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Why humanoid robot?

A Timeline
“The Robot Dreams” “The Visionary Prototypes” “The Reality Check”

Rossum's Universal Robots Honda Asimo Sony QRIO DARPA Robotics Challenge

(1920) (2000) (2003) (2013-2015)

“The Initial Attempts” “The Social Companions” “The Cambrian Explosion”

‘% I
R

WABOT-1 WABOT-2 NAO Pepper Recent Humanoid Wave
(1970-1973) (1980-1984) (2008) (2014) (circa 2022-Now)
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[Source: https://www.youtube.com/watch?v=49LnIfM9DBU]



Why humanoid robot?

Versatility: General-purpose robot autonomy needs a
versatile body

Brownfield: Human-like morphology. Humanoids can
seamlessly integrate into human world infrastructure without
modifying existing environment.

Hardware: Robot hardware gets cheaper and more robust,

Cost [Source: Figure Al]

democratizing transformative research e NASA Robonaut
Impact: Aging workforces, shrinking labor pools .... o ‘@Q Wiloy Garage
\ ‘B =
Ny !-: Unitree G1
$400K ;Zkf %
Final goal: ook . < '
March toward human-level physical intelligence %

> Time
2001 2009 2015 2024
[Source: https://www.youtube.com/watch?v=49LnIfMODBU]
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Problem Statement

Goal of Foundation Models in Robotics

» Generalist intelligence backbone for robots,
enabling them to understand, reason, and act
across diverse tasks, environments, and robot
embodiments using a single unified model

Challenges

Data Modalities

= (S
% =
— —

Robotic

Foundation Models for Robotics Embodiment in
Environments

@ »*

Vision and Language
Foundation Models

ode Writing
T—

More Modular

% 4

Robotic Foundation Models

Train, Finetune

More End-to-end

Next States
Environment Feedbacks

Hu, Yafei, etal. "Toward general-purpose robots via foundation models: A
survey and meta-analysis." arXiv preprint arXiv:2312.08782 (2023).

« Unlike pixels or text, robotic data isn’t abundant or uniform — every robot has unique:

o Embodiment (morphology, kinematics)
o Sensors (cameras, proprioception)
o Control spaces (joints, tendons, torques)

* No Internet of humanoid robot dataset exist for large-scale pre-training, leading to “data islands”
« As aresult, models trained on one robot often fail to generalize to others or to new physical tasks.
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Problem Statement

Challenges for humanoid robots specifically
« High degrees of freedom and bimanual coordination.

« Dynamic balance and whole-body motion couple perception, locomotion, and manipulation —
hard to do whole-body teleoperation.

« Extensive cost and human effort in teleoperation-based data collection

« Embodiment variability (different limb proportions, motor torque limits, control modes, and joint
ranges) breaks direct policy transfer between humanoid platforms.

Georgia
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Model Architecture

-

“System 2"

“System 1"

\_

<

<

~

Multimodal
Foundation Model
(~1 Hz)

Sensorimotor Policy
(~20-50 Hz)

Whole-Body Controller
(~500-1k Hz)

~/

Image Observation

Language Instruction

“Pick up the industry
object and place in
yellow bin.”

Joint

Joint
Positions

Velocities

Base

Position EEF Poses o

Encode

Tokenize

Encode

Image
Tokens

Text
Tokens

Vision-Language
Model

System 2

A /

Robot State

Dual-system architecture inspired by human cognition:
« System 2 (Reasoning): Vision-Language Model (VLM) interprets the environment and task.
« System 1 (Action): Diffusion Transformer generates continuous motor actions.

Action Tokens

Both are jointly trained end-to-end for coordinated perception and control.
, Input: Image + Language + Robot State — Output: Motor Actions.

OOO0O0O0 e

Why two systems?
Could one single-level model

handle both reasoning and
motor control, or is the dual-
system design essential?

-

Diffusion

Transformer

System 1

OOOOO0
I

Denoising

Cr

Motor Action
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Model Architecture
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Model Architecture

System 2 — Vision-Language Module

« Based on Eagle-2 VLM (a fusion of SigLIP-2
image encoder + SmolLM2 LLM).

 Encodes images and task text into shared
feature tokens.

* Produces vision-language embeddings (middle-
layer representations used for efficiency and
accuracy).

* Operates at 10 Hz for task understanding and
reasoning.

» Output: High-level task/context representation —
passed to System 1.

“Pick up the apple
and place it into —

)

Vision
Encoder

—

O
Text

Tokenizer

\the bottom shelf”

!

!

HEEEE DEENEEE

Eagle-2
VLM

§>:E§ Pre-trained and Frozen

EEEE OEEEEEE
\ /
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Model Architecture

System 2 — Vision-Language Module

Processing Pipeline:

K

Input: Task text + one or more images.

Image Encoding: Each 224x224 image — pixel-shuffle — 64 image
tokens per frame.

Language Encoding: Text instruction tokenized in chat format (same as
VLM training).

Fusion: Image + text tokens jointly processed by the LLM — fused
multimodal embeddings.

Feature Extraction: Use 12th layer embeddings (middle-layer) for
balance of speed + performance.

Output: Vision-language feature tensor (Batch x Seq x Hidden Dim) —
fed into System 1 (Diffusion Transformer) via cross-attention.

ey Insights:

Pixel-shuffle compression maintains spatial information with fewer
tokens (8x8 grid).

Middle-layer embeddings preserve grounded visual semantics while
remaining efficient.

Provides real-time (10 Hz) environment understanding and instruction
reasoning.

Serves as dynamic context for motor control generation in System 1.

§>:E§ Pre-trained and Frozen

{
.
L |
— m( &)
0l O
Vision _»E %
Encoder B ]
O Eagle-2 0
\ ) H VLM O
“Pick up the apple (~ _\t = =
and place it into —f 22! ~H a
\the bottom shelf” Tokenizer = =
—
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Model Architecture

System 1 — Vision-Language Module

Each robot embodiment has its own:
o State encoder

Robot State

* Action decoder

Enables cross-embodiment generalization
— same model handles multiple robots.

