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Motivation
Step 1: Gather the Ingredients
First, I will open the refrigerator. I can see the eggs and milk I will need. I will 
take out the carton of Organic Valley milk located on the turntable and a carton 
of eggs from the shelf just above the crisper drawers. However, I do not see 
any bread in the refrigerator. Please let me know where the bread is located so 
I can retrieve two slices for your toast.
Step 2: Heat the Milk
I will pour a serving of the Organic Valley milk into a microwave-safe mug. 
Then, I will place it in the microwave and heat it for approximately 60 to 90 
seconds, ensuring it is pleasantly warm but not boiling.
Step 3: Toast the Bread
While the milk is heating, I will take the two slices of bread you've directed me 
to and place them in the toaster. I will set the toaster to a medium setting to 
achieve a golden-brown color.
Step 4: Fry the Eggs
Next, I will place a frying pan on the stovetop over medium heat and add a 
small amount of butter or oil. I will then crack two eggs into the pan and cook 
them to your preferred style. Please let me know if you would like them sunny-
side up, over easy, or scrambled.
Step 5: Serve Your Breakfast
Once the toast is ready, I will place it on a plate. The fried eggs will then be 
placed beside the toast. Finally, I will carefully retrieve the warm milk from the 
microwave. Your breakfast of hot milk, toasted bread, and two fried eggs will 
then be ready for you to enjoy.

Here's my fridge. Let's say you are a robot and I want you to 
cook a breakfast for me. The breakfast includes hot milk, 
toasted bread and 2 fried eggs.
Please provide me with step-by-step instructions of how you 
are going to prepare that for me.



Problem Statement

• The VLMs are powerful tools!
• Spatial/semantic reasoning, Open-vocabulary recognition, …

• What if robots can…?



Problem Statement

HOW?



Potential Approach

Train Robot VLMs

not grounded to real worldInsufficient data

Directly use VLMs

RT-1

RT-2

PaLM-E+High level planner + 
low level controller

A unified end-to-end model
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Building a Generalist Robot "Apprentice"

The Goal:
• Leverage large-scale data to build a robust robot policy that can 

generalize well across several different axes
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RT-1 Recipe: A Massive Dataset + A Big, Fast Brain
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RT-1 Recipe: A Massive Dataset
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RT-1 Recipe: A Big, Fast Brain

• Inputs:
o History of past 6 images
o Task specified in natural language

• Outputs:
o 11D action discretized into 256 bins:

▪ x, y, z, roll, pitch, yaw for the end 
effector

▪ Gripper closedness command
▪ x, y, yaw for the base
▪ A discrete variable to switch 

between 3 modes: Controlling arm, 
base or termination the episode
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• ImageNet pre-trained EfficientNet-B3 used 
to encode input image

• Transformer based Universal Sentence 
Encoder was used to encode language 
instructions

• FiLM Layers used to condition image 
features on language instruction through 
affine transformations

RT-1 Recipe: A Big, Fast Brain

11



• ImageNet pre-trained EfficientNet-B3 used 
to encode input image

• Transformer based Universal Sentence 
Encoder was used to encode language 
instructions

• FiLM Layers used to condition image 
features on language instruction through 
affine transformations

RT-1 Recipe: A Big, Fast Brain

12



• TokenLearner used to compress to 8 tokens 
per image

• 8 tokens per image (48 total) concatenated 
together and passed to the transformer

• Output of transformer projected onto the 
256 discretized bins for each action

RT-1 Recipe: A Big, Fast Brain

13



• TokenLearner used to compress to 8 tokens 
per image

• 8 tokens per image (48 total) concatenated 
together and passed to the transformer

• Output of transformer projected onto the 
256 discretized bins for each action

RT-1 Recipe: A Big, Fast Brain

14



Results: Baselines Used

BC-Z

Gato
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• RT-1 achieves 97% accuracy on seen tasks, 
25% higher than next best  model

• RT-1  completes 76% of the never-before-
seen instructions, 24% more than the next 
best baseline

• RT-1 demonstrates robustness completing 
83% and 59% of the distractor and 
background robustness tasks, 36% and 18% 
higher than next best alternative

Results: Generalization
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• RT-1 was tested on generalization to 
realistic kitchen environments. Three levels 
of generalization were defined as follows:
o L1 for generalization to the new 

counter-top layout and lighting 
conditions

o L2 for additionally generalization to 
unseen distractor objects

o L3 for additional generalization to 
drastically new task settings, new task 
objects or objects in unseen locations 
such as near a sink

