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What is autonomous driving?

3 areas of cognition + example subtasks:

Perception

- Object detection + tracking
- Localization

- Scene understanding

Prediction

- Trajectory prediction
- Interaction modeling
- Intent prediction

Planning

- Route planning

- Behavior planning
,~ Trajectory/motion planning
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Traditional Modular Approaches
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Specialized modules for tasks + intermediate representations between modules
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Advantages

e Responsibility Separation: Easier development, debugging, and validation per module
e Flexibility: Modules can be individually upgraded, replaced, or modified
e Interpretability: Transparent and easier to explain or audit for safety and regulations.

Challenges

e Error Propagation: Mistakes in perception could cascade through the rest of the pipeline.

e Integration Complexity: Ensuring fast and consistent communication between modules is difficult.

e Pre-defined interfaces: Need to engineer specific, symbolic interfaces between modules

Currently deployed paradigm in AVs is modular approach
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End-to-End Approach
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|ldea: Directly map sensor inputs to actions with neural network
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Replaces the traditional modular pipeline with a single neural network that directly maps sensor
inputs — driving actions

Learns all intermediate representations (perception, prediction, planning) jointly and implictly,
rather than as separate, explicitly defined interfaces

Avoids accumulating errors as seen in modular approach
Enables better reasoning across environments and driving conditions

Challenges:

Harder to interpret/debug for safety

High computational cost/inference latency

More complex training/evaluation

Still requires extensive closed loop testing (open-loop dataset evaluation may not correlate with
real-world driving performance

O O O O
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EMMA: End-to-End Multimodal Model for Autonomous Driving (Waymo, 2024).

e Able to jointly perform range of tasks across perception/prediction/planning
e Leverages Gemini, a large-scale VLM (harness pre-trained extensive world
knowledge)

How does language help?

e Allows for task prompting via textual inputs

e Enables complex reasoning via chain-of-thought
e Ultilize semantic relationships between objects

Authors claim co-training on upstream tasks will boost trajectory planning
performance
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EMMA Architecture overview

Router ] Driving rationale
* : Critical objects:
cyclist at [10.13,2.46), vehicle at [8.41,-3.01] Y
Hiah-level command Behavior description: Chain-of-thought reasoning
9 The cyclist is currently stopping at the intersection. Their anticipated trajectory indicates they

turn left, turn right, go straight, ...

might cross in front of you, potentially causing a collision if you don't take an evasive action.
The observed vehicle is currently ahead of you, moving in the same direction, and its future
trajectory suggests it will continue straight.

Meta driving decision:

Context: historical ego status
Keep speed.

anything describable in text

Planning: ego future waypoints

EMMA: End-to-End Multimodal Model

built on top of Gemini

Other capabilities

¥ y R

Spatial reasoning Road comprehension Scene understanding

Receive text/vision then output future waypoints
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Otrajcctm}' — g(Timcm: Tcgm V)

EMMA takes three main inputs in text/vision domain:

1. High-level driving command (derived from Google Maps)

a. “turn right”, “go straight”, “turn left”, etc
2. Ego-vehicle history

a. Set of plain text representing waypoint coordinates (X, y)
3. Surround-view camera videos capturing the driving scene

a. Series of RGB images from each camera

Primary task (Planning) output:
e Set of BEV (Birds Eye View) 2D waypoints in textual representation (x,y)

Georgia
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Text to Float Conversion and Specialized Tokens

EMMA explores two key methods to represent continuous motion outputs:

1. Text-to-Float Conversion: Converts text-based predictions (like “move 5 meters ahead”) into numeric
trajectory coordinates.

2. Specialized Tokens: Uses dedicated tokens to directly represent control or position values within the model
vocabulary. Location space discretized via learned or manually defined scheme.

Why prefer text over special tokens (or vice versa)?

text({(x;,y;)}) tokenize({(x;,y;)})

Georgia
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Text to Float Conversion and Specialized Tokens

Pros/Cons of each method?

