Embodied Al

Roman Mineyev, Haoran Liu, Pranav Rambhia



Motivation

i
QS i
;'_“ » \
] A ’ v

them to your preferred style. Please let me know if you would like them sunny-
siderp savar tradgerlsetsragdiou are a robot and | want you to

Sterok: dymeicfasBfeakfast The breakfast includes hot milk,
OpsssifitBreid 9ady2 fwdlPlaggdt on a plate. The fried eggs will then be

pii‘Feee?sEeﬁHﬁ/FHE 'i‘r\aes‘iwf‘cﬂaélﬁ/e b‘”ﬂk/ %acrc?E)“#Ys'E?Hé‘EYSﬁE‘ SPRBR B rom the

microwaye, Your rea as[th f}ot m| toaste bread, and two fried eggs will
re|§0|n§ g are at Tor
e ready for you to enjoy.



Problem Statement

* The VLMs are powerful tools!
 Spatial/semantic reasoning, Open-vocabulary recognition, ...

e What if robots can...?



Problem Statement

HOW?



Potential Approach

Train Robot VLMs Directly use VLMs
Insufficient data not grounded to real world

High level planner + +
low level controller
A unified end-to-end model






Building a Generalist Robot "Apprentice”

The Goal:
. Leverage large-scale data to build a robust robot policy that can
generalize well across several different axes

Ry .
Trained on 700+ tasks, 130k demonstrations Generalizes to tasks

Long-horizon tasks New data sources




RT-1 Recipe: A Massive Dataset + A Big, Fast Brain

Instruction “Time
Pick appla from 1op draser and place on countar Smagea
Images
& images

300 width x 300 height x 3 RGE channels

MBGom FiLM EfficientNet-B3

512 N Fuses image and language into tokers
=y * BIFLM) Imageiet pratraned
Identity-initiaizec FILM
MBCony
26 MBCar Blocks
(r+y) =+ FFLM) 26 FiLM Laryers Interaeavect
16M parametars
MBCony

f1y) = = BIFLM)

MBCony
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Vision-Language Tokens
9 tokens x 9 tokens x 512

TokenlLeamer
Spatially sttends over [okens

Bk pariwneters
| B takers x 512
v

PEEEEE o m e e e Tokenizedinputs

48 tokens x 512

Positional Encoding

Seif-Atertion Transformer
Decoder-onky
B sef-attenton layers
Sel-Attention 190 perametere.

Action

110, discrete action space




RT-1 Recipe: A Massive Dataset

Skill Count  Description Example Instruction

Pick Object 130 Lift the object off the surface pick iced tea can

Move Cbject Near Object 337 Move the first object near the second move pepsi can near rxbar blueberry
Place Object Upright 8 Place an elongated object upright place water bottle upright

Knock Object Over 8 Knock an elongated object over knock redbull can over

Open Drawer 3 Open any of the cabinet drawers open the top drawer

Close Drawer 3 Close any of the cabinet drawers close the middle drawer

Place Object into Receptacle 84 Place an object into a receptacle place brown chip bag into white bowl
Pick Object from Receptacle 162 Pick an object up from a location and then pick green jalapeno chip bag from paper
and Place on the Counter place it on the counter bowl and place on counter

Section 6.3 and 6.4 tasks 9 Skills trained for realistic, long instructions  open the large glass jar of pistachios

pull napkin out of dispenser
grab scooper

Total 744




Instruction " Time

[ Pick apple from top drawer and place on counter 6images
[} [} [}
. L J Images
-— 6images
° ’ UniVersaI 0 300 width x 300 height x 3 RGB channels

Sentence
Encoder ) o
LBCony FiLM EfficientNet-B3
512 (H_},) h £ '_rj' (F\LM) Fuses image and language into tokens

ImageNet pretrained
Identity-initialized FiLM
MBConv

26 MBConv Blocks
(Pr‘y) .+ {f (F‘LM) 28 FILM Layers Interweaved

b I n p utS : o 16M parameters
@) H|Story Of paSt 6 |mageS +y) % BEFELV)
o Task specified in natural language

MBConv

hd OUtpUtS: (1+y) % BFELM)

Linear 1x1 Conv Vision-Language Tokens

o 11D action discretized into 256 bins:

= ¥, v, z, roll, pitch, yaw for the end oy el erans

34k parameters

effe Cto r‘ 8 tokens x 512

Tokenized Inputs

= Gripper closedness command
[ X, y, yaW for the base Positional Encoding
= A discrete variable to switch St Transformer

between 3 modes: Controlling arm, S i
b ase or te m | Nna t | on th ee p | SO d e o008 st o s s Action

