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Why humanoid robot?
A Timeline 
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Why humanoid robot?

• Versatility: General-purpose robot autonomy needs a 

versatile body

• Brownfield: Human-like morphology. Humanoids can 

seamlessly integrate into human world infrastructure without 

modifying existing environment.

• Hardware: Robot hardware gets cheaper and more robust, 

democratizing transformative research

• Impact: Aging workforces, shrinking labor pools ….

Final goal:

March toward human-level physical intelligence
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Problem Statement

Goal of Foundation Models in Robotics

• Generalist intelligence backbone for robots, 

enabling them to understand, reason, and act 

across diverse tasks, environments, and robot 

embodiments using a single unified model

Challenges 

• Unlike pixels or text, robotic data isn’t abundant or uniform — every robot has unique:

o Embodiment (morphology, kinematics)

o Sensors (cameras, proprioception)

o Control spaces (joints, tendons, torques)

• No Internet of humanoid robot dataset exist for large-scale pre-training, leading to “data islands” 

• As a result, models trained on one robot often fail to generalize to others or to new physical tasks.
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Hu, Yafei, et al. "Toward general-purpose robots via foundation models: A 
survey and meta-analysis." arXiv preprint arXiv:2312.08782 (2023).



Problem Statement

Challenges for humanoid robots specifically

• High degrees of freedom and bimanual coordination.

• Dynamic balance and whole-body motion couple perception, locomotion, and manipulation — 

hard to do whole-body teleoperation.

• Extensive cost and human effort in teleoperation-based data collection 

• Embodiment variability (different limb proportions, motor torque limits, control modes, and joint 
ranges) breaks direct policy transfer between humanoid platforms.
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GR00t: Method



Model Architecture

Dual-system architecture inspired by human cognition:

• System 2 (Reasoning): Vision-Language Model (VLM) interprets the environment and task.

• System 1 (Action): Diffusion Transformer generates continuous motor actions.

Both are jointly trained end-to-end for coordinated perception and control.

Input: Image + Language + Robot State → Output: Motor Actions.9

Why two systems?

Could one single-level model 
handle both reasoning and 

motor control, or is the dual-

system design essential?



Model Architecture

System 2 

System 1 
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Model Architecture

System 2 – Vision-Language Module

• Based on Eagle-2 VLM (a fusion of SigLIP-2 

image encoder + SmolLM2 LLM).

• Encodes images and task text into shared 

feature tokens.

• Produces vision-language embeddings (middle-
layer representations used for efficiency and 

accuracy).

• Operates at 10 Hz for task understanding and 

reasoning.

• Output: High-level task/context representation → 
passed to System 1.
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Model Architecture

System 2 – Vision-Language Module

Processing Pipeline:

• Input: Task text + one or more images.

• Image Encoding: Each 224×224 image → pixel-shuffle → 64 image 

tokens per frame.

• Language Encoding: Text instruction tokenized in chat format (same as 

VLM training).

• Fusion: Image + text tokens jointly processed by the LLM → fused 

multimodal embeddings.

• Feature Extraction: Use 12th layer embeddings (middle-layer) for 

balance of speed + performance.

• Output: Vision-language feature tensor (Batch × Seq × Hidden Dim) → 

fed into System 1 (Diffusion Transformer) via cross-attention.

Key Insights:

• Pixel-shuffle compression maintains spatial information with fewer 

tokens (8×8 grid).

• Middle-layer embeddings preserve grounded visual semantics while 

remaining efficient.

• Provides real-time (10 Hz) environment understanding and instruction 

reasoning.

• Serves as dynamic context for motor control generation in System 1.
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Model Architecture

System 1 – Vision-Language Module

Each robot embodiment has its own:

• State encoder 

• Action decoder

Enables cross-embodiment generalization 

— same model handles multiple robots.

Diffusion Transformer (DiT) module 𝑉𝜃(𝜙𝑡, 𝐴𝑡
𝜏, 𝑞𝑡):

• Input: robot state embeddings 𝑞𝑡, noised action 

tokens 𝐴𝑡
𝜏, and VLM embeddings 𝜙𝑡.

• Output: Smooth, continuous motor actions across 

different embodiments.