Noised Action

Diffusion Transformer (DiT) module Vy(¢;, Af, g¢):

* Input: robot state embeddings g;, noised action
tokens A}, and VLM embeddings ¢;.

* Output: Smooth, continuous motor actions across

different embodiments.

—————

_____

State
Encoder

Action
Encoder

OOOOOO0O00

{
[
H
: i
| J
A
%
\_
1 1
- =
(
Coa
o) o) - LT
5 o 2
a < § 2 | | A4y :
{ > > | Action i '
—] P Ha |----4 > - L
;g; g ? g E Decoder ! !
. g I
= <] =2 o o ! |
g =/ g =/ D | \
= :ar+H-1 Motor
= ~—e=- Action

x N

DiT Blocks

K iterations

« Uses flow-matching (diffusion-like denoising) to predict denoised motor actions.

« Alternating cross-attention (to link vision-language features) and self-attention (to model

temporal action dependencies).

Cr
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Model Architecture
System 1 — Vision-Language Module

Diffusion Transformer (DiT) with flow matching:
Training phase

1. Take a ground-truth action sequence A;.

2. Add noise using a random scalar, a flow-matching
timestep 7 € [0,1]:
=14+ (1 —-1)€,e ~N(0,1)
3. The model Vg(¢¢, A%, q¢) predicts the vector field € — A;
that drives A} back to A;
4. Loss function: L = E;[lIVe(¢s, A q¢) — (€ — A II?]

Inference phase
1. Start from random noise 4% ~ N7 (0,1).

2. |Iteratively update: 1
P A:H/K = A; + % Vo(dy AP q;)
3. Typically only 4 denoising steps (K = 4) are needed to

recover smooth action sequences.

., (Each chunk contains 16 actions — efficient 120 Hz control.)

Action chunks:
At any given time ¢,

Ay = lag, agrq) -0 Qg1
the action vectors of timesteps
t throught + H - 1.

State

Robot State qe Encoder

_____

Action

1
Noised Action | e o

_____

l

I

[

L2

e

|
uonuBNY-SS0ID

uonUBNY-SS0ID

I
uonueny-yes

]

[

I

1 o [

Action | |

Decoder

Flow Matching Evolution (Step 0)
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Datasets

« Small scale and expensive to collect
Real-World Data A - Ease of use for imitation learning, direct transfer

Unlimited simulated data (in theory)

Synthetic Data

Content creation challenge, reality gap,
computational burden

Web Data & « Massive scale and ever-growing
Human Videos T PR » Multimodal and unstructured
0 “~ " e KITCHENS
WreniA ' * Human-centered data

Georgia
GI‘ Tech.
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Datasets

Web Data & EG @ reddit

Human Videos /4 —_— E
e & ¥ i &ﬂ::ms
¢ "-'l'-rMPr:n.-". o :

Real-world human behaviors:
grasping, tool use, cooking, assembly, and other task-oriented activities
performed in natural environments)

(Ego4D) LanguageAnnotatlon drops the hand dryer in the cabmet w1th her r1ght hand.

(HOI4D) Language Annotation: pick and place stapler.

(EPIC-KITCHENS) Language Annotation: turn on tap
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Datasets Simulation trajectories

RoboCasa
(Nasiriany et al., \
RSS 2024) Turn Off Stov Setup Mug
[ n,i T LL:
¢ DexMimicGen
P (Jiang et al., ICRA
& 2025) Pouring Coffee
; 5 3 —M ds ™
| - B ] oy 9o
Move To Pan Move To Box Move To Shelf Bottle To Cabinet Cup To Drawer

Synthetic Data

» Tasks follow the behavior “rearrange A from B to C”

» 54 unique combinations of source and target receptacle
odd
E G@O reddit categories
* Objects and receptacles in randomized locations
e s « 10,000 new demonstrations for each (source, target)

1) Simulation trajectories automatically multiplied from a small
number of human demonstrations within physics simulators

Georgia
GI‘ Tech.
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Prompt: use the r1ght hand to p1ck up cucumber to basket

Datasets Neural trajectories

* Image-to-video model finetuned from
WAN2.1-12V-14B (Wan Team, 2025)

+ Given existing initial frames with novel
language prompts

“pick up {object} from
{location A} to {location B}"

Synthetic Data

Prompt: pick up the potato, place it into the microwave and close the microwave

» 88h real teleop — 827h neural-generated data (~10x

expansion).
] . _ _ » Enhanced by multimodal LLM filtering and captioning
2) Neural trajectories derived from videos produced by off-the- to ensure instruction compliance. :
shelf neural generation models Gr %gg;gla
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Datasets

Real-World Data

GROOT N1 Humanoid Dataset: Teleoperated GR-1 humanoid tasks (grasp, move, place).
Open X-Embodiment: Cross-robot manipulation datasets (RT-1, Bridge-v2, DROID, etc.).

V@

Option 1: Manus Glove + Vive Ultimate Tracker

’
y | _\\

Option 2: Apple Vision Pro Option 3: Leap Motion

Human Motion Capture

Teleoperation Hardware

22 Embod iments

<prel -

527 Skills

Open
X-Embodiment

b ..‘EEL:'\”IILEWMI&EHE
L RE— o T~ S B L
thﬁ'ﬁﬁﬂﬁl_d S RS
I- Qlﬁ

oo w N AT A ii‘a']‘ |
AgiBot-Alpha: Large-scale multi-robot trajectories with tool use and collaboration. i SO S22 Gr Georgia

S das v ﬁhﬁl&"""r

Tech.
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Datasets
Latent Action Learning using VQ-VAE

To handle any dataset (human egocentric videos and neural trajectories) that lacks
explicit robot action labels

 Train a VQ-VAE model on consecutive video frames to learn latent actions
representing motion between frames.