11D, discrete action space




RT-1 Recipe: A Big, Fast Brain

“.Time

ImageNet pre-trained EfficientNet-B3 used 6 images
to encode input image Images
g[lgzﬁgfh % 300 height x 3 RGB channels

Transformer based Universal Sentence

Encoder was used to encode language FiLM EfficientNet-B3
. . Fuses image and language into tokens
N St ru Ct IoONS ImageNet pretrained

Identity-initialized FiLM

26 MBConv Blocks
26 FiLM Layers Interweaved

FiLM Layers used to condition image oM et
features on language instruction through
affine transformations




RT-1 Recipe: A Big, Fast Brain

Instruction

* ImageNet pre-trained EfficientNet-B3 used
to encode input image

Pick apple from top drawer and place on counter

* Transformer based Universal Sentence
Encoder was used to encode language

instructions (1+y) =+ B (FiLM)

e FiLM Layers used to condition image (1) =+ B FLM)
features on language instruction through

affine transformations (14y) -+ BFLM)

(1+y) -+ B(FILM)




RT-1 Recipe: A Big, Fast B

* Tokenlearner used to compress to 8 tokens
per image

* 8 tokens per image (48 total) concatenated
together and passed to the transformer

e Qutput of transformer projected onto the
256 discretized bins for each action

\' S i s s 88

9 tokens x 9 tokens x 512

TokenlLearner
Spatially attends over tokens

34k parameters
8 tokens x 512




RT-1 Recipe: A Big, Fast B

* Tokenlearner used to compress to 8 tokens
per image

* 8 tokens per image (48 total) concatenated
together and passed to the transformer

e Qutput of transformer projected onto the
256 discretized bins for each action

SEEEEN -E0REE0N]

Self-Attention

Self-Attention

Mode Arm Base

anm, basa, terminate  gripper position, retation, position, closure position, orientation

Tokenized Inputs
48 tokens x 512

(} @ Positional Encoding

Transformer
Decoder-only

8 self-attention layers
19M parameters

Action

11D, discrete action space




Results: Baselines Used

S fully fully commanded
(512, 640, 3) connected connected )
ReLU (258) RelU (256)— linear (3N) A Deita Tool —» Huber Loss
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Results: Generalization

RT-1 achieves 97% accuracy on seen tasks,
25% higher than next best model

RT-1 completes 76% of the never-before-
seen instructions, 24% more than the next
best baseline

RT-1 demonstrates robustness completing
83% and 59% of the distractor and
background robustness tasks, 36% and 18%
higher than next best alternative

100% B RT-1 (ours)
B GATO

BC-Z
75% B BC-ZXL
50%
25% L
0%

Seen Tasks Unseen Tasks  Distractors  Backgrounds

Success Rate

Tasks

Model Seen Tasks Unseen Tasks Distractors Backgrounds
Gato (Reed et al., 2022) 65 52 43 35
BC-Z (Jang et al., 2021) 72 19 47 41
BC-Z XL 56 43 23 35

RT-1 (ours) 97 76 83 59
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Easy
2 - 5 distractors,
no occlusion

Medium

Q distractors,
Nno occlusion

Hard

Q distractors,
occlusion




Easy
same background,
same texture

Medium
same background,
new texture

Hard

new background,
new texture




Generalization
50% Level 3

[ ] : . G I 5
: - L;rrl;rg ization
Results: Generalization .
B Generalization
Level 1
e RT-1 was tested on generalization to
realistic kitchen environments. Three levels
of generalization were defined as follows:
o L1 for generalization to the new
coun.te.r—top layout and lighting RE1 (ours)  GATO 507 BOZXL
conditions
o L2 for additionally generalization to
unseen distractor objects Generalization Scenario Levels
o L3 for additional generalization to Models All LI L2 L3
drgstlcally neyv tas!< settings, new .task Gato Reed et al. (2022) 30 63 s 0
objects or objects in unseen locations BC-Z Jang et al. (2021) 45 38 50 50
such as near a sink BC-Z XL 55 63 75 38

RT-1 (ours) 70 88 75 50

19



Level 1
Generalization

Level 2
Generalization

Level 3
Generalization
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Results: Adding Sim Data