Textual Representation Pros

- Already leverages Gemini’s pre-training, no need to change
vocabulary

- All tasks share same unified language space

- Special tokens for spatial locations would require some
discretization which introduces complexity

Textual Representation Cons

- Large numbers or many decimal places will require more
tokens

- Potential for invalid outputs (e.g., “9.0a” or “1.i3")

Author Findings: Text-to-float conversion also allows smoother integration with .
1 . , o , . GI. Georgia
Gemini’s language backbone while maintaining numeric precision. Tech




Planning with Chain of Thought Reasoning

Model is asked in this order:
1) R1, Scene description: Describe weather, traffic situation, road conditions, etc
a) Example: It is currently raining and the road is very wet

1) R2, Critical objects: Identify and locate important objects (vehicle, human)
a) Example: Pedestrian at [9.01, 3.22], vehicle at [11.58, 0.35]

1) R3, Behavior description of critical objects
a) Example: The pedestrian is preparing to cross street.

1) R4, Meta driving decisions: A summary of driving plan given previous
observations.
a) Example: | should keep my current low speed.

Would these be sufficient for good driving rationale? G Seorgia



How are the COT captions created?

- Automated tool w/o human labels for scalability

16

Leverage pre-existing expert prediction/perception models
Meta driving decisions computed via some heuristic based on ego vehicle GT
trajectory

Speed at (s | Speed at 1s | Speed at 3s || Meta Decision Description
stationary stationary stationary “Stay stationary.”
stationary MOVIing - “Start moving soon.”
stationary stationary moving “Stay stationary for now, then start moving soon.”
moving constant constant “Keep speed.”
moving constant Increase “Keep speed, then accelerate”
moving constant decrease “Kerp speed, then brake”
moving increasc Increase *Accelerate”
moving increasc constant *Accelerate, then keep high speed.”
Moving INCTease decrease * Accelerate, then brake”
moving decrease decrease “Brake”
moving decrease constant “Brake, then keep low speed.”
moving decrease Increase “Brake, then accelerate”

12 categories of meta driving decisions

Cr
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EMMA - Generalist Training and Multi-Task
Learning

Task Prompts and
Context (not shown) Camera Input (Video) Answers Decoded Visualization
( ) ( My future waypoints are i
What's my future driving S ]
actions? > x_lylandx 2y 2and
7 N
il h Detected objects in 3D: (x,
Detect everything in 3D? > ¥zl w,h, theta, vehicle), - - -~
( - ; The lanes | can drive h
Estimate the drivable > towardsare:(x I,y land -,
roadgraph? X 2,y 2, ..valid), .. I
= |
(E R y ( A :
—_— 4 5 ¥ =
i the road alead End-to-End Multimodal Model .| No,the road ahead is :
temporarily blocked? clear. I
R/—/ built on top of Gemini R/—) :
N ' 2) l
[more task prompts] i [more task answers]
\_\/—/ R/—-)

Size Weighted Dataset EMMA trains on 3 other tasks
Sampling: Diaskl|/ Zt Dy |
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EMMA Generalist Training (Spatial Reasoning)

3D object detection:

Opoxes = set{text(x,y, z,l,w, h,0, EES)}_

Use a fixed text prompt (“detect every object in 3D”) to get the boxes:

Ob(jxes — g(Tdetect_SDa V) 600

1200

0 250 500 750 1000 1250 1500 1750

Interesting finding: sorting 3D boxes by depth improves detection quality

Georgia
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Predicting Drivable Lanes:

Outputs an ordered set of polyline waypoints
" (}{1 ,y]_ and. .. and KI].,YI].) S " Ormulgruph — Q(T[:ﬁLiIIIH.L{: roadgraph, V)

where (x,y) are floats converted to text

What is a road graph?
Collection of road elements where the edges are relationships between each element

Georgia
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Polyline Ground Truth Label Generation

Fixed sampling vs Dynamic Global vs Eqo-Origin Frame

Sampling What coordinate frame to represent the polyline

Given a set of points how to choose which points ~ Points in?
to represent as the polyline?

Global frame
Fixed sampling - Lane points derived from fixed HD map’s
- Set number of points to sample from a curve global coords

Dynamic Sampling Ego-Origin Frame

- Points are sampled relative to the ego-origin

- Variable # of points based on lane shape :
frame each timestep

Georgia
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EMMA Generalist Training (Scene Understanding)

Identify Temporary Blockages:

Model is asked “Is the road head temporarily blocked?”

Otcmpﬂrary_blﬂcka.gﬂ — g(thmpﬂrary_hlﬂckagcg Tma.d_uscrg V)

Text denoting other objects on road, T .4 user IS given as another training input.