• Uses flow-matching (diffusion-like denoising) to predict denoised motor actions.

• Alternating cross-attention (to link vision-language features) and self-attention (to model 

temporal action dependencies).

13



Model Architecture
System 1 – Vision-Language Module

Diffusion Transformer (DiT) with flow matching:

Training phase

1. Take a ground-truth action sequence 𝐴𝑡.

2. Add noise using a random scalar, a flow-matching 

timestep 𝜏 ∈ 0,1 :

𝐴𝑡
𝜏 = 𝜏𝐴𝑡 + 1 − 𝜏 𝜖, 𝜖 ∼ 𝒩 𝟎, 𝑰

3. The model 𝑉𝜃 𝜙𝑡, 𝐴𝑡
𝜏, 𝑞𝑡  predicts the vector field 𝜖 − 𝐴𝑡 

that drives 𝐴𝑡
𝜏 back to 𝐴𝑡

4. Loss function:

Inference phase

1. Start from random noise 𝐴𝑡
0 ∼ 𝒩 𝟎, 𝑰 .

2. Iteratively update:

3. Typically only 4 denoising steps (K = 4) are needed to 

recover smooth action sequences.

(Each chunk contains 16 actions → efficient 120 Hz control.)

ℒfm = 𝔼𝜏 𝑉𝜃 𝜙𝑡, 𝐴𝑡
𝜏, 𝑞𝑡 − 𝜖 − 𝐴𝑡

2

𝐴𝑡
𝜏+1/𝐾

= 𝐴𝑡
𝜏 +

1

𝐾
𝑉𝜃 𝜙𝑡 𝐴𝑡

𝜏 𝑞𝑡

Action chunks:

At any given time 𝑡, 
𝐴𝑡  = 𝑎𝑡, 𝑎𝑡+1, . . . , 𝑎𝑡+𝐻−1  

the action vectors of timesteps 

𝑡 through 𝑡 + 𝐻 − 1.
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Datasets

• Massive scale and ever-growing 

• Multimodal and unstructured 

• Human-centered data 

• Unlimited simulated data (in theory) 

• Content creation challenge, reality gap, 

computational burden 

• Small scale and expensive to collect

• Ease of use for imitation learning, direct transfer 

15



Datasets

Real-world human behaviors:

grasping, tool use, cooking, assembly, and other task-oriented activities 
performed in natural environments)
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Datasets

1) Simulation trajectories automatically multiplied from a small 

number of human demonstrations within physics simulators

2) Neural trajectories derived from videos produced by off-the-

shelf neural generation models

RoboCasa
(Nasiriany et al., 

RSS 2024)

DexMimicGen
(Jiang et al., ICRA 

2025)

Simulation trajectories 

• Tasks follow the behavior “rearrange A from B to C”

• 54 unique combinations of source and target receptacle 

categories

• Objects and receptacles in randomized locations

• 10,000 new demonstrations for each (source, target)
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Datasets

1) Simulation trajectories automatically multiplied from a small 

number of human demonstrations within physics simulators

2) Neural trajectories derived from videos produced by off-the-

shelf neural generation models

• Image-to-video model finetuned from 

WAN2.1-I2V-14B (Wan Team, 2025)

• Given existing initial frames with novel 

language prompts

Neural trajectories

“pick up {object} from 

{location A} to {location B}"

• 88h real teleop → 827h neural-generated data (∼10× 

expansion).
• Enhanced by multimodal LLM filtering and captioning 

to ensure instruction compliance.
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Datasets

• GR00T N1 Humanoid Dataset: Teleoperated GR-1 humanoid tasks (grasp, move, place).

• Open X-Embodiment: Cross-robot manipulation datasets (RT-1, Bridge-v2, DROID, etc.).

• AgiBot-Alpha: Large-scale multi-robot trajectories with tool use and collaboration.

Open 

X-Embodiment
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Datasets
Latent Action Learning using VQ-VAE 

To handle any dataset (human egocentric videos and neural trajectories) that lacks 

explicit robot action labels

• Train a VQ-VAE model on consecutive video frames to learn latent actions 

representing motion between frames.