+64%
o 60%
. % 50% -
e To test whether RT-1 can learn from sim 5
: : £ > 40%
data, task demonstrations with a select few 85
) .. 0w 30% +26%
objects were removed from the training gz |
data ¢
S 10%
0% = =)
H -2%
* DemonStratlonS were added for the Sim-seen Objects Sim-seen Objects Real Tasks
w/ Skills w/o Skills

removed objects in sim on selected skills

e RT-1does not lose much performance on

tasks with real demonstrations Real Objects Sim Objects (not seen in real)

_ . Seen Skill Seen Skill Unseen Skill
e RT-1improves by 64% on tasks with Models Training Data  w/ Objects w/ Objects  w/ Objects
demonstrations seen in sim only RT-1 Real Only 92 23 7
RT-1  Real + Sim 90(-2) 87(+64) 33(+26)

e RT-1improves completion rate by 26% on

tasks involving objects only seen in sim »



Results: Adding data from

To test whether RT-1 can benefit from data
from other robots, demonstrations of Kuka
IIWA robot picking up objects
indiscriminately from a bin was added

RT-1 does not lose much performance on
tasks from RT-1 dataset

RT-1 improves by 17% (almost 2x) on the
bin-picking eval when trained on
heterogeneous data

other robots

[ RT-1 data collected on Everyday Robots ‘

Bin-picking eval

Classroom eval

Models Training Data Classroom eval Bin-picking eval

RT-1  Kuka bin-picking data + EDR data 90(-2)

39(+17)

RT-1 EDR only data 92
RT-1 Kuka bin-picking only data 0

22
0
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Results: Long Horizon Tasks

* RT-1 was evaluated on long horizon tasks in
real kitchen environments

» SayCan was used as high-level planner for
the long horizon tasks

* RT-1 achieves 67% execution accuracy in
both kitchen environments

e BC-Z performs well on kitchen 1 but does
not generalize well to kitchen 2

Instruction Relevance with LLMs

Prompt Examples 6
-30
TR -30

How would you put
an apple on the o
table? -30
| would: 1.
- -5

N4
Q -30
LLM

-20

I would: 1. Find an apple, 2.

Combined Skill Affordances with Value Functions
Find an apple 0.6
Find a coke 0.6

Find a sponge 0.6
Pick up the apple 0.2
Pick up the coke 0.2 i y 5,.
Place the apple 0.1 T
Place the coke 0.1
Go to the table 0.8 Vall:le
Go to the counter 0.8 Functions

L
LH“( >l

SayCan tasks in Kitchenl SayCan tasks in Kitchen2

Planning  Execution  Planning  Execution

Original SayCan (Ahn et al., 2022)" 73
SayCan w/ Gato (Reed et al., 2022) 87
SayCan w/ BC-Z (Jang et al., 2021) 87
SayCan w/ RT-1 (ours) 87

47 - -
33 87 0
53 87 13
67 87 67
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Ablations

* Pre-training EfficientNet-B3 on
ImageNet is crucial for
generalization

e Switching from continuous
action space to discrete action
space improve overall
performance significantly by
capturing multi-modal action
distributions

Distractors Backgrounds

Model Seen Tasks Unseen Tasks  All  Easy Medium Hard All Inference Time (ms)
Gato (Reed et al., 2022) 65 (-32) 52(-24) 43(-40) 71 44 29 35 (-24) 129
BC-Z (Jang et al., 2021) 72 (-25) 19 (-57) 47 (-36) 100 67 7 41 (-18) 53
BC-Z XL 56 (-41) 43 (-33) 23(-60) 57 33 0 35(-24) 5.9
RT-1 (ours) 97 76 83 100 100 64 59 15
RT-1 w/o big model 89 (-8) 62 (-14) 77 (-6) 100 100 50 53 (-6) 13.5
RT-1 w/o pre-training 84 (-13) 43 (-33) 60 (-23) 100 67 36 41 (-18) 15
RT-1 w/ continuous actions 68 (-29) 43 (-33) 37(-46) 71 67 0 35(-24) 16
RT-1 w/ auto-regressive actions 85 (-12) 71 (-5) 67 (-16) 100 78 43 65 (+6) 36
RT-1 w/o history 82 (-15) 62 (-14) 50(-33) 71 89 14 59 (+0) 15
RT-1 w/o Transformer 86 (-13) 62 (-14) 67 (-16) 100 100 29 59 (+0) 26