21
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Datasets - nuScenes

1. Contains 1000 scenes in diverse settings

2. Each scene spans over 20 seconds l-

3. Dataset provides full 360-degree view /

4. Contains data from 6 cameras, 5 radars,
and 1 LiDAR. N e

IS

h' I !‘“ ” “ LT

‘ | | Georgia
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Caesar et. al., “nuScenes: A multimodal dataset for autonomous driving”



1. The Waymo Open Motion Dataset (WOMD) is primarily made
for object trajectories

Contains 103,000 driving scenarios, further split into 1.1M
examples.

1 second for input context, 8 seconds for evaluation

Contains map features such as traffic signal states and lane
characteristics

The authors also validate 3D object detection task on Waymo
Open Dataset (WOD) benchmark for object detection,
containing camera, LIDAR, and 3D box data.

o B0 D

Figure 6. Parallelogram cover of all level 13 S2 cells touched by all ego poses in San Francisco, Mountain View, and Phoenix.

Sun et. al., “Scalability in Perception for Autonomous Driving: Waymo Open Dataset”

KITTI NuScenes Argo  Ours
Scenes 22 1000 113 1150
Ann. Lidar Fr. 15K 40K 22K 230K
Hours 1.5 5.5 1 6.4
3D Boxes 380K 1.4M 993k 12M
2D Boxes 80K - - 9.9M
Lidars 1 1 2 5
Cameras 4 6 9 5
Avg Points/Frame 120K 34K 107K 177K
LiDAR Features 1 1 1 2
Maps No Yes Yes No
Visited Area (km?) - 5 1.6 76

LiDAR labels

Georgia
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Datasets - Internal datasets

1.

1.

1.

25

Internal motion planning dataset

a. 24 million scenes, each 30 seconds

long

b. Sample one frame per scenario for

training

Internal dataset for detection
a. 12 million examples

Internal road graph dataset
a. 8 million examples

h CAamnla Anna avamnla Aavians 2N earAande

Dataset Name

Total Hours of Driving Number of Training Examples

nuScenes (Caesar et al., 2020) 6 18,686
WOMD (Chen et al., 2024a) 572 487,061
Internal Motion Planning Dataset 203,117 (355x) 24,374,046 (50x%)
WOD (Sun et al., 2020) 6 158,081
Internal Detection Dataset 6250 11,765,140
Internal Roadgraph Dataset 64,135 8,304,671

Georgia
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End-to-End Motion Planning experiments

26

Simple training strategy - given
camera images, ego vehicle
history, and driving intent, predict
the future ego waypoints.
MotionLM and Wayformer used as
baselines.

MotionLM requires detailed input
(agent location history, road
graphs) while EMMA is relatively
simple.

MotionLM & Wayformer sample
trajectories to report final guess

Results on WOMD:
a. Models primarily trained
on WOMD
b. EMMA+ represents
WOMD + internal dataset
c. EMMAT represents PalLl-
X instead of Gemini

Method L2 (m) 1s | L2 (m) 3s | L2 (m) 5s
MotionLM* (Seff et al., 2023) 0.045 0.266 0.696
Wayformer* (Nayakanti et al., 2023) 0.046 0.252 0.628
EMMAT (based on PaLl) 0.034 0.274 0.797
EMMA+T (based on PaLl) 0.031 0.239 0.680
EMMA 0.032 0.248 0.681
EMMA (w/ CoT) 0.030 0.241 0.664
EMMA+ 0.030 0.225 0.610
EMMA+ (w/ CoT) 0.027 0.203 0.543

Table 2: End-to-end motion planning experiments on an internal planning benchmark. CoT denotes equipping
with chain-of-thought reasoning (Eq. . EMMA+ achieves the best quality across different prediction time
horizons. EMMAT and EMMA+' denotes using PaLI-X (Chen et al., 2024d) as our base model, while the
default EMMA and EMMA+ use Gemini as the base model. *Enhanced, reproduced baselines.

Otra,jectory — g(Tintenta Tegoa V)

EMMA trained on WOMD beats MotionLM. EMMA
w/ CoT doesn’t beat Wayformer for 5s prediction
time. EMMA+ has best performance.
Geord
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End-to-End Motion Planning experiments

1.