Results: Generalization

19



20



• To test whether RT-1 can learn from sim 
data, task demonstrations with a select few 
objects were removed from the training 
data

• Demonstrations were added for the 
removed objects in sim on selected skills

• RT-1 does not lose much performance on 
tasks with real demonstrations

• RT-1 improves by 64% on tasks with 
demonstrations seen in sim only

• RT-1 improves completion rate by 26% on 
tasks involving objects only seen in sim

Results: Adding Sim Data
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• To test whether RT-1 can benefit from data 
from other robots, demonstrations of Kuka 
IIWA robot picking up objects 
indiscriminately from a bin was added

• RT-1 does not lose much performance on 
tasks from RT-1 dataset

• RT-1 improves by 17% (almost 2x) on the 
bin-picking eval when trained on 
heterogeneous data

Results: Adding data from other robots
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• RT-1 was evaluated on long horizon tasks in 
real kitchen environments

• SayCan was used as high-level planner for 
the long horizon tasks

• RT-1 achieves 67% execution accuracy in 
both kitchen environments

• BC-Z performs well on kitchen 1 but does 
not generalize well to kitchen 2

Results: Long Horizon Tasks
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• Pre-training EfficientNet-B3 on 
ImageNet is crucial for 
generalization

• Switching from continuous 
action space to discrete action 
space improve overall 
performance significantly by 
capturing multi-modal action 
distributions

Ablations
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Problem Statement

• RT-1 can follow simple 
language commands

• However, it suffers in 
complex scene/text 
command understanding

• Solution: Feed multimodal 
data into LLM to break 
down complex tasks for 
controllers like RT-1
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Architecture
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Architecture
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Architecture

Interleaved 
embeddings
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Architecture

RT-1, Gato, etc.
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Multimodal Input Representations

Observation space
(image, robot joint 

values, object states, 
etc.)

q vectors in the LLM 
embedding space
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Multimodal Input Representations

State Estimation Vector

𝑠: state of objects in the scene

𝜙𝑠𝑡𝑎𝑡𝑒 = 𝑀𝐿𝑃
𝑥 = 𝜙𝑠𝑡𝑎𝑡𝑒 𝑠

Vision Transformer

𝜙𝑉𝑖𝑇
1) Feed image into ViT

2) Learned affine transform to 
match LLM dims

Object-Centric

Given GT object location masks, 
run 𝜙𝑉𝑖𝑇 on each masked image

Object Scene Representation 
Transformer (OSRT)

1) OSRT (𝜙𝑂𝑆𝑅𝑇) gets neural 
scene representation of 

each object
2) MLP to match dims

Training
LLM
• Pretrained vs. not
• Frozen vs. unfrozen
ViT
• Pretrained vs not
MLP or Affine transforms
• Always trained
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Environments
Task-and-Motion-Planning (TAMP)

• q1-q4: Questions about objects 
in the scene

• p1-p2: Question for how to 
generate a plan

• Test different input 
representations

NOTE: Never executed on a robot!

Language-Table

• Pushing objects on a table
• Very diverse language 

commands

• ViT is used as input 
representation

Mobile Manipulation

• Navigating a kitchen
• Similar to RT-1 

environment

• ViT is the input representation
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Experiments and Results

1. Performance on VL/language tasks?
• PaLM-E is essentially PaLM + ViT. How does it do in VL tasks?

• When PaLM-E is trained, is language performance retained?

2. Input Representations
• How do different input representations affect performance?

3. Positive Transfer
• Does co-training on all robot data + VL data improve performance?

4. Does it work on real robots?
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Visual-Language/Language Results

SOTA performance on OK-VQA Bigger model → less forgetting
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Input Representation Results - TAMP
Table: PaLM-E trained on just TAMP environment
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Input Representation Results - TAMP
Table: PaLM-E trained on just TAMP environment

• For 3-5 objects: Results are pretty similar for 
different input representations
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Input Representation Results - TAMP
Table: PaLM-E trained on just TAMP environment

• For 3-5 objects: Results are pretty similar for 
different input representations

Table: PaLM-E trained on just 1% of TAMP data
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Input Representation Results - TAMP
Table: PaLM-E trained on just TAMP environment

• For 3-5 objects: Results are pretty similar for 
different input representations

Table: PaLM-E trained on just 1% of TAMP data

When 1% of data is TAMP:
• OSRT seems to work the best
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Does Co-Training Improve Performance?

41



Does it work?