B Seen Tasks M Unseen Tasks

Distractors W Backgrounds

0%
b
£ -25%
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e
S
8 -50%
Q
©
o
@
@ -75% ] ] ] ] ] ] 1 1
[&]
o
3 Q b A\ e : 7 .
%) C‘)P:‘ %G G:L* . «\06 ‘a.\‘\\(\g G‘\o'(\ G\\o(\ “\9‘0(\‘
© ob\q G’\ o(\\' o e \r\\ ‘00

24



PALM-E

TECHNISCHE

'@ Robotics at Google zﬂﬁ universiTat *(Google Research

BERLIN




Problem Statement

* RT-1 can follow simple

language commands PaLM-E: An Embodied modal Model
° However’ |t Suffers |n Given ... <img> Q: How to grasp blue block?
complex scene/text ViT

command understanding

e Solution: Feed multimodal
data into LLM to break
down COmp|eX taSkS for Control A: First, grasp yellow block and ...
controllers like RT-1




Architecture




Architecture

Large Language Model (PaLM)

28



Architecture

Interleaved
embeddings

29



Architecture

Control <——— A:First, grasp yellow block and ...

|
RT-1, Gato, etc.

30



Multimodal Input Representations

Observation space
(image, robot joint
values, object states,
etc.)

l
o0 — X1

|

g vectors in the LLM
embedding space



Multimodal Input Representations

Vision Transformer Object-Centric

bvit Given GT object location masks,

1) Feed image into ViT run ¢y ;r on each masked image gb . O : Xq

2) Learned affine transform to
match LLM dims

State Estimation Vector Object Scene Representation Training
Transformer (OSRT) LLM
s: state of objects in the scene * Pretrained vs. not
1) OSRT (¢osrr) gets neural * Frozen vs. unfrozen
bstate = MLP scene representation of ViT
X = QPstate(s) each object * Pretrained vs not
2) MLP to match dims MLP or Affine transforms

e Always trained



Environments

Task-and-Motion-Planning (TAMP)

* gl-g4: Questions about objects
in the scene

* pl-p2: Question for how to
generate a plan

e Test different input
representations

NOTE: Never executed on a robot!

Language-Table

Pushing objects on a table
Very diverse language
commands

ViT is used as input
representation

Mobile Manipulation
Navigating a kitchen
e Similar to RT-1

environment

ViT is the input representation




Environments

Task-and-Motion-Planning (TAMP)

Language-Table Mobile Manipulation

* gl-g4: Questions about objects
in the scene

* pl-p2: Question for how to
generate a plan

e Test different input
representations

language conditioned

. | language I
NOTE: Never executed on a robot! B xpovcy
PaLM-E

PaLM-E replans
“+ 1h~>

v

"sort the blocks robot
by color” images robot actions

i at 5hz
long horizon goal

34



Experiments and Results

1. Performance on VL/language tasks?
* PaLM-E is essentially PaLM + ViT. How does it do in VL tasks?
* When PaLM-E is trained, is language performance retained?

2. Input Representations
* How do different input representations affect performance?

3. Positive Transfer
* Does co-training on all robot data + VL data improve performance?

4. Does it work on real robots?



Visual-Language/Language Results

VQAV2 OK-VQA COCO
Model test-dev test-std val Karpathy test
Generalist (one model)
PalL M-E-12B 76.2 - 135.0
PalLM-E-562B 80.0 - 66.1 138.7
Task-specific finetuned models
Flamingo (Alayrac et al., 2022)  82.0 82.1 57.87 138.1
PaLI (Chen et al., 2022) 84.3 84.3 64.5 149.1
PalLM-E-12B 77.7 77.9 60.1 136.0
PalLM-E-66B - - 62.9 -
PalLM-E-84B 80.5 - 63.3 138.0
Generalist (one model), with frozen LLM
(Tsimpoukelli et al., 2021) 48.4 - - -
PalLM-E-12B frozen 70.3 - 51.5 128.0

60

40

NLG
Tasks

(avg)
20

PaLM

L]

8B  12B

|| PaLM-E

62B

84B

540B 562B

SOTA performance on OK-VQA

Bigger model = less forgetting
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Input Representation Results - TAMP