27

Authors compare
performances on nuScenes

Predict over next 3 seconds
based on 2 seconds of
historical data, evaluate
using L2 norm (lower the
better)

EMMA outperforms pre-
existing supervised and self-
supervised approaches,
without using EMMA+

| Method | self-supervised? || L2 (m) 1s | L2 (m) 2s | L2 (m) 3s | Avg L2 (m) |
UniAD QHu et al., 2023 X 0.42 0.64 0.91 0.66
DriveVLM (Tian et al.,|2024) X 0.18 0.34 0.68 0.40
VAD (Jiang et al., 2023 X 0.17 0.34 0.60 0.37
OmniDrive (Wang et al., ‘20243,) X 0.14 0.29 0.55 0.33
Ego-MLP* (Zhai et al., 2023) v 0.15 0.32 0.59 0.35
BEV-Planner (Li et al.| 2024) % 0.16 0.32 0.57 0.35
EMMA (random init) v 0.15 0.33 0.63 0.37
EMMA v 0.14 0.29 0.54 0.32
EMMA+ v 0.13 0.27 0.48 0.29

Table 3: End-to-end motion planning experiments on nuScenes (Caesar et al., 2020). EMMA (random init)
denotes models are randomly initialized; EMMA denotes models are initialized from Gemini; EMMA+ denotes
models that are pre-trained on our mega-scale internal data. EMMA achieves state-of-the-art performance
on the nuScenes planning benchmark, outperforming the supervised (with perception and/or human labels)
prior art by 6.4% and self-supervised (no extra labels) prior art by 17.1%. *Ego-MLP results are taken from
a reproduced version in BEV-Planner.

Georgia
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Chain-of-Thought reasoning experiments

o W D=

28

Scene description | Critical object | Meta decision | Behavior description Relative improvements
: : baseline e2e planni
Experiments conducted on internal datasets 7 X X % R T
Task: use 2 seconds of history to predict 5 . . x X + L%
seconds into the future X v v X +5.7%
CoT provides a 6.7% overall improvements (12 il 7 - v +6.7%
norm) over Standard end'tO-end planning Table 4: Ablation study on chain-of-thought reasoning components. It improves end-to-end planning quality
: HE by up to 6.7% by combining all elements. In particular, driving meta-decision and critical objects contribute
Improves explalnablllty Of the mOdeI the improvements of 3.0% and 1.5%, respectively. The details of each component is described in Section

The approach scales well with increasing data

End-to-End Motion Planning Quality Scales with Training Data

\ 3% scenarios
52 -~ = 12% scenarios

52.05 ~ 30% scenarios
- 100% scenarios

M
50.13 \
48.57
5 — ———
46.79

a4 - 44.69

eval perplexity
& g

H
[o)]
'

' ‘ 10‘19 ' . ' ' . ‘ . ‘ 1620 ' ‘ ' . ‘ ' ‘ ‘ 10’21
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Visualizations

(g) A traffic controller signals to proceed through the intersection, and our predicted trajectory
aligns with the instruction.

(e) As a construction zone blocks the left lanes, our predicted trajectory suggests passing through
on the right, while the road graph estimation correctly identifies the blocked area.

(h) Our predicted trajectory suggests to stop as we approach an intersection with a yellow light,
demonstrating cautious and safe behavior.

2o S

(f) Our lane is blocked by construction cones, so our predicted trajectory suggests to move into the Figure 9: EMMA prediction visualization. Each row contains a scenario with our model’s predictions:
left lane, even though it’s in the opposite direction. EMMA captured the blockage and performed a end-to-end planning trajectory (left), 3D object detection (middle), and road graph estimation (right).
detour.

Georgia
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Visualizations

(i) While crossing an intersection, our predicted trajectory nudges slightly to the left due to nearby

ears 5t Bicyilist pastially Geenpying: our lans (k) A fleet of fast-moving motorcyclists pass by. The predicted trajectory suggests pausing to allow

them to pass safely. Notably, motorcyclists are accurately identified by our model (middle).

(j) Our model predicts a driving trajectory to patiently wait at a red light (left). The model also (1) A motorbike is moving on a narrow lane at night, and yields to the right. Our predicted trajectory
accurately predicts surrounding 3D objects (middle) and road graph with lane centers (right). adjusts, guiding us to pass safely by nudging slightly to the left.