* Encoder: takes current frame x; and future frame x;, —outputs latent action z;.

* Decoder: reconstructs x;,y from x; and z;.

* Objective: VQ-VAE loss aligns continuous embeddings to the nearest codebook
vector, ensuring a discrete, shared action representation.

What it represents:
» Alearned embedding of motion — not real torque, velocity, or joint angles.
« It captures “what kind of motion happened,” in a robot-agnostic latent space.

« Treated as a separate embodiment (LAPA) during pretraining so that the model
learns to interpret this space consistently across all data sources.

When used:

* Pre-training phase — used to align human, synthetic, and robot data under one
unified representation.

Latent action 2: Move the right arm to the right

Cr

Georgia
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Datasets

IDM (Inverse Dynamics Model)
Goal: Predict realistic robot actions given visual state transitions, trained per embodiment.
How it works:

« Train a model (Diffusion Transformer, System 1) to map from two images (x; x;,y) —robot action
sequence a;.

« conditioned on specific robot dynamics, learns the mapping between observed motion and the actual
control commands.

« Uses a flow-matching loss (like the policy model).

What it represents:
» A robot-specific action label (e.g., joint velocities, torques, tendon lengths).
» Pseudo-labels neural trajectories or videos with plausible actions that the robot could have taken.

When used:
* Post-training phase — for fine-tuning with neural-generated trajectories when real actions are missing.

L1

 LAPA is like learning “verbs” in a universal language of motion (“move left,” “reach up”).
» IDM translates those verbs into each robot’'s motor commands (“bend joint 3 by 10°").

Georgia
Gl" Tech.
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Datasets

Table 7: Pre-training Dataset Statistics

Dataset Length (Frames) Duration (hr) FPS Camera View Category
GR-1 Teleop Pre-Training 6.4M 88.4 20 Egocentric Real robot
DROID (OXE) 23.1M 428.3 15 Left, Right, Wrist Real robot
RT-1 (OXE) 3.7M 3384 3 Egocentric Real robot
Language Table (OXE) 7.0M 195.7 10 Front-facing Real robot
Bridge-v2 (OXE) 2.0M 111.1 5 Shoulder, left, right, wrist ~ Real robot
MUTEX (OXE) 362K 5.0 20 Wrist Real robot
Plex (OXE) 77K 1.1 20 Wrist Real robot
RoboSet (OXE) 1.4M 78.9 5 Left, Right, Wrist Real robot
Agibot-Alpha 213.8M 1,979.4 30 Egocentric, left, right Real robot
RH20T-Robot 4.5M 62.5 20 Wrist Real robot
Ego4D 154.4M 2,144.7 20 Egocentric Human
Ego-Exo4D 8.9M 123.0 30 Egocentric Human
Assembly-101 1.4M 19.3 20 Egocentric Human
HOI4D 892K 12.4 20 Egocentric Human
HoloAssist 12.2M 169.6 20 Egocentric Human
RH20T-Human 1.2M 16.3 20 Egocentric Human
EPIC-KITCHENS 2.3M 31.7 20 Egocentric Human
GR-1 Simulation Pre-Training  125.5M 1,742.6 20 Egocentric Simulation
GR-1 Neural Videos 23.8M 827.3 8 Egocentric Neural-generated
Total robot data 262.3M 3,288.8 - - -

Total human data 181.3M 2,517.0 - - -

Total simulation data 125.5M 1,742.6 - - -

Total neural data 23.8M 827.3 - - -

Total 592.9M 8,375.7 - - -

Georgia
Gl" Tech.
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Training

. Pre-training Phase

Objective: Train with flow-matching loss on mixed data:

Data usage:

 Human videos: use latent actions (from VQ-VAE).

» Real Robot: use real actions + latent actions.

* Neural trajectories: use latent + IDM-predicted actions.

Goal: Learn a generalizable cross-embodiment policy that unifies
all data under a single latent action space.

2. Post-training Phase

Fine-tune on each single robot (embodiment-specific tasks).

Keep language model frozen, tune action and perception modules.
Use neural-generated data to augment limited real data (1:1 mix).
Label synthetic data with latent or IDM pseudo-actions.

Goal — achieve robust adaptation with minimal real-world data.

Stage

Purpose

Data Type Label Source

Pre-training

Post-training

Post-training w/
Neural Trajectories

Generalization across
embodiments

Embodiment-specific
fine-tuning

Low-data augmentation

Human, synthetic, real

robot Latent actions (LAPA)

LAPA or IDM pseudo-

Real robot data
labels

IDM-predicted pseudo-

Synthetic neural videos :
actions

Georgia
Gl" Tech.
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Experiments and Results

Simulation Benchmarks

RoboCasa Kitchen (24 tasks, Franka Emika Panda arm)
o pick-and-place, door opening and closing, pressing buttons, turning faucets, and more

Pick and Place Turn Off Stove Setup Mug Turn On Water Turn On Microwave

DexMimicGen Cross-Embodiment Suite (9 tasks)
o Bimanual Panda Arms with Parallel-Jaw Grippers: threading, piece assembly, and transport
o Bimanual Panda Arms with Dexterous Hands: box cleanup, drawer cleanup, and tray lifting
o GR-1 Humanoid with Dexterous Hands: pouring, coffee preparation, and can sorting

Piece Assembly Transport Pouring Coffee Tray Lift

GR-1 Tabletop Tasks (24 tasks, GR-1)

o rearranging objects

o
2N
A

Move To Pan Move To Box Move To Shelf Bottle To Cabinet Cup To Drawer

: ‘Q‘E

‘Ji‘ﬁ

U

Cr
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Experiments and Results

Real-World Benchmarks

(left) left-to-right handover

(right)placement of novel objects into an
unseen target container

Object-to-Container Pick-and-Place
o 9 tasks, Pick-and-Place

Articulated Object Manipulation
o 3 tasks, Articulated

Industrial Object Manipulation
o 3 tasks, Industrial

Multi-Agent Coordination
o 2 tasks, Coordination

Pre-Training Evaluations

I;;?:r:pt; Prompt:
u :

pick up
green bell peach to
pepper to yellow bin

bottom shelf [§ —a - -
Pick-and-Place with Left-to-Right Handover

Post-Training Evaluations

Coordination Part 2: Cylinder to Yellow Bin and Mesh Cup Pouring to Another Yellow Bin

Cr

Georgia
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Experiments and Results

Pre-training Evaluation (Real GR-1 Robot)
« Task 1: Place object on bottom shelf (requires bimanual transfer).
« Task 2: Place novel object into unseen container.
* Results:
« Task 1 — 76.6 % success (11.5/ 15 trials)
 Task 2 — 73.3 % success (11 / 15 trials)
— Shows strong generalization and effective coordination from large-scale pre-training.