¢ LLM pre-trained q; q, qs q4 P1 Py
SayCan (w/ oracle affordances) v - - - - 38.7 333
state X 100.L0 993 985 998 972 955
state v (unfrozen) 100.0 98.8 1000 97.6 97.7 95.3
state v 100.0 984 99.7 985 97.6 96.0
3-5 state (w/o entity referrals) v 100.0 988 975 98.1 94.6 903
objects ViT + TL (obj. centric) v 99.6 98.7 984 96.8 92 945
ViT + TL (global) v - 60.7 90.8 943 70.7 692
ViT-4B (global) v - 982 994 99.0 96.0 934
ViT-4B generalist v - 97.1 100.0 989 97.5 952
OSRT v 99.6 99.1 100.0 98.8 98.1 957
& state X 204 392 714 852 565 343
objects state v 100.L0 985 940 89.3 953 814
= state (w/o entity referrals) v T 837 936 91.0 812 57.1
3 state X 184 27.1 38.1 875 246 6.7
- state v 100.L0 983 953 89.8 913 893
Jects state (w/o entity referrals) v 60.0 67.1 94.1 81.2 493 493

G okieema state (8B LLM) X - 0 0 72.0 0 0
OOD tasks state (8B LLM) v - 493 89.8 685 282 157
) state (62B LLM) v - 48.7 92,5 88.1 40.0 30.0

Table: PaLM-E trained on just TAMP environment
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Input Representation Results - TAMP

¢ HMpe-tamed & Table: PaLM-E trained on just TAMP environment
SayCan (w/ oracle affordances) v -
state X 100.0
state v (unfrozen) 100.0 . ..
state 100.0 * For 3-5 objects: Results are pretty similar for
3-5 state (w/o entity referrals) 100.0 ; : . . .
objects VIT + TL (obj. centric) : : . different input representations
ViT + TL (global)
ViT-4B (global)
ViT-4B generalist
OSRT

38



Input Representation Results - TAMP

Table: PaLM-E trained on just TAMP environment

* For 3-5 objects: Results are pretty similar for
different input representations

Object- LM = Embodied VQA -~ Planning Table: PaLM-E trained on just 1% of TAMP data
centric pre-train q; gy 93 4y Py Po

SayCan (oracle afford.) (Ahn et al., 2022) v - - - - 387 333

PalLl (zero-shot) (Chen et al., 2022) v - 0.0 0.0 - - -

PaLM-E (ours) w/ input enc:

State /(GT) X 994 89.8 90.3 88.3 45.0 46.1

State /(GT) v 1000 963 95.1 93.1 55.9 49.7

ViT + TL /(GT) v 347 546 746 91.6 24.0 147

ViT-4B single robot X v - 459 784 922 30.6 32.9

ViT-4B full mixture X v - 707 93.4 92.1 74.1 74.6

OSRT (no VQA) v v - - - - 719751

OSRT v v 997 982 100.0 93.7 82.5 76.2 39




Input Representation Results - TAMP

Table: PaLM-E trained on just TAMP environment

* For 3-5 objects: Results are pretty similar for
different input representations

Table: PaLM-E trained on just 1% of TAMP data

When 1% of data is TAMP:
* OSRT seems to work the best

v 99.7 98.2 100.0 93.7 82.5 76.2 40




Does Co-Training Improve Performance?

100% Dataset in full mixture Sampling frequency %
oy B TAMP Success (Table 1) I Webli (Chen et al., 2022) 100 524
g , B Language-Table Success (Table 2) VQ2?A (Changpinyo et al., 2022) 25 13.1
g o [ SayCan Affordances (Table 4) VQG (Changpinyo et al., 2022) 10 52
] CC3M (Sharma et al., 2018) 25 131
£ 50% Object Aware (Piergiovanni et al., 2022) 10 52
ﬁ OKVQA (Marino et al., 2019) 1 0.5
g - VQAV2 (Goyal et al., 2017) 105
A COCO (Chen et al., 2015) 1 0.5
. Wikinedia text 1 0.5
0% ‘ - - - (robot) Mobile Manipulator, real 6 3.1
e TAMi’ Data Only Lang. Table Data Only SayCan Data Only Al E)lg:)xiitl\j{lzbu! (robot) Languag-e Table (Lynch et al., 2022), sim and real 8 4.2
Training VQA, COCO, etc.) (robot) TAMP, sim 3 1.6 .
Data Ly ey
-! ! Table 6: Dataset sampling frequency and ratio for the “full mixture” referred to in experiments.
| \
Different models ;‘or different robots, One model }or all robots

>

trained from scratch with VIiT + PaLM pre-training

Figure 3: Overview of transfer learning demonstrated by PalLM-
E: across three different robotics domains, using PalLM and ViT
pretraining together with the full mixture of robotics and general
visual-language data provides a significant performance increase
compared to only training on the respective in-domain data. See
Tab. 1, Fig. 4, Tab. 2, Tab. 4 for additional data in each domain.
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Does it work?