Georgia
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3D Object Detection

1. 3D object detection evaluated on the WOD
benchmark

1. Since EMMA cannot generate confidence
scores, its F1 scores are compared with the
precision-recall curves of other models

1. EMMA achieves mediocre performance, but
EMMA+ performs competitively

“With sufficient data and a large enough model, a

multimodal approach can surpass specialized expert
models in 3D detection quality”

31
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Figure 5: Camera-primary 3D object detection experiments on WOD (Sun et al., 2020) using the standard
LET matching (Hung et al., 2024). EMMA+ achieves competitive performance on the detection benchmark in
both precision/recall and F1-score metrics. Compared to state-of-the-art methods, it achieves 16.3% relative
improvements in vehicle precision at the same recall or 5.5% recall improvement at the same precision.
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Road Graph Estimation

1. Creation of graph-based map of the
road network by predicting group of
polylines

1. Precision/recall measured by:

a. comparing lane polyline (ground-
truth) with predicted polylines

b. rasterizing polylines into a BEV grid
with 1 meter resolution

1. Road graph polylines defined by start

and end points of each lane, with
intermediate points for curvature

32

Ablation Study on Roadgraph Estimation
5

0- —

m- : -

) 7

) 1 T

o 20- 17 18

= 24 24

) 27

@ 29

E 40 - 40

=

[

0 60- 59

g 63

b = lane-level precision
U go- 77 lane-level recall
©

B pixel-level precision
pixel-level recall
100 -

dding uation
. on-pa ¢ punc
ding " emant!
pad 05

Figure 6: Ablation study on road graph estimation. To evaluate the influence of different components in
our road graph estimation model, we ablate each configuration and measure the corresponding impact on
quality. Dynamic sampling (leftmost) of road graph polylines based on lane curvature and length proves to
be the most significant factor, leading to a substantial 70% to 90% change in lane-level precision and recall.
In contrast, aligning the model with a language-like representation, i.e., semantic punctuation (rightmost),
has a more modest effect, contributing to only <10% change in precision and recall of any metric.
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Road Graph Estimation

—

33

Findings:
Dynamic point sampling is better than
sampling fixed number of points -

i. dynamically adjust the number of
points per polyline according to the
curvature and length of the lane

Ego-origin aligned sample intervals are
better than naively aligned sample
intervals

i. instead of global coordinate frame,
start from ego vehicle coordinate
frame origin.

Padding improves performance:

I. padding targets to prevent early

termination is highly effective

Punctuations improve quality:
. e.g., "(x,y and x,y);..." instead of
"Xy xy;..."

Ablation Study on Roadgraph Estimation
5
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Figure 6: Ablation study on road graph estimation. To evaluate the influence of different components in
our road graph estimation model, we ablate each configuration and measure the corresponding impact on
quality. Dynamic sampling (leftmost) of road graph polylines based on lane curvature and length proves to
be the most significant factor, leading to a substantial 70% to 90% change in lane-level precision and recall.
In contrast, aligning the model with a language-like representation, i.e., semantic punctuation (rightmost),
has a more modest effect, contributing to only <10% change in precision and recall of any metric.
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Scene Understanding

34

1.

Task: to detect temporary
blockages on roads

Baseline obtained by

human annotation (‘filtering’

removes all ambiguous
human data points)

Pre-training model on road
graph estimation followed
by fine-tuning enhances
performance.

Temporary Blockage Detection

o
o
o

accuracy (%)
-} ~ ~ @
w [=] w o
c © © o

@
=4
o

= = Human baseline + filtering
== = Human baseline

w
b
o

pret(a'ln\ng

mix A \ond

Figure 7: Scene understanding experiments. direct fine-tuning denotes solely using the temporal blockage
data during fine-tuning; naive mixture denotes co-training this scene task with road graph estimation;
mix + short pretraining denotes pre-training on road graph esitmation first, and then fine-tune on the
mixture of both tasks; mix + long pretraining denotes a longer pre-training before fine-tuning. The naive

fine-tuning is already close to strong human baseline, but long-pretraining with training mixture can further
boost the quality.
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Generalist Training

1.