Zero-shot Results

Push red blocks to the coffee cup

Push green blocks to the turtle
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Going back…
Task-and-Motion-Planning (TAMP)

• q1-q4: Questions about objects 
in the scene

• p1-p2: Question for how to 
generate a plan

• Test different input 
representations

NOTE: Never executed on a robot!

Language-Table

• Pushing objects on a table
• Very diverse language 

commands

• ViT is used as input 
representation

Mobile Manipulation

• Navigating a kitchen
• Similar to RT-1 

environment

• ViT is the input representation

Both use ViT for input representations! Why?
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RT-2
Vision-Language-Action Models 

Transfer Web Knowledge to Robotic Control

2023-8-1



Related Works

• Vision-Language Models

• Pre-training for robotic manipulation



Vision-Language Models

Encoder–Decoder VLM

55B/5B

Decoder-only VLM

12B



Pre-training for Robotic Manipulation

• Vision only / Language only / VLMs for high-level tasks

• VLMs for low-level controls
• E.g. CLIPort and MOO (Constrained)

• RT-2 aims at: Using VLMs for low-level controls while avoid 
having too many constraints.

CLIPort
(two-step primitive)

MOO (Specific instruction structure)



Problem Statement

• In this paper we ask: 

• Can large pre-trained vision language models be integrated directly 
into low-level robotic control to boost generalization and enable 
emergent semantic reasoning?



Approach



Approach - Action as text tokens



Approach - Robot action fine-tune

Continuous Action Space

Discretize to 256 bins Represent as 256 integers

Associate corresponding tokens

PaLI-X: Integers up 1000 have unique tokens
PaLM-E: No tokens for numbers, just replace 256 least used tokens

During inference time, instead of generating tokens, 
the VLM is enforced to sample from valid action tokens



Approach – co-fine-tune Question: Why all robot tasks 
in the form of VQA?

RT-2-PaLI-X: 50% RT-1 data + 50% PaLI-X data 

RT-2-PaLM-E: 66% RT-1 data + 33% PaLM-E data 



Generalization in Robot Learning
• Long-standing goal: 

• Have robotic controllers that can broadly succeed in a variety of scenarios



Experiments and Results

• 1. How does RT-2 perform on seen tasks and more importantly, 
generalize over new objects, backgrounds, and environments?

• 2. Can we observe and measure any emergent capabilities of RT-2? 

• 3. How does the generalization vary with parameter count and 
other design decisions? 

• 4. Can RT-2 exhibit signs of chain-of-thought reasoning similarly to 
vision-language models?
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Experiments and Results

• 1. How does RT-2 perform on seen tasks and more importantly, 
generalize over new objects, backgrounds, and environments? 

•R3M – a strong egocentric, representation-learning baseline that gives good visual features but isn’t a full VLM policy.

•VC-1 – a vision model pre-trained specifically for robotics, used here as a robotics-aware perception baseline.

•RT-1 – the previous robotics transformer trained only on robot demonstrations, without internet-scale VLM pretraining.

•MOO – a two-stage setup where a VLM helps pick the object, but the actual control policy is separate from the VLM.



Experiments and Results

•  2. Can we observe and measure any emergent capabilities of RT-2?

• An emergent capability is a new capability that appears in a model only after 
large‐scale pretraining and was not explicitly taught or present in smaller‐scale 
models. 

• Transferring knowledge from VLMs



2. Emergent capabilities-Qualitative Evaluations

semantic understanding 
and basic reasoning physical understanding



2. Emergent capabilities-Quantitative Evaluations

https://robotics-transformer2.github.io/#demo

https://robotics-transformer2.github.io/#demo
https://robotics-transformer2.github.io/#demo
https://robotics-transformer2.github.io/#demo


2. Emergent capabilities-Quantitative Evaluations



Ablations
•  3. parameter count and other design decisions



• 4. CoT Reasoning (with RT-2-PaLM-E variant)

Ablations



• 4. CoT Reasoning

Ablations



Limitations & Societal Implications

1. Doesn't generate new motions

2. High computation cost (high latency)



Limitations & Societal Implications

3.   Example Failure Cases

• Not generalizing to unseen object dynamics

• Grasping objects by specific parts, such as the handle
• Novel motions beyond what was seen in the robot data, such as 

wiping with a towel or tool use 
• Dexterous or precise motions, such as folding a towel
• Extended reasoning requiring multiple layers of indirection



Limitations & Societal Implications

What else?

Long horizon tasks?

Closed source

Discussion: Trade-off continuous/discrete actions
How should the VLM/VLA interact with action space?



Thank You!
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