• Encoder: takes current frame 𝑥𝑡 and future frame 𝑥𝑡+𝐻 →outputs latent action 𝑧𝑡.

• Decoder: reconstructs 𝑥𝑡+𝐻 from 𝑥𝑡 and 𝑧𝑡.

• Objective: VQ-VAE loss aligns continuous embeddings to the nearest codebook 

vector, ensuring a discrete, shared action representation.

What it represents:

• A learned embedding of motion — not real torque, velocity, or joint angles.

• It captures “what kind of motion happened,” in a robot-agnostic latent space.

• Treated as a separate embodiment (LAPA) during pretraining so that the model 

learns to interpret this space consistently across all data sources.

When used:

• Pre-training phase → used to align human, synthetic, and robot data under one 

unified representation.
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Datasets
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IDM (Inverse Dynamics Model)

Goal: Predict realistic robot actions given visual state transitions, trained per embodiment.

How it works:

• Train a model (Diffusion Transformer, System 1) to map from two images 𝑥𝑡 𝑥𝑡+𝐻  →robot action 

sequence 𝑎𝑡.

• conditioned on specific robot dynamics, learns the mapping between observed motion and the actual 

control commands.

• Uses a flow-matching loss (like the policy model).

What it represents:

• A robot-specific action label (e.g., joint velocities, torques, tendon lengths).

• Pseudo-labels neural trajectories or videos with plausible actions that the robot could have taken.

When used:

• Post-training phase → for fine-tuning with neural-generated trajectories when real actions are missing.

• LAPA is like learning “verbs” in a universal language of motion (“move left,” “reach up”).

• IDM translates those verbs into each robot’s motor commands (“bend joint 3 by 10°”).



Datasets
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Training
1. Pre-training Phase

• Objective: Train with flow-matching loss on mixed data:

• Data usage:

• Human videos: use latent actions (from VQ-VAE).

• Real Robot: use real actions + latent actions.

• Neural trajectories: use latent + IDM-predicted actions.

• Goal: Learn a generalizable cross-embodiment policy that unifies 
all data under a single latent action space.

2. Post-training Phase

• Fine-tune on each single robot (embodiment-specific tasks).

• Keep language model frozen, tune action and perception modules.

• Use neural-generated data to augment limited real data (1:1 mix).

• Label synthetic data with latent or IDM pseudo-actions.

• Goal → achieve robust adaptation with minimal real-world data.
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Stage Purpose Data Type Label Source

Pre-training
Generalization across 

embodiments

Human, synthetic, real 

robot
Latent actions (LAPA)

Post-training
Embodiment-specific 

fine-tuning
Real robot data

LAPA or IDM pseudo-

labels

Post-training w/ 

Neural Trajectories
Low-data augmentation Synthetic neural videos

IDM-predicted pseudo-

actions



GR00t: Experiments and 
Evaluation



Experiments and Results
Simulation Benchmarks

• RoboCasa Kitchen (24 tasks, Franka Emika Panda arm)
o pick-and-place, door opening and closing, pressing buttons, turning faucets, and more

• DexMimicGen Cross-Embodiment Suite (9 tasks)
o Bimanual Panda Arms with Parallel-Jaw Grippers: threading, piece assembly, and transport

o Bimanual Panda Arms with Dexterous Hands: box cleanup, drawer cleanup, and tray lifting 

o GR-1 Humanoid with Dexterous Hands: pouring, coffee preparation, and can sorting

• GR-1 Tabletop Tasks (24 tasks, GR-1)
o rearranging objects 
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Experiments and Results
Real-World Benchmarks

• Articulated Object Manipulation

o 3 tasks, Articulated

• Object-to-Container Pick-and-Place

o 5 tasks, Pick-and-Place

• Industrial Object Manipulation

o 3 tasks, Industrial

• Multi-Agent Coordination 

o 2 tasks, Coordination

(left) left-to-right handover

(right)placement of novel objects into an 
unseen target container
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Experiments and Results

Pre-training Evaluation (Real GR-1 Robot)

• Task 1: Place object on bottom shelf (requires bimanual transfer).

• Task 2: Place novel object into unseen container.