Zero-shot Results 42



Going back...

Task-and-Motion-Planning (TAMP)

* gl-g4: Questions about objects
in the scene

* pl-p2: Question for how to
generate a plan

e Test different input
representations

NOTE: Never executed on a robot!

Both use ViT for input representations! Why?

Language-Table

Pushing objects on a table
Very diverse language
commands

ViT is used as input
representation

Mobile Manipulation
* Navigating a kitchen
e Similar to RT-1

environment

* ViT is the input representation

b~
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Related Works

* Vision-Language Models

* Pre-training for robotic manipulation



Vision-Language Models

“Answer in EN:
What type of
flowers are in

Suiir| \_ Encoder—Decoder VLM

Transformer Transformer

ViT Encoder Decoder — “Sunflowers” 5 SB/S B

PaLM-E: An Embodied Multimodal age Model

Given <emb> ... <img> Q: How to grasp blue block? A: First, grasp yellow block

> it Decoder-only VLM
12B

Control A: First, grasp yellow block and ...




Pre-training for Robotic Manipulation

* Vision only / Language only / VLMs for high-level tasks

* \VLMs for low-level controls
e E.g. CLIPort and MOO (Constrained)

Encoded Instruction
UL 1 1" 1 : T Action
g Current Image 7}4 @ mode
and Recent History = . == base
[ b 1] - ===
- 5 e - s _A > | | — «T |hm= y
SAtA T - O] KO 1O > |1
y \| 5 - ( ‘ H H
W o AN i ol
1 o -

"sweep the beans into the blue zone"

CLIPort
(two-step primitive)

SopeaEEse

FiLM Efficient Net

—

MOO (Specific instruction structure)

* RT-2 aims at: Using VLMs for low-level controls while avoid
having too many constraints.




Problem Statement

* In this paper we ask:

e Can large pre-trained vision language models be integrated directly
into low-level robotic control to boost generalization and enable
emergent semantic reasoning?



Approach

Vision-Language-Action Models for Robot Control
PaLM-E: An Embodied Multimodal Language Model

Q: What should the robot
Given <emb> ... <img> Q: How to grasp blue block? A: First, grasp yellow block do to <task>? A: ... RT-2

Large Language Model

? vit BB ER
TR - - oo

LR T TR T TR TR

Large Language Model (PaLM) e’ Ig! [ J
ML =

N bbb
Control < A:First, grasp yellow block and ... %Qz 6/-:

“Answer in EN:
What type of
flowers are in PaLl l

the buckets?” _L

AT=[0.1,-0.2,0]
[A: 182114 128525 156 | ————— | AR [10" 25" -7

T’m T';"m"““l — “Sunflowers” De-Tokenize

Robot Action




Approach - Action as text tokens

« ”
[ eI S HAPosXHAPosYHAPosZHARotx”ARotY”ARotzH Gripper ]
or continue

Positional Rotational
change change

(0.1, -0.2, 0]
[10°, 25°, -7°]

[ A: = 132 114 128 5 25 156 }

De-tokenize [ A K
Robot action




Approach - Robot action fine-tune

RT-2

T OO

Discretize to 256 bins <::I Represent as 256 integers

Continuous Action Space Associate corresponding tokens -

IﬂN PaLl-X: Integers up 1000 have unique tokens
PaLM-EANo tokens for numbers, just replace 256 least used tokens

titn&Srfstead 8f'génerdtiff tokens, ot 4

le from valid action tokens

cc
Terminate
Oor continue

Positional Rotational
change change

Gripper

b b



Question: Why all robot tasks

Approach — co-fine-tune 1 the form of VOA?

Skill Count  Description Example Instruction

Pick Object 130 Lift the object off the surface pick iced tea can

Move Ob ject Near Object 337 Move the first object near the second move pepsi can near rxbar blueberry
Place Ob ] U ct upright r bottle upr
o o RT-gwPal M-E: 665%:Rixdidatar+ 33% Malk-k:

Open Drawer Open any of the cabinet drawers open the top drawer

Close Drawer Close any of the cabinet drawers close the middle drawer

bick on o< R e A k- X: SQOGRT-T data’t, 50% B Lt o e
Pick Objec m f 1 ation 9 kE ag from paper
and Place on the Counter place it on the counter bowl and place on counter

Section 6.3 and 6.4 tasks 9 Skills trained for realistic, long instructions  open the large glass jar of pistachios

pull napkin out of dispenser
grab scooper

Total 744

Table 1: The list of skills collected for RT-1 together with their descriptions and example instruc-
tions.