Pre-Training Evaluations

Prompt: Prompt: N N S
pick up pick up e | |l
green bell peach to F l \ .
pepper to )% yellow bin§ B X YR
bottom shelf ; ¢ B g8
Pick-and-Place with Left-to-Right Handover Pick up Novel Object to Novel Container

Georgia
Tech.



28

Experiments and Results

Simulation Results: 100 demonstrations per task

RoboCasa DexMG GR-1  Average

Post-training Evaluation BC Transformer  26.3%  53.9% 16.1%  26.4%
Diffusion Policy ~ 25.6%  56.1% 32.7%  33.4%
GROOT-N1-2B 32.1%  66.5% 50.0% 45.0%

Simulation

Simulation Post-training Performance
100

 Benchmarks: RoboCasa, DexMimicGen, GR-1 Simulation = Diffusion Policy
« Data Regimes: 30/ 100/ 300 demos per task.

80- RoboCasa DexMG GR-1

« GROOT N1 — Consistently outperforms from-scratch

74.2
68.4/
60- 58.5
49.6 469 50.0 49.3
43.2| 43.2
101 40.4
. H 32.1 32.7
baselines in all benchmarks.
) 1 II II i I
' 30 100 300 30 ' ; ‘ 100 300

Real Robot: ° 100 300 %0
Number of Demos Per Task
« Compared with Diffusion Policy.

Success Rate (%)

« Trained on only 10 % of data — just 3.8 % lower than Diffusion

Real-World Results
Policy (full data). .

Pick-and-Place Articulated Industrial Coordination Average

« +32.4 % gain (10 % data) and +30.4 % gain (full data) overall. Diffusion Policy (10% Data) 3.0% 143%  6.7% 275%  10.2%
o . Diffusion Policy (Full Data) 36.0% 38.6% 61.0% 62.5% 46.4%

— Demonstrates data efficiency and strong embodiment transfer. croorni2s (10% pata) 35.0% 62.0%  31.0% 50.0%  42.6%
GROOT-N1-2B (Full Data) 82.0% 70.9% 70.0% 82.5% 76.8%

Georgia
Gl" Tech.
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Experiments and Results

Post-training + Neural Trajectories

« Simulation (RoboCasa):
+4.2 %, +8.8 %, +6.8 % improvements for 30 / 100 / 300 data
regimes.

* Real GR-1 Humanoid:
+5.8 % average improvement across 8 tasks.

 Label comparison:
« LAPA > IDM in low-data regime (30 demos).
 IDM > LAPA with more data (100 — 300 demos).

— Neural trajectories + pseudo-labels enhance learning under
data scarcity.

An extension experiment showing how synthetic data can
further boost the model’s generalization and efficiency, even
when there is only limited percentage of real robot data.

Success Rate (%)

60-

RoboCasa

mmm Diffusion Policy
mmm GROOT-N1-2B

mmm GROOT-N1-2B + LAPA
W GROOT-N1-2B + IDM

w
o

—
w

0

17.4
! I
' 30

60-
45-
30-

15-

216 21.2

100
Number of Demos Per Task (24 Tasks)

Real GR-1 Humanoid

mmm Diffusion Policy
= GROOT-N1-2B
mmm GROOT-N1-2B + IDM

42.0

36.67

2.0

Pick & Place (5 Tasks) Industrial (3 Tasks)

49.6
43.2
395 40.9
32.1
256 I

56.4
52.9 |
00

30

39.63

4.07

Overall fB Tasks)
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Experiments and Results

Table 5: Success rate on real-world tasks with the GR-1 humanoid robot.

Task Diffusion Policy GROOT-N1-2B
10% Data  Full Data  10% Data  Full Data
Tray to Plate 0.0% 20.0% 40.0% 100.0%
Cutting Board to Basket 0.0% 30.0% 10.0% 100.0%
Cutting Board to Pan 0.0% 60.0% 60.0% 80.0%
Plate to Bowl 0.0% 40.0% 30.0% 100.0%
Placemat to Basket 10.0% 60.0% 40.0% 80.0%
Pick-and-Place Seen Object Average 2.0% 42.0% 36.0% 92.0%
Tray to Plate 0.0% 20.0% 30.0% 80.0%
Cutting Board to Basket 10.0% 20.0% 60.0% 60.0%
Cutting Board to Pan 0.0% 40.0% 40.0% 80 0%
Plate to Bowl 0.0% 20.0% 10.0% 40.0%
Placemat to Basket 10.0% 50.0% 30.0% 10U.U%
Pick-and-Place Unseen Object Average 4.0% 30.0% 34.0% 72.0%
Pick-and-Place Average 3.0% 36.0% 35.0% 82.0%
White Drawer 6.6% 36.4% 26.4% 79.9%
Dark Cabinet 0.0% 46.2% 86.6% 69.7%
Wooden Chest 36.4% 33.2% 72.9% 63.2%
Articulated Average 14.3% 38.6% 62.0% 70.9%
Machinery Packing 20.0% 44.0% 8.0% 56.0%
Mesh Cup Pouring 0.0% 62.5% 65.0% 67.5%
Cylinder Handover 0.0% 76.5% 20.0% 86.6%
Industrial Average 6.7% 61.0% 31.0% 70.0%
Coordination Part 1 45.0% 65.0% 70.0% 80.0%
Coordination Part 2 10.0% 60.0% 30.0% 85.0%
Coordination Average 27.5% 62.5% 50.0% 82.5%
Average 10.2% 46.4% 42.6% 76.8%

Some tasks plateau even with full data —
data scaling alone may not solve
embodiment complexity.