• Results:

• Task 1 → 76.6 % success (11.5 / 15 trials)

• Task 2 → 73.3 % success (11 / 15 trials)

→ Shows strong generalization and effective coordination from large-scale pre-training.
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Experiments and Results

Post-training Evaluation

Simulation Results: 100 demonstrations per task

Real-World Results

Real Robot:

• Compared with Diffusion Policy.

• Trained on only 10 % of data → just 3.8 % lower than Diffusion 

Policy (full data).

• +32.4 % gain (10 % data) and +30.4 % gain (full data) overall.

→ Demonstrates data efficiency and strong embodiment transfer.

Simulation

• Benchmarks: RoboCasa, DexMimicGen, GR-1 Simulation

• Data Regimes: 30 / 100 / 300 demos per task.

• GR00T N1 → Consistently outperforms from-scratch 

baselines in all benchmarks.
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Experiments and Results

Post-training + Neural Trajectories

• Simulation (RoboCasa):

+4.2 %, +8.8 %, +6.8 % improvements for 30 / 100 / 300 data 

regimes.

• Real GR-1 Humanoid:
+5.8 % average improvement across 8 tasks.

• Label comparison:

• LAPA > IDM in low-data regime (30 demos).

• IDM > LAPA with more data (100 – 300 demos).

→ Neural trajectories + pseudo-labels enhance learning under 
data scarcity.

An extension experiment showing how synthetic data can 

further boost the model’s generalization and efficiency, even 

when there is only limited percentage of real robot data.
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Experiments and Results

• Some tasks plateau even with full data → 

data scaling alone may not solve 

embodiment complexity.

• Failures often relate to contact dynamics, 

occlusions, and fine manipulation → 
areas where physics priors or model-based 

reasoning could help.
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Experiments and Results
Qualitative Results
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Experiments and Results

Real Humanoid Behavior (“Pick up red apple and place in basket”)

• Apple placed left of the hand → tests bimanual coordination.

• Pre-trained model: grasps with left hand → hands to right → places in basket 

• Post-trained model: fails (learned only single-hand behavior).

→ Pre-training preserves general coordination skills that fine-tuning can over-specialize away.

Motion Quality Comparison (Post-training Real Robot)

• GR00T N1: smooth motions, accurate grasps.

• Diffusion Policy: jerky motion, slow start, frequent mis-grasps.

→ GR00T N1 achieves smoother and more reliable real-world control.

Qualitative Results
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Summary

• Focused mainly on short-horizon tabletop manipulation 

— lacks long-horizon loco-manipulation skills.

• Requires stronger vision-language backbone for better 

spatial reasoning and language understanding.

• Needs improvements in humanoid hardware and model 
architecture to support more complex motions.

• Synthetic data generation still limited by:

• Low diversity and realism.

• Difficulty maintaining physical consistency in 

generated trajectories.

• Lacking important sensing modalities (torque, tactile, … )

GR00T N1 is the first large-scale generalist humanoid foundation model that unifies reasoning, 

perception, and control across heterogeneous data sources and robot embodiments.

Limitations
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Follow up

Improved VLM Grounding Capabilities

• Keeps the language–vision expert intact during both 

pre- and post-training.

• Preserves strong linguistic and visual reasoning → 
better instruction following and generalization.

FLARE Objective – Learning by Watching

• Adds Future Latent Representation Alignment → learns 

from human egocentric videos.

• Robot learns new tasks just by watching humans, even 
without labeled robot data.

DreamGen Integration – Learning by Imagining

• Uses synthetic neural trajectories from video world models to 
generate new robot data.

• Expands task diversity → better zero-shot and few-shot 
generalization.

❖ Higher success rate, more diverse data sources, 

significantly improved language following capabilities.