Generalization in Robot Learning

* Long-standing goal:
* Have robotic controllers that can broadly succeed in a variety of scenarios

<»
S 0]O]

new goals - new goals Lt '\A :I’

1]

FE

novel novel

object instances
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Experiments and Results

* 1. How does RT-2 perform on seen tasks and more importantly,
generalize over new objects, backgrounds, and environments?

e 2. Can we observe and measure any emergent capabilities of RT-2?

* 3. How does the generalization vary with parameter count and
other design decisions?

e 4. Can RT-2 exhibit signs of chain-of-thought reasoning similarly to
vision-language models?



Experiments and Results

* 1. How d«
generalize

(a) Unseen

Task Group

Tasks

Unseen Objects
(Easy)

pick banana, move banana near coke can, move orange can near banana,
pick oreo, move oreo near apple, move redbull can near oreo, pick pear,
pick coconut water, move pear near coconut water, move pepsi can near
pear

Unseen Objects
(Hard)

pick cold brew can, pick large orange plate, pick chew toy, pick large ten-

nis ball, pick bird ornament, pick fish toy, pick ginger lemon kombucha, [
pick egg separator, pick wrist watch, pick green sprite can, pick blue |
microfiber cloth, pick yellow pear, pick pretzel chip bag, pick disinfectant ¥

wipes, pick pineapple hint water, pick green cup, pick pickle snack, pick
small blue plate, pick small orange rolling pin, pick octopus toy, pick
catnip toy

Unseen  Back-
grounds (Easy)

pick green jalapeno chip bag, pick orange can, pick pepsi can, pick 7up
can, pick apple, pick blue chip bag, pick orange, pick 7up can, move
orange near sink, pick coke can, pick sponge, pick rxbar blueberry

Unseen  Back-
grounds (Hard)

pick wrist watch, pick egg separator, pick green sprite can, pick blue
microfiber cloth, pick yellow pear, pick pretzel chip bag, pick disinfectant
wipes, pick pineapple hint water, pick green cup, pick pickle snack, pick
small blue plate, pick small orange rolling pin, pick octopus toy, pick
catnip toy, pick swedish fish bag, pick large green rolling pin, pick black
sunglasses

tantly,
ents?

S

n Environments

J




Experiments and Results

* 1. How does RT-2 perform on seen tasks and more importantly,
generalize over new objects, backgrounds, and environments?

100%
m R3M
75% VC-1
B RT-1
50% MOO
95% W RT-2 w/ PaLM-E-12B
W RT-2 w/ PaLI-X-55B
0%
Seen Tasks Unseen Unseen Unseen Unseen
Objects Backgrounds Environments Average

*R3M - a strong egocentric, representation-learning baseline that gives good visual features but isn’t a full VLM policy.
*VC-1 — a vision model pre-trained specifically for robotics, used here as a robotics-aware perception baseline.

*RT-1 — the previous robotics transformer trained only on robot demonstrations, without internet-scale VLM pretraining.
*MOO - a two-stage setup where a VLM helps pick the object, but the actual control policy is separate from the VLM.



Experiments and Results

e 2. Can we observe and measure any emergent capabilities of RT-27?

* An emergent capability is a new capability that appears in a model only after
large-scale pretraining and was not explicitly taught or present in smaller-scale
models.

* Transferring knowledge from VLMs



2. Emergent capabilities-Qualitative Evaluations

semantic understanding

and basic reasoning

put strawberry pick up the bag .
: move apple to . place orange in
into the correct about to fall e el tts pick robot aatching. bowl

bowl off the table ge g

move redbull can move soccer ball move banana to move cup to the pick animal with
to H to basketball Germany wine bottle different colour

move banana to
the sum of two pick land animal
plus one

move coke can to move coke can to move bag to
Taylor Swift X Google

Figure 2 | RT-2 is able to generalize to a variety of real-world situations that require reasoning, symbol

understanding, and human recognition. We study these challenging scenarios in detail in Section 4.

physical understanding



2. Emergent capabilities-Quantitative Evaluations

(a) Reasoning

“move coke can to
Taylor Swift”