Failures often relate to contact dynamics,
occlusions, and fine manipulation —
areas where physics priors or model-based
reasoning could help.

Cr
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Qualitative Results

Autonomous | Real

Fourier GR-1

Georgia
Tech

Source: https://developer.nvidia.com/blog/accelerate-generalist-humanoid-robot-development-with-nvidia-isaac-gr00t-n1/
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Experiments and Results

Qualitative Results

Real Humanoid Behavior (“Pick up red apple and place in basket”)

« Apple placed left of the hand — tests bimanual coordination.

* Pre-trained model: grasps with left hand — hands to right — places in basket
+ Post-trained model: fails (learned only single-hand behavior).

— Pre-training preserves general coordination skills that fine-tuning can over-specialize away.

Task: Pick up red apple and place it into the basket

2 " . ‘\3 - = .
:,: “ ot .; . w ‘i l

4 v‘ &. . ' b \ n / )
AN

Motion Quality Comparison (Post-training Real Robot)

« GROOT N1: smooth motions, accurate grasps.

» Diffusion Policy: jerky motion, slow start, frequent mis-grasps.

— GROOT N1 achieves smoother and more reliable real-world control.

Cr
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Summary

GROOT N1 is the first large-scale generalist humanoid foundation model that unifies reasoning,
perception, and control across heterogeneous data sources and robot embodiments.

Limitations

« Focused mainly on short-horizon tabletop manipulation
— lacks long-horizon loco-manipulation skills.

* Requires stronger vision-language backbone for better
spatial reasoning and language understanding.

* Needs improvements in humanoid hardware and model
architecture to support more complex motions.

« Synthetic data generation still limited by:
« Low diversity and realism.
 Difficulty maintaining physical consistency in
generated trajectories.

« Lacking important sensing modalities (torque, tactile, ... )

Georgia
Gl" Tech.
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Follow up

GROOT N1.5

An Improved Open Foundation Model for Generalist Humanoid Robots

Improved VLM Grounding Capabilities

[j Embodiment-Specific Module

%< Pre-trained and Frozen

Model Size GR-1 grounding loU (1) RefCOCOg-val loU (1)

“Pick up the apple
and place it into
the battom shelf* Tokenizer

Text

HEEE 0000000
EHEER 0000000

Qwen2.5VL 3B 355 85.2

GROOT N1.5 VLM 2.1B 404 89.6

Keeps the language-vision expert intact during both
pre- and post-training.

Preserves strong linguistic and visual reasoning —
better instruction following and generalization.

11 June 2025

FLARE Objective — Learning by Watching
* Adds Future Latent Representation Alignment — learns
from human egocentric videos.

* Robot learns new tasks just by watching humans, even
without labeled robot data.

DreamGen Integration — Learning by Imagining

» Uses synthetic neural trajectories from video world models to
generate new robot data.

* Expands task diversity — better zero-shot and few-shot
generalization.

* Higher success rate, more diverse data sources,
significantly improved language following capabilities.

% Significantly better performance in low-data, zero-
shot, and novel-verb tasks
Gr Georgia
Tech.



Humanoid-VLA: Towards universal humanoid
control with visual integration

Pengxiang Ding*'2 Jianfei Ma*3 Xinyang Tong*' Binghong Zou® Xinxin Luo® Yiguo Fan1 Ting Wang'
Hongchao Lu' Panzhong Mo? Jinxin Liu® Yuefan Wang'? Huaicheng Zhou® Wenshuo Feng? Jiacheng Liu'?
Siteng Huang' Donglin Wang'?
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Motivation

Whole Body Control

Universal Humanoid Control

Humanoid-VLA

37

YV V VY

Pros: High-fidelity motion control
Cons: Reactive mechanisms -- dynamically adjusting motions in
response to external inputs

Pros: Ego-centric visual integration

Cons: Data scarcity
» Lack of synchronized first-person view (FPV) data
» Teleoperation is expensive

Language Understanding
Egocentric Scene Perception
Motion Control

Cr
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Motivation

a 2
i N @ :
i : =\
Reactive : (
Mimicking \ ‘ !

H20, Exbody2- -
og
b4 '
Autonomous
Perception
a

Humanoid-VLA

Figure 1: Comparison between previous works and our
approach. With the capability of autonomous perception,
Humanoid-VLA can perform tasks to interact with objects,
significantly advancing beyond previous methods that rely
on mimicking human demonstrations for motion execution.

38

Humanoid-VLA

» Language Understanding
» Egocentric Scene Perception
» Motion Control

Feasible & Cost-effective paradigm:
A. Language-motion pre-alignment:
= Nonegocentric motion dataset with textual description
= Learn universal motion patterns and action semantics
B. Video-conditioned Fine-tuning:
= Egocentric visual context
= Enable contextual motion generation
On More Thing
Self-supervised data augmentation strategy:
= Auto generate pseudo-annotation derived from motion data
= Converts raw motion sequence into informative QA pair

Georgia
Gl" Tech.