❖ Significantly better performance in low-data, zero-

shot, and novel-verb tasks
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Humanoid-VLA: Towards universal humanoid 

control with visual integration
Pengxiang Ding*12 Jianfei Ma*3 Xinyang Tong*1 Binghong Zou3 Xinxin Luo3 Yiguo Fan1 Ting Wang1 

Hongchao Lu1 Panzhong Mo3 Jinxin Liu3 Yuefan Wang12 Huaicheng Zhou3 Wenshuo Feng3 Jiacheng Liu12 
Siteng Huang1 Donglin Wang13



Motivation
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Whole Body Control
➢ Pros: High-fidelity motion control

➢ Cons: Reactive mechanisms -- dynamically adjusting motions in 

response to external inputs 

Universal Humanoid Control
➢ Pros: Ego-centric visual integration

➢ Cons: Data scarcity

➢ Lack of synchronized first-person view (FPV) data

➢ Teleoperation is expensive

Humanoid-VLA ➢ Language Understanding

➢ Egocentric Scene Perception

➢ Motion Control



Motivation

➢ Language Understanding

➢ Egocentric Scene Perception

➢ Motion Control

Feasible & Cost-effective paradigm:

A. Language-motion pre-alignment:

▪ Nonegocentric motion dataset with textual description

▪ Learn universal motion patterns and action semantics

B. Video-conditioned Fine-tuning:
▪ Egocentric visual context

▪ Enable contextual motion generation

On More Thing

Self-supervised data augmentation strategy:

▪ Auto generate pseudo-annotation derived from motion data
▪ Converts raw motion sequence into informative QA pair

38

Humanoid-VLA



Data Acquisition Challenges

Prior datasets: 

Small, well-curated, motion-language pairs → good quality but 

low diversity 

Large online video datasets: 
Rich motion diversity but lack language annotations 

Problem: 

Scarcity of paired motion-language data hinders pre-alignment 

training

Existing methods:

▪ Manual label: expensive

▪ LLM label: noisy & incomplete
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Self-Supervised Data Augmentation

▪ Manual Annotation: accurate but costly and slow

▪ Video LLMs (VLLMs): scalable but

▪ Often noisy/incomplete/imprecise

▪ Fail to describe fine-grained motions or complex actions

▪ Both are suboptimal for motion-language alignment

Existing Annotation Approaches

▪ Avoids explicit manual annotations 

▪ Key idea: derive self-supervised tasks directly from motion data 

▪ Example: 

▪ Mask body joints temporarily (e.g., left arm) 

▪ Model reconstructs missing movement 
▪ Instructional prompt: “Missing left arm <Occlusion> motion data — please complete the motion.” 

▪ Enables automatic, scalable, and accurate pseudo-annotations

Self-Supervised Data Augmentation
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Data Acquisition Pipeline 
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Cost-effective annotation method

▪ Designing various self-supervised tasks 

directly derived from motion data

▪ Instructional prompts:

▪ “missing left arm <Occlusion> motion 

data. Please complete the motion”

▪ Target outputs:

▪ Ground motion

Two key modules:

✓ Compositional Motion Quantitation

✓ Autonomic Data Augmentation



Data Acquisition Pipeline
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▪ Decomposition of motion into five body parts: 

▪ left leg, right leg, torso, left arm, right arm 

▪ Each part encoded independently into token 

▪ Motion Encoder: encodes body part data 

▪ Motion Decoder: reconstructs full pose

Key module 1: Compositional Motion Quantitation

✓ Form flexible operations on the motion sequence at the token level. 

E.g. replace, perturb, or rearrange the tokens corresponding to specific 

body parts to generate new motion patterns. 



Data Acquisition Pipeline 
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Data Acquisition Pipeline 

▪ Four augmentation types:

▪ <Track>, <Time>, <Occlusion>, <State>

▪ Example:

▪ Isolate root joint’s trajectory (<Track>)

▪ Generate instruction:
“Please move your center position along the trajectory of 

<Track>.”

44

✓ Creates new instruction–motion pairs from unlabeled 

data: effectively augments datasets that initially lacked 

linguistic annotations, enabling their use in tasks 

requiring text-motion alignment.



Data Acquisition Pipeline 
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1) Highly flexible and extensible

2) Leverages motion data’s inherent temporal and spatial dynamics, allowing models 

to learn richer and more robust motion-language relationships

3) Interleaved datasets enhances cross-modal alignment by incorporating both 

motion and text in inputs and outputs.