EMMA Generalist is co-trained on primarily three tasks:
a. End-to-end planning
b. 3D object detection
c. Road graph estimation

2. Co-training on all three tasks provides a boost of 5.5% on detection.
3. Complementary tasks provide better performance after co-training.

35

Relative improvement over single task
e2e planning | 3D detection | road graph e2e planning detection road graph
v v - +1.6% (£1.0%) | +2.4% ( +0.8%)
v v +1.4% (£2.8%) | +5.6% (£1.1%) -
v v —1.4% (£2.9%) - +3.5% (£0.9%)
v v v +1.4% (+2.8%) | +5.5% (£1.1%) | +2.4% (+£0.8%)

Table 5: Generalist co-training experiments. (+x) indicates standard deviation. By co-training on multiple
tasks, EMMA gains a broader understanding of driving scenes, enabling it to handle various tasks at inference
time, while enhancing individual task performance. Notably, certain task pairings yield greater benefits than
others, suggesting these tasks are complementary. Co-training all three tasks together yields the best quality.

Cr
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Early foundations: ALVINN (1988) pioneered end-to-end driving using shallow neural networks.

Deep learning era: DAVE-2 (2016) and ChauffeurNet (2019) leveraged deep architectures with perception +
motion planning modules.

Multimodal & multi-task advances: Integrated multimodal inputs and learning from Codevilla et al. (2018),
Prakash et al. (2021), Chitta et al. (2022).

Reinforcement learning approaches: Explored adaptive control via Chekroun et al. (2023), Chen et al.
(2021), Kendall et al. (2019).

Unified planning frameworks: VAD, UniAD, PARA-Drive, and GenAD integrate perception, prediction, and
planning in open-loop setups.

Key challenge:

e Many methods overfit to ego-vehicle status despite strong benchmark performance (AD-MLP, BEV-
Planner).

Georgia
EMMA direction: Revisits simplicity of early E2E models, augmented with modern MLLMs for generalizat')rl‘ﬁg:h



Explainable and generalizable driving: Recent works combine VLMs and planning for transparent
reasoning.

DriveGPT4 & LMDrive: Use LLMs for Q&A-style reasoning and control signal prediction.
Drive Anywhere: Adds patch-aligned feature extraction for text-based decision making.
OmniDrive: Employs a 3D vision-language model for spatial reasoning and motion planning.

Graph-based & CoT reasoning: Approaches like Sima et al. (2024), Tian et al. (2024), and Wang et al.
(2024) use VQA and chain-of-thought for multi-task learning.

Modular architectures: LLM-Drive (2024) uses object-level vector inputs for planning.

Lightweight VLMs: EM-VLM4AD (2024) uses the T5 transformer + gated pooling attention

EMMA’s contribution: End-to-end fine-tuning of an MLLM for open-world, generalist driving GTeorhgia
ec



MLLMs extend LLMs to handle multiple modalities: integrating vision, text, and context reasoning.

Early vision-language works: Donahue (2015), Vinyals (2015), Chen (2022) addressed image captioning
and detection.

Scaling for generalization: Flamingo, CoCa, PalLl show strong few-shot and zero-shot performance across
visual-language tasks.

Recent multimodal LLMs: Gemini, GPT-40, and Llama3-V natively integrate vision + language.

Applications beyond driving: Used in robotic navigation (Zhang et al., 2024) and manipulation (Brohan et al.,
2023).

EMMA'’s focus: Applying MLLMs for autonomous driving, enhancing reasoning, explainability, and
generalization in a generalist E2E framework.

Georgia
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GenAD: Generative End-to-End Autonomous
Drlvmg
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DriveGPT4

Input video frames:

- vehicle?” "Why does the vehicle
behave in this way?”