Data Acquisition Challenges

Prior datasets:
Small, well-curated, motion-language pairs — good quality but

low diversity
] ] Category | Text Motion | Clips  Frames Hours
L.arge on_llne .VIde.O datasets: _ Motion capture | v v 29K 0.3M 4.1
Rich motion diversity but lack language annotations Online Video | X 4 0.8M  54IM 75157
Synthetic Data | v v 100K 16M 227.7
Total 0.929M 557.3M  7790.2
Problem:
Scarcity of paired motion-language data hinders pre-alignment Table 1: Datasets Statistics
training

Existing methods:
= Manual label: expensive
= LLM label: noisy & incomplete

Georgia
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Self-Supervised Data Augmentation

Existing Annotation Approaches

Manual Annotation: accurate but costly and slow
Video LLMs (VLLMs): scalable but

= Often noisy/incomplete/imprecise

» Fail to describe fine-grained motions or complex actions
Both are suboptimal for motion-language alignment

Self-Supervised Data Augmentation

= Avoids explicit manual annotations

40

Key idea: derive self-supervised tasks directly from motion data
Example:

» Mask body joints temporarily (e.g., left arm)

» Model reconstructs missing movement

» [nstructional prompt: “Missing left arm <Occlusion> motion data — please complete the motion.”
Enables automatic, scalable, and accurate pseudo-annotations

Cr
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Data Acquisition Pipeline
= |nstructional prompts:
» “missing left arm <Occlusion> motion
data. Please complete the motion”
= Target outputs:
= Ground motion

Cost-effective annotation method ——>
= Designing various self-supervised tasks
directly derived from motion data

Data Acquisition Pipeline

¢ Language Language

Two key modules:

v' Compositional Motion Quantitation | S A Motion —>F Lol | Pure
R Recovery o o Motion .
v i i Self-Supervised Motion Data
Autonomic Data Augmentation | Data Data Augmentation | [EURESENS
Captioned Mocap Data I _— Captioned
v
: W e Question: Answer: ||
L-Leg  R-Leg Torso L-Arm R-Arm Codebooks ! 0) o Please move your left arm along the <Motion>
o ° ° Y e trajectory of <Track>
; o @ (e [ ) ; ]
° o m [0 célnsion> Qqegtion: . Answer:
1 }\ Missing left arm <Occlusion> motion data. | <Motion>
Human Encoder Encude - Please complete the motion.
L-Leg R-Leg Torso  L-Arm €n ° [ Stated
Encoder Encoder Encoder Encoder ° ) -
g ._ / [ -2 Question: Answer:
. 00° i 4 O Please generate a motion that is <1 ime | <Motion>
. o | % L~ seconds long.
; (0] ¥
L-Leg  R-Leg | Torso /L-Arm g’ Q/><\ -
Decoder |/ Decoder | Decoder |Decoder . np o | State2 <State> | | Question: | Answer:
h D 3 (o} \ W Move from the initial position <Statel> to the | <Motion>
K Decocer ECOCE é)(\ 0 L+~ )| final position <StateN>
41 . . oge . y b . .
L (a) Composional Motion Quantilization Statel (b) Autonomic Data augmentation




Data Acquisition Pipeline

Key module 1: Compositional Motion Quantitation

L-Leg  R-Leg Torso L-Arm  R-Arm Codebooks

DQ @ QD=

Human Encoder Encode
L-Leg R-Leg Torso L-Arm ‘" ® A
Encoder Encoder Encoder Encoder o o
o
. 60 e
o o
L-Leg R-Leg Torso L-Arm
Decoder  Decoder  Decoder  Decoder np 8 °o

Human Decoder Decode

(a) Composional Motion Quantilization

Decomposition of motion into five body parts:
= |eft leg, right leg, torso, left arm, right arm
Each part encoded independently into token
Motion Encoder: encodes body part data
Motion Decoder: reconstructs full pose

Zt = 5m(Ct)a Ct = Dm(ét)

Lhog = |lce — G|z + |Isg(ze) — Zellz + ||z — sg(Z) |2

Erec Eemb £com

v" Form flexible operations on the motion sequence at the token level.
E.g. replace, perturb, or rearrange the tokens corresponding to specific

body parts to generate new motion patterns.

42
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Data Acquisition Pipeline

Data Acquisition Pipeline

-
3¢ Language Language
AT e e
Human - S
Motion P~—_ Pure
Recove i :
ry Motion ___ Self-Supervised Motion Data
. Data Data Augmentation with Caption
Caption =
Captioned Mocap Data — _— — | Captioned
= e e H v
L A Person is... g
v
. Question: Answer:
' O <Track> -
L-Leg R-Leg Torso L-Arm R-Arm Codebooks \ & i Please move your left arm along the <Motion>
o i " . trajectory of <Track>
StateN 1
® (-
2 ° pees COcclusions | Question: Answer:
>\: Missing left arm <Occlusion> motion data. | <Motion>
i Kl coder Encode lPlease complete the motion.
L-Leg R-Leg Torso  L-Arm an o :
Encoder Encoder Encoder Encoder @ *
v & Question: Answer:
f— o Please generate a motion that is < 1ime> <Motion>
- . seconds long.
L-Leg R-Leg .
Decoder\ Aliecdct Thecoder. np | &b Question: Answer:
A Decod \ Move from the initial position <Statel> to the | <Motion>
Human Decoder SEas | . final position <StateN>
o :
(a) Composional Motion Quantilization Statel (b) Autonomic Data augmentation
o
43

Cr

Georgia
Tech.



Data Acquisition Pipeline

‘?-X\ &l [ | | Question: Answer: ] = Four augmentation types:
\ s Please move your left arm along the <Motion> . .
N IS sjcotony ot TRackes = <Track>, <Time>, <Occlusion>, <State>
... COcclusion= | Question: Answer: . Example: o .
, )\ Missing left arm <0cclu.sion> motion data.  <Motion> ] Isolate root JO"‘]t’S traJeCtory (<T|"aCk>)
AN Please complete the motion. . .
[stated : : = Generate instruction:
LX\ S ciestion: ' ye— “Please move your center position along the trajectory of
b '0) :’elzzie; figsr;te a motion that is <Motion> <Track>.”
O/>a<e\ <State> Question: Answer: ] ) . .
gy 71 || Move tom th il posiion <State1> tothe | <Motion> v" Creates new instruction—motion pairs from unlabeled
\ .. ‘i) | final position <StateN> . . ags
JX\O i data: effectively augments datasets that initially lacked
L 0LV LD GRS DEL AR linguistic annotations, enabling their use in tasks

requiring text-motion alignment.