“move apple to cup with “move banna near the “déplacer les frites verts “pick a healthy drink”
same color” sum of two plus one” dans la tasse rouge”

“move coke can to
person with glasses”

“move coke can “put coke can close “move banana to “move apple to tree"
sk o S (c) Human
(b) Symbol Understanding L Recognition
S

Figure 8 | An overview of some of the evaluation scenarios used to study the emergent capabilities of RT-2.
They focus on three broad categories, which are (a) reasoning, (b) symbol understanding, and (c) human
recognition. The visualized instructions are a subset of the full instructions, which are listed in Appendix F.2.

https://robotics-transformer2.github.io/#demo



https://robotics-transformer2.github.io/#demo
https://robotics-transformer2.github.io/#demo
https://robotics-transformer2.github.io/#demo

2. Emergent capabilities-Quantitative Evaluations

Model Symbol Understanding Reasoning Person Recognition Average
Symbol1l Symbeol2 Symbol3 Average Math Logos MNutrition Color/Multilingual Average Celebrities Celebd Average
VC-1 (Majumdar et al., 2023a) 7 25 0 11 0 8 20 13 10 20 7 13 11
RT-1 (Brohan et al., 2022) 27 20 0 16 5 0 32 28 16 20 20 20 17
RT-2-Pall-X-558 (ours) 93 60 93 82 25 52 48 58 46 53 53 53 60
RT-2-PalM-E-12B (purs) 67 20 20 36 35 56 4 35 43 33 53 43 40
80% VC-1
B RrRT-1
S0 B RT-2 w/ PalLM-E-12B
@ RT-2 w/ PalLI-X-55B

40%

20%

0%

Symbol Reasoning Human Average
Understanding Recognition



Ablations

* 3. parameter count and other design decisions

Model Size Training Unseen Objects  Unseen Backgrounds  Unseen Environments  Average
Easy Hard Easy Hard Easy Hard
RT-2-PalLl-X 5B from scratch 0 10 46 0 0 0 9
RT-2-Pall-X 5B fine-tuning 24 38 79 50 36 23 42
RT-2-PalLl-X 5B co-fine-tuning 60 38 67 29 44 24 44
RT-2-Pall-X  55B fine-tuning 60 62 75 38 57 19 52
RT-2-Pall-X 55B  co-fine-tuning 70 62 96 48 63 35 63
80%
_— : E:c.:;—Fi:e—T:ned
558 ine-Tune
60% . @ Scratch l
5B
40% . .
5B
20%
0% 5B
Unseen Unseen Unseen Average
Objects Backgrounds Environments



Ablations
e 4. CoT Reasoning (with RT-2-PaLM-E variant)

Prompt: Prompt: Prompt: Prompt:

Given <img> Instruction: Given <img> Instruction: Given <img> Instruction: Given <img> Instruction:

Bring me a drink. Move all the objects Pick the object that is Move the green objects

Prediction: together. different from all other together.

Plan: pick 7up can. Prediction: objects Prediction:

Action: 1 143 129 123 145 Plan: move green can near Prediction: Plan: move green can near

114 115 127 green rice chip bag. Plan: pick rxbar green rice chip bag.
Action: 1 128 126 127 135 chocolate. Action: 1 128 Action: 1 130 129 121 131
123 119 127 129 125 131 125 128 127 127 128 127

Prompt:

Given <img> I need to
hammer a nail, what
object from the scene
might be useful?
Prediction:

Rocks. Action: 1 129 138
122 132 135 106 127




Ablations

* 4. Col Reasoning

User

® Pick up the

object that is
different from all
other objects

Plan: Pick rxbar
chocolate

User

® Move the green

objects together

Plan: Move green
can near green
rice chip bag

User

® Move the blue

objects together

Plan: Move blue
chip bag near
pepsi

User

® 1 am sleepy, bring
me a drink to
help.

Plan: Pick redbull
can




Limitations & Societal Implications

1. Doesn't generate new motions

2. High computation cost (high latency)



Limitations & Societal Implications

3. Example Failure Cases

* Not generalizing to unseen object dynamics

*-Grasping.o j,eﬁism;)oyga%pg&lrl,l@rpa rtS SUQJD as:.the handle

Figure 9 | Qualitative example failure cases in the real-world failing to generalize to unseen object dynamics.



Limitations & Societal Implications

What else?

Long horizon tasks?

Closed source

Discussion: Trade-off continuous/discrete actions
How should the VLM/VLA interact with action space?



Thank You!
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