph Estimation

1. Creation of graph-based map of the 
road network by predicting group of 
polylines

1. Precision/recall measured by:

a. comparing lane polyline (ground-
truth) with predicted polylines

b. rasterizing polylines into a BEV grid 
with 1 meter resolution 

1. Road graph polylines defined by start 
and end points of each lane, with 
intermediate points for curvature
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Road Graph Estimation

1. Findings:
a. Dynamic point sampling is better than 

sampling fixed number of points -
i. dynamically adjust the number of 

points per polyline according to the 
curvature and length of the lane

b. Ego-origin aligned sample intervals are 
better than naively aligned sample 
intervals
i. instead of global coordinate frame, 

start from ego vehicle coordinate 
frame origin.

c. Padding improves performance:
i. padding targets to prevent early 

termination is highly effective

a. Punctuations improve quality:
i. e.g., "(x,y and x,y);..." instead of 

"xy xy;..."
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Scene Understanding

1. Task: to detect temporary 
blockages on roads

1. Baseline obtained by 
human annotation (‘filtering’ 
removes all ambiguous 
human data points)

1. Pre-training model on road 
graph estimation followed 
by fine-tuning  enhances 
performance.
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Generalist Training

1. EMMA Generalist is co-trained on primarily three tasks:
a. End-to-end planning
b. 3D object detection
c. Road graph estimation

2. Co-training on all three tasks provides a boost of 5.5% on detection.
3. Complementary tasks provide better performance after co-training.
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Related Works
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Evolution of End-to-End Driving Models

Early foundations: ALVINN (1988) pioneered end-to-end driving using shallow neural networks.

Deep learning era: DAVE-2 (2016) and ChauffeurNet (2019) leveraged deep architectures with perception + 

motion planning modules.

Multimodal & multi-task advances: Integrated multimodal inputs and learning from Codevilla et al. (2018), 

Prakash et al. (2021), Chitta et al. (2022).

Reinforcement learning approaches: Explored adaptive control via Chekroun et al. (2023), Chen et al. 

(2021), Kendall et al. (2019).

Unified planning frameworks: VAD, UniAD, PARA-Drive, and GenAD integrate perception, prediction, and 

planning in open-loop setups.

Key challenge:

● Many methods overfit to ego-vehicle status despite strong benchmark performance (AD-MLP, BEV-

Planner).

EMMA direction: Revisits simplicity of early E2E models, augmented with modern MLLMs for generalizable 

and explainable driving.

.
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Vision Language Model in Driving

Explainable and generalizable driving: Recent works combine VLMs and planning for transparent 

reasoning.

DriveGPT4 & LMDrive: Use LLMs for Q&A-style reasoning and control signal prediction.

Drive Anywhere: Adds patch-aligned feature extraction for text-based decision making.

OmniDrive: Employs a 3D vision-language model for spatial reasoning and motion planning.

Graph-based & CoT reasoning: Approaches like Sima et al. (2024), Tian et al. (2024), and Wang et al. 

(2024) use VQA and chain-of-thought for multi-task learning.

Modular architectures: LLM-Drive (2024) uses object-level vector inputs for planning.

Lightweight VLMs: EM-VLM4AD (2024) uses the T5 transformer + gated pooling attention

EMMA’s contribution: End-to-end fine-tuning of an MLLM for open-world, generalist driving

.
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Multimodal Large Language Models

MLLMs extend LLMs to handle multiple modalities: integrating vision, text, and context reasoning.

Early vision-language works: Donahue (2015), Vinyals (2015), Chen (2022) addressed image captioning 

and detection.

Scaling for generalization: Flamingo, CoCa, PaLI show strong few-shot and zero-shot performance across 

visual-language tasks.

Recent multimodal LLMs: Gemini, GPT-4o, and Llama3-V natively integrate vision + language.

Applications beyond driving: Used in robotic navigation (Zhang et al., 2024) and manipulation (Brohan et al., 

2023).

EMMA’s focus: Applying MLLMs for autonomous driving, enhancing reasoning, explainability, and 

generalization in a generalist E2E framework.

.
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GenAD: Generative End-to-End Autonomous 
Driving

- Uses specialized scene tokens

- VAE approach instead of an MLLM

- Simultaneous trajectory generation in latent space
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DriveGPT4

- Outputs lower-level control signals instead of trajectory waypoints
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EM-VLM4AD

- Much smaller T5 transformer used

- Aggregates camera views into a single embedding



Extensions beyond
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Key Innovations

Self-supervised training: Learns directly from large-scale driving logs without human labels

Spatio-temporal representation: Encodes multi-view video into a unified 3D + time volume

Scalable learning: Performance improves naturally with more unlabeled data

3D motion planning: Operates directly in vehicle coordinate space for accurate trajectory prediction

Multi-hypothesis decoding: Aggregates multiple predicted trajectories for stable planning

Hierarchical reasoning: Combines high-level decision making with low-level control

Generalization power: Outperforms supervised models across multiple driving benchmarks

.
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Why it Matters ?

● Reduces reliance on manual annotation and dataset curation

● Enables end-to-end learning that scales like LLMs

● Bridges perception and planning with rich 3D temporal reasoning

● Opens the door for truly generalist driving models across domains

● Improves adaptability to unseen environments and real-world variability

● Paves the way for safer, data-driven self-improving systems

.
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EMMA v/s S4 driver comparative outlook ?

Training: EMMA → supervised multi-task; S4-Driver → self-supervised from raw driving logs

Inputs: EMMA → cameras, LiDAR, maps, text; S4-Driver → multi-view video with 3D + temporal encoding

Planning & Reasoning: EMMA → Chain-of-Thought explanations; S4-Driver → hierarchical planning with 

trajectory aggregation

Outputs: EMMA → textual rationale + predicted trajectories; S4-Driver → 3D vehicle trajectories

Scalability: EMMA depends on labeled datasets; S4-Driver scales naturally with more unlabeled data

Generalization: EMMA → multi-task generalist; S4-Driver → strong zero-shot generalization with rich 

3D/temporal representation

Strengths: EMMA → explainable and versatile; S4-Driver → data-efficient and highly scalable

.
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NVIDIA Cosmos (for closed-loop eval)

Leverage world foundation models for realistic synthetic data generation

Omniverse for virtual world building and SITL simulation



Conclusion/Analysis
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Conclusion/Analysis

● EMMA demonstrates a generalist end-to-end driving model integrating perception, prediction, and planning.

● Multimodal inputs + language reasoning enable the model to understand complex driving scenes.

● Chain-of-Thought (CoT) improves interpretability of decision-making.

● Multi-task training enhances robustness across tasks and outperforms specialist models.

● Shows promise for scalable, generalist autonomous driving

.
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Strengths and Weakness

Strengths:

● Handles multiple driving tasks in one framework.

● Singular, streamlined and fully differentiable system

● Textual rationales increase explainability

● Chain of thought reasoning

● No reliance on HD maps

● Motion planning is self-supervised

● Strong benchmark performance

Weakness:

● Only can process 4 frames

● Could be more complex to train

● Cannot use LiDAR and radar input

● Verification of the predicted driving signals

● Model only evaluated on open-loop scenarios

● Expensive sensor simulation for closed-loop evaluation

● Challenges of onboard deployment

.
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Open Discussions
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Are these methods safe ? Can we roll it out 100 % 
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Are these methods safe ? Can we roll it out 100 % 
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Thank You
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