Georgia
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Data Acquisition Pipeline

1) Highly flexible and extensible

2) Leverages motion data’s inherent temporal and spatial dynamics, allowing models
to learn richer and more robust motion-language relationships

3) Interleaved datasets enhances cross-modal alignment by incorporating both
motion and text in inputs and outputs.

Question: Answer:

L-Leg R-Leg Torso L-Arm R-Arm Codebooks '-,‘ O Please move your left arm along the <Motion>
trajectory of <Track>

o an s AT | e :
f 0 @ (o o ~ S‘f“eN -E——
0 3 ° ° . COcclusion-] | Question: Answer:

Missing left arm <Occlusion> motion data. <Motion>

<Track>

Please complete the motion.
L

Human Encoder Encode

s
L-Leg R-Leg Torso  L-Arm € R S‘ate“ :
Encoder Encoder Encoder Encoder ° >
_ Iim Question: Answer:
| 00° O Please generate a motion that is <Motion>

0 ‘é | States

seconds long.

o
= |
L-Le R-Le Torso L-Arm Q/><\ 1
g g L-Arm . np of i Answer:

Decoder  Decoder  Decoder | Decoder o State2 <State> | | Question:
: o o K1 from the initial position <State1> to the = <Motion>
H Dicodi Decode Move from the initial positio o the otion
e C‘><\ O final position <StateN>
(a) Composional Motion Quantilization Statel (b) Autonomic Data augmentation
b J
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Framework: two-stage training

g
3
Output: 7{\7Q>Q X}Q Output: %\% ?{’ /K N
: Whole-Body
Q ) Controller
’ Human Decoder ‘ ‘ Human Decoder \
( l N s L
x N Transformer Block x N
Transformer Block Y
p>>>4 Cross Attention ¢y
: Copy ;
Weight =
Transformer Block
Transformer Block Y >
Cross Attention  ¢Y
3 A4 & J
. 5 Visual
o= Tokenizer Tokenizer Encédei
I_::I_ Question: Question: = 7
Selected | Missing left arm <Occlusion> motion Please generate the motion to kick
:I data. Please complete the motion. the ball.
Language-Motion Pre-Alignment Vision-Conditioned Fine-Tuning
¢y Trainable #  Frozen D Text token . Motion token D Visual token | Template

46
Figure 2: Overview of Humanoid-VLA. Humanoid-VLA includes two main parts: language-Motion Pre-alignment and

vision-conditioned fine-tuning.
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Language-Motion Pre-Alignment

-

Output: 7{\7Q>Q X}Q

’ Human Decoder ‘

~

x N

Transformer Block Y

Transformer Block Y

>4
==

-

G

goaed -~ 00

Tokenizer

Question:
Missing left arm <Occlusion> motion
data. Please complete the motion.

Language-Motion Pre-Alignment

J

¢y Trainable

47

#  Frozen

D Text token

>

Copy
Weight

20>

'
Output: %\ ?? ?{’ /K :
Whole-Body
1 Controller
‘ Human Decoder \
Transformer Block x N

Cross Attention ¢y

Transformer Block %%

Cross Attention  ¢Y

. Motion token

00000 - 00

Tokenizer

000

Visual
Encoder

Question:

Please generate the motion to kick
the ball.

Vision-Conditioned Fine-Tuning

E] Visual token | Template

Figure 2: Overview of Humanoid-VLA. Humanoid-VLA includes two main parts: language-Motion Pre-alignment and
vision-conditioned fine-tuning.
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Methodology: Language-Motion Pre-Alignment

Output: ?{“7{"?{" 7{‘}(‘

Goal:
_ Human Decoder | Align non-egocentric human motion
( ' b data with language descriptions
Transformer Block ¢ N
Purpose:
v' Learn motion patterns & action semantics from
large-scale motion data
Tramaformer Block ¢ v' Enable motion-language
N J learning without requiring egocentric visual input
ooaeo - 00
Tokenizer Outcome:
.I-i'-:l Provides a foundation for motion generation and

Question:
Selected | Missing left arm <Occlusion> motion
J data. Please complete the motion.

understanding

Language-Motion Pre-Alignment

Georgia
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Methodology: Language-Motion Pre-Alignment

Output: [ ' 1 )0 v" LLM maps input conditions to motion sequences
T v’ Self-supervised augmentations & compositional
) | Human Decoder ) X encoding: enable seamless embedding of motion + text
Transformer Block & XN = Example instruction:
= “Plan a sequence of actions ending
with <State> over <Time> seconds.”
= <State> = discrete motion token,
Transformer Block ¢y <Time> = temporal motion duration
soasp 0o 1. Combine motion and language into shared codebook:
Tokenizer
=R V= {Vm, Vi}
== | Question:
Selected | Missing left arm <Occlusion> motion 2. Encode both motion z: and temporal representations d;
_::l data. Please complete the motion. into token sequence Xd _ {xf ?Ll

Language-Motion Pre-Alignment _ _ _
v' Enables LLMs to process mixed motion-language inputs

Georgia
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Methodology: Language-Motion Pre-Alignment

Output: ?{"7{"?{" X‘:X‘

[ Human Decoder J

x N

Transformer Block ¢

Transformer Block ¢

o4
[=1

@cted

-

50

ooaeg - 00

Tokenizer

Question:
Missing left arm <Occlusion> motion
data. Please complete the motion.