Framework: two-stage training
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Language-Motion Pre-Alignment
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Methodology: Language-Motion Pre-Alignment

Goal: 

Align non-egocentric human motion 

data with language descriptions  

Purpose:
✓ Learn motion patterns & action semantics from 

large-scale motion data  

✓ Enable motion-language 

learning without requiring egocentric visual input  

Outcome:  

Provides a foundation for motion generation and 

understanding
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Methodology: Language-Motion Pre-Alignment
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✓ LLM maps input conditions to motion sequences

✓ Self-supervised augmentations & compositional 

encoding: enable seamless embedding of motion + text

▪ Example instruction:

▪ “Plan a sequence of actions ending 

with <State> over <Time> seconds.”

▪ <State> = discrete motion token,

<Time> = temporal motion duration

1. Combine motion and language into shared codebook:

2. Encode both motion    and temporal representations

into token sequence

✓ Enables LLMs to process mixed motion-language inputs



Methodology: Language-Motion Pre-Alignment
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1. Model predicts next motion token    given prior context

(similar to language modeling)

2. Training objective:

3. Generated output sequence → reconstructs discrete motion



Methodology: Vision-Conditioned Fine-Tuning
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Goal and Purpose:

✓ Adds egocentric visual information for object-

aware behavior

✓ Collect real-world Mocap + visual data

✓ Transfer language-motion alignment to vision-
grounded humanoid tasks



Methodology: Vision-Conditioned Fine-Tuning
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Cross-Attention Fusion for Vision-Language

1. Freeze transformer layers from pre-alignment phase

2. Add vision encoder + cross-attention layers

3. For each layer  :

4. Combines visual features      + language features  

into unified embedding

Fine-Tuning Objective

▪ Optimize loss function same as pre-alignment:

▪ Maximize consistency between predicted & 

ground-truth motion

▪ Maintain temporal & semantic alignment
▪ Output: Vision-conditioned motion-language 

transformer



Experiments 
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Datasets:

• HumanML3D: locomotion tasks (run, swim, dance)

• Humanoid-S: complex, manually annotated actions 

(4646 clips)

Metrics:

• FID↓ : distribution similarity (lower -> better realism)

• DIV↑ : motion diversity (higher -> richer motion)

Baselines:
• MDM (diffusion), T2M-GPT (transformer + VQ-VAE)

Results:

• Humanoid-VLA achieves lowest FID (0.467), highest 

DIV (4.585), +47.5% improvement over MDM, +12% 

over T2M-GPT

Quantitative Evaluation — Kinematic Fidelity



Experiments 
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• Setup:

Evaluated in IsaacGym simulator

Measures how well humanoid executes 

generated trajectories

Results:

• Joint errors < 40mm, best 31.07mm under 

medium difficulty

• Empjpe=1.18, Eaccel=27.84, Evel=14.76

• Demonstrates smooth & physically consistent 
motion

Ablation:

• Adding large-scale video data improves FID from 

0.557 to 0.467 (+16%)
• Confirms effectiveness of self-supervised data 

augmentation

Quantitative Evaluation — Kinematic Fidelity



Experiments
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Last week …
GEN-0 / Embodied Foundation Models That Scale with Physical Interaction

Robotics is No Longer Limited By Data
—— really?

56 Generalist AI Team, "GEN-0: Embodied Foundation Models That Scale with Physical Interaction", Generalist AI Blog, Nov 2025.



Last week …
GEN-0 / Embodied Foundation Models That Scale with Physical Interaction

Surpassing the Intelligence Threshold Scaling Laws for Robotics

57 Generalist AI Team, "GEN-0: Embodied Foundation Models That Scale with Physical Interaction", Generalist AI Blog, Nov 2025.



Discussions

• Will humanoid remain research platforms, or can they evolve into truly useful co-worker in read 

world (if so, when)? Is the bottleneck mainly in hardware or in the intelligence layer?

• Do we really need a human-like body to achieve general-purpose intelligence? Could other 

embodiments achieve better efficiency and scalability?

• Synthetic Data Dependence —

How reliable are synthetic data sources? 

Can they ever replace real robot demonstrations?

• Is Data Alone the Ultimate Solution? —

Will scaling data and compute alone eventually solve general-purpose robotics? 

Where should model-based methods sit in the era of data-driven robotics?
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