Visual Encoder «&»

Human questions:

“What 1s the current action of the

bbbl TLIIT

Large Language Model Stage 2:

DriveGPT4 C%C‘fﬁ‘?c%c% Cix%éﬁc%éf

Text De-Tokenizer

; Predicted control signals:
“The vehicle is driving : @y | i.e., speed and turning angle
forward.” "Because the road is

clear with no obstacles forward.” @\

DriveGPT4 answers:

Stage 1: Pretraining (Alignment)

702K Videos 595K Images

Stage 2: Mix-finetune (Instruction-tuning)

73K Videos 150K Images
+
16K
BDD-X QAs 40K ChatGPT QAs

t

ChatGPT

- Outputs lower-level control signals instead of trajectory waypoints
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EM-VLM4AD

Generated Answer: “Many cars are parked, and many are moving”
Stage 1: i

T5-Medium/T5-Large stage2: @

CMulti-View Imlge Embeddmg)( Text EmI)edding )
\

Gated Pooling Attention + Projection Layer 6

Individual View
Embeddings T (T)

Image Patch Eneoder

- Much smaller T5 transformer used
- Aggregates camera views into a single embedding

42

Question: What is the
status of the cars that
are to the back of the
ego car?
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S4-Driver: Scalable Self-Supervised Driving Multimodal Large Language Model
with Spatio-Temporal Visual Representation

Yichen Xie!'""* Runsheng Xu?* Tong He? Jyh-Jing Hwang? Katie Luo®
Jingwei Ji? Hubert Lin? Letian Chen®'" Yiren Lu? Zhaoqi Leng?
Dragomir Anguelov? Mingxing Tan?
1 UC Berkeley, 2 Waymo LLC, 2 Cornell University, ? Georgia Institute of Technology
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Self-supervised training: Learns directly from large-scale driving logs without human labels

Spatio-temporal representation: Encodes multi-view video into a unified 3D + time volume

Scalable learning: Performance improves naturally with more unlabeled data

3D motion planning: Operates directly in vehicle coordinate space for accurate trajectory prediction

Multi-hypothesis decoding: Aggregates multiple predicted trajectories for stable planning

Hierarchical reasoning: Combines high-level decision making with low-level control

Generalization power: Outperforms supervised models across multiple driving benchmarks
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Reduces reliance on manual annotation and dataset curation

Enables end-to-end learning that scales like LLMs

Bridges perception and planning with rich 3D temporal reasoning
Opens the door for truly generalist driving models across domains
Improves adaptability to unseen environments and real-world variability

Paves the way for safer, data-driven self-improving systems
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Tech



Training: EMMA — supervised multi-task; S4-Driver — self-supervised from raw driving logs

Inputs: EMMA — cameras, LIDAR, maps, text; S4-Driver — multi-view video with 3D + temporal encoding

Planning & Reasoning: EMMA — Chain-of-Thought explanations; S4-Driver — hierarchical planning with
trajectory aggregation

Outputs: EMMA — textual rationale + predicted trajectories; S4-Driver — 3D vehicle trajectories

Scalability: EMMA depends on labeled datasets; S4-Driver scales naturally with more unlabeled data

Generalization: EMMA — multi-task generalist; S4-Driver — strong zero-shot generalization with rich
3D/temporal representation

Georgia
Tech

Strenaths: EMMA — explainable and versatile: S4-Driver — data-efficient and highlv scalable



Omniverse

Leverage world foundation models for realistic synthetic data generation
Omniverse for virtual world building and SITL simulation
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EMMA demonstrates a generalist end-to-end driving model integrating perception, prediction, and planning.
Multimodal inputs + language reasoning enable the model to understand complex driving scenes.
Chain-of-Thought (CoT) improves interpretability of decision-making.

Multi-task training enhances robustness across tasks and outperforms specialist models.

Shows promise for scalable, generalist autonomous driving
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Strengths:

Handles multiple driving tasks in one framework.
Singular, streamlined and fully differentiable system
Textual rationales increase explainability

Chain of thought reasoning

No reliance on HD maps

Motion planning is self-supervised

Strong benchmark performance

Weakness:

Only can process 4 frames

Could be more complex to train

Cannot use LiDAR and radar input

Verification of the predicted driving signals

Model only evaluated on open-loop scenarios
Expensive sensor simulation for closed-loop evaluation
Challenges of onboard deployment
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Are the ethods safe ? Can we roll it out 100 %
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Are these methods safe ? Can we roll it out 100 %

LOCAL NEWS

Waymo crash under investigation in 3 yewswee

?hoemx Elon Musk Reacts to San

According to Waymo, its vehicle was hit by the second vehicle involved Francisco Cat Being Killed by
in the crash.

Waymo Driverless Car

Waymo’s robotaxis are coming to three
new cities

/ San Diego, Las VVegas, Detroit

?
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