Language-Motion Pre-Alignment

. Model predicts next motion token :cg given prior context

(similar to language modeling)

S = {St}le

. Training objective:

Loy =— Y logp(h|zy’, za)

. Generated output sequence — reconstructs discrete motion

Georgia
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Methodology: Vision-Conditioned Fine-Tuning

I°g

Whole-Body
Controller

Output: 7?%\ ?{’ K s

‘ Human Decoder }

Transformer Block x N

Cross Attention ¢

Transformer Block %%

Cross Attention ¢y

00000~ 00 000

/" Visual |
/  Encoder |

Tokenizer
Question:
Please generate the motion to kick
the ball.

Vision-Conditioned Fine-Tuning

51

Goal and Purpose:

v Adds egocentric visual information for object-
aware behavior

v Collect real-world Mocap + visual data

v Transfer language-motion alignment to vision-
grounded humanoid tasks
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Methodology: Vision-Conditioned Fine-Tuning

e

. Cross-Attention Fusion for Vision-Language
Output: %\?? ?{’ K 5 .
- Whole-Body 1. Freeze transformer layers from pre-alignment phase
- Human Decoder 2. Add vision encoder + cross-attention layers

3. For each layer! :
Q= XWh, K =XW, Vi=XW,

T
X! = Softmax (QlKl ) Vi
vD

Transformer Block x N

Cross Attention ¢

Transformer Block 3

Cross Attention Y 4. Combines visual features X, + language features Xy
00000 00 )D[]D into unified embedding X,
Tokenizer Visual Fine'Tu ning Objective

Encoder

= Optimize loss function same as pre-alignment:

Question: = Maximize consistency between predicted &
Please generate the motion to kick groun d-truth motion
the ball. : . . :
= Maintain temporal & semantic alignment
Vision-Conditioned Fine-Tuning = Qutput: Vision-conditioned motion-language

transformer

Georgia
52 Gl" Tech.



Experiments

Quantitative Evaluation — Kinematic Fidelity

Datasets:

 HumanML3D: locomotion tasks (run, swim, dance)

* Humanoid-S: complex, manually annotated actions
(4646 clips)

Metrics:
* FID| : distribution similarity (lower -> better realism)
« DIV? : motion diversity (higher -> richer motion)

Baselines:
« MDM (diffusion), T2M-GPT (transformer + VQ-VAE)

Results:

 Humanoid-VLA achieves lowest FID (0.467), highest
DIV (4.585), +47.5% improvement over MDM, +12%

55 over T2M-GPT

Method HumanML3D Humanoid-S
FID, DIVt FID,, DIVt
MDM 0.889+026 3 g55+.063 9 351+.590 4 1711+:261
T2M-GPT 0.531%:020 4 555+:058 1 101+189 4 199+-218

Humanoid-VLA  0.467+:018  4,585+:086  1,037+147 4,466+ 213

Table 3: Kinematic fidelity of generated motion in Hu-
manML3D and Humanoid-S. We use FID score and Di-
versity to evaluate the quality of the motion generated by
the model, where bold values indicate the best results.

Georgia
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Experiments

Quantitative Evaluation — Kinematic Fidelity

« Setup:
Evaluated in IsaacGym simulator
Measures how well humanoid executes
generated trajectories

Results:

« Joint errors < 40mm, best 31.07mm under
medium difficulty

 Empjpe=1.18, Eaccel=27.84, Evel=14.76

« Demonstrates smooth & physically consistent
motion

Ablation:

« Adding large-scale video data improves FID from
0.557 t0 0.467 (+16%)

» Confirms effectiveness of self-supervised data

>4 augmentation

Types Input Accuracy
Eglpjpe ‘L Eglap]pe \L’ Eaccel \L Evel l’
D 36.13 1.53 34.42 18.73
E T 36.57 1.48 35.10 18.53
asy A 39.02 132 3432 1791
Sh, 36.29 1.55 34.93 18.88
D+T 31.07 1.18 27.84 14.76
Medium D+A 36.98 1.30 34.87 18.16
D+ 5, 35.75 1.18 33.41 17.18
Hard D+5+Sn 37.14 1.34 34.69 18.08
Low-quality data High-quality Data FID| DIV+
w aug W aug

v 0.698+037 4 576+-098

v 0.557+:016 3 gg7+-062

v v 0.467+018 4 585086

Georgia
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Experiments
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GEN-0 / Embodied Foundation Models That Scale with Physical Interaction
Robotics is No Longer Limited By Data

Robotics is No Longer Limited By Data

Our Foundation models are trained on an unprecedented corpus of 270,000
hours of real-world manipulation trajectories collected across diverse activities in
1,000s of homes, warehouses, and workplaces worldwide. Today, our robot data
operations provide over 10,000 new hours per week and are accelerating. This is
all powered by a global network of hardware and 1,000s of data collection

devices and robots.

GEN-0O

X
o
a5
o
S
R
L

states St-n

nipulation data than some

Georgia
Generalist Al Team, "GEN-0: Embodied Foundation Models That Scale with Physical Interaction", Generalist Al Blog, Nov 2025. Tech



GEN-0 / Embodied Foundation Models That Scale with Physical Interaction

Surpassing the Intelligence Threshold Scaling Laws for Robotics

Model Siza Scaling Performance with Pretraining Data & Compute

1B params
—— BB params

-2
1.45x10 % Pretraining Dataset

1.4 x 1072 14.1% of data
28.2% of data
42.3% of data
1.3 %102 56.3% of data
- 70.4% of data

1.25x1077 —— 84.5% of data
= 100% of data

—— 7B params .
1.35x 1072

1.2x1072
1.15x 1072
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Discussions

«  Will humanoid remain research platforms, or can they evolve into truly useful co-worker in read
world (if so, when)? Is the bottleneck mainly in hardware or in the intelligence layer?

Do we really need a human-like body to achieve general-purpose intelligence? Could other
embodiments achieve better efficiency and scalability?

» Synthetic Data Dependence —
How reliable are synthetic data sources?
Can they ever replace real robot demonstrations?

e |[s Data Alone the Ultimate Solution? —
Will scaling data and compute alone eventually solve general-purpose robotics?
Where should model-based methods sit in the era of data-driven robotics?
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