Topics:

e Transformers

CS 8803-VLM
ZSOLT KIRA

Many slides by Justin Johnson



Read over the websitel

Read up on Deep Learning, Transformers

After announcement, sign up for presenting a paper
See the schedule for dates of project proposal, mid-project update, and final presentations.

Reminder: Please sign up for one session for now. Depending on how it shapes out, there may
be an opportunity to do an optional second one.

Sessions are topic-focused. If there are other papers you recommend or want to present in
addition to or instead of, let us know! We will take a look at the quality/relevance and approve.

The first one is next Tuesday 09/02 so it would be great to have someone sign up for that one
ASAP!

There are a few that are still not filled in.


https://faculty.cc.gatech.edu/~zk15/teaching/AY2025_cs8803vlm_fall/index.html

Deep Learning
Fundamentals
Linear classification
Loss functions
Optimization
Optimizers
Backpropagation
Computation Graph
Multi-layer
Perceptrons

Neural Network
Components and
Architectures
Hardware & software
Convolutions
Convolution Neural
Networks

Pooling

Activation functions
Batch normalization
Transfer learning
Data augmentation
Architecture design
RNN/LSTMs
Attention &
Transformers

Applications & Learning
Algorithms

Semantic & instance
Segmentation
Reinforcement Learning
Large-language Models
Variational Autoencoders
Diffusion Models
Generative Adversarial Nets
Self-supervised Learning
Vision-Language Models
VLM for Robotics

Georgia |

Deep Learning

Tech|)/



Example with an image with 4 pixels, and 3 classes (cat/dog/ )

Stretch pixels into column

\ 4
56
02 | -0.5| 01 | 2.0 1.1 -96.8 | Cat score
231
15 | 1.3 | 21 | 0.0 +| 3.2 | = | 437.9 | Dog score
24
Input image 0 |025] 0.2 | -0.3 -1.2 61.95 | Ship score
2
w b

Adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, from CS 231n

) Example Ge%g%ﬁ&



We can find the steepest descent direction by
computing the derivative (gradient):

o« .. fla+h)—f(a)
fi(a) = |im h

Steepest descent direction is the negative
gradient

Intuitively: Measures how the function changes
as the argument a changes by a small step size

As step size goes to zero

In Machine Learning: Want to know how the
loss function changes as weights are varied

Can consider each parameter separately
by taking partial derivative of loss
function with respect to that parameter

) Derivatives

Ax

Image and equation from:
https.//en.wikipedia.org/wiki/Derivative#/media/
File:Tangent_animation.qgif

Georgla [&




The same two-layered neural network
corresponds to adding another weight
matrix

We will prefer the linear algebra
view, but use some terminology from
neural networks (& biology)

input layer

hidden layer
X Wl Wz

fx, W, W;3) =oc(Wyo0(Wyx))

Figure adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

) The Linear Algebra View




To develop a general algorithm for
this, we will view the function as a
computation graph

Graph can be any directed acyclic
graph (DAG)

Modules must be differentiable to
support gradient computations for
gradient descent

A training algorithm will then
process this graph, one module at a
time

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

) . A General Framework




Task: Sequence to Sequence Modeling

one to one one to many many to one many to many many to many




Machine Translation

we are eating bread » estamos comiendo pan



Some Important Concepts

* Propagation of information (forward) T ey

— Mixing!

— Two entangled things: Encoded input, state

of decoding $ 4

* Propagation of gradients backwards g




Machine Translation

estamos comiendo pan

RNN Encoder » RNN Decoder

we are eating bread



Model: Recurrent Neural Network

RNN: Computational Graph: Many to Man L
Yy P L4 Y P L Yz P L3 yr P Lt
t t f f




Machine Translation with RNNs

Encoder: h, = f, (X, hq)

h > h, > h, h, h,
A A
X4 Xy X3 X4
we are eating bread

Slide credit: Justin Johnson



Machine Translation with RNNs

Encoder: h, = f, (X, hq)

So = h,

we are eating bread

Slide credit: Justin Johnson



Machine Translation with RNNs

Encoder: h, = f, (X, hq)

Decoder: s, = gy(Y; St.q) estamos
Y1
hO g h1 g hz h3 h4 Sg — T S
X1 X2 X3 X4 yo

we are eating  bread [START]

Slide credit: Justin Johnson



Machine Translation with RNNs

Encoder: h, = f, (X, hq)

Decoder: s, = gy(Y St.1) estamos comiendo

Y1 Yo
X4 X2 X3 X4 Yo " Y1
we are eating bread [START] estamos

Slide credit: Justin Johnson



Machine Translation with RNNs

Encoder: h, = f, (X, hq)

Decoder: s, = gy(Ys Siq) estamos comiendo  pan [STOP]
Yi ] Yo T ] Y3 Ya
RESESE

we are eating bread [START] estamos comiendo pan

Slide credit: Justin Johnson



Machine Translation with RNNs

Encoder: h, = f, (X, hq)

Decoder: s, = » St
t= 9ulYe Sir) Problem: s; is used to

encode input and
maintain decoder state

h > h, > h, h, h, S ——T* Sy — TS, —[*S; — [ S,
‘ 4 4 4 4
X4 Xy X3 X4
we are eating bread

Slide credit: Justin Johnson



Machine Translation with RNNs

Encoder: h, = f, (X, hq)

Decoder: s, = g(Yy Si.1s

c) Solution: add a
context vector c = h,
and predict s, from h,

h > h, > h, h, * h, » Sy — > Sy — TS, — T S3 — T S,
‘ 4 4 4 4
C
X4 Xy X3 X4
we are eating bread

Slide credit: Justin Johnson



Machine Translation with RNNs

Encoder: h, = f, (X, hq)

Decoder: s, = gy(Ye Se1, estamos comiendo  pan [STOP]
c) Solution: add a
context vector c = h, Y1 Y2 Y3 Y4
and predict s, from h, X 5 X 5
hy > h, > hy > hs " hy "So T TSt T [ TS [ T Ss T [T Sa
» C
X1 X2 X3 X4 Yo " Y4 Y2 "'Y3
we are eating bread [START] estamos comiendo pan

Slide credit: Justin Johnson



Machine Translation with RNNs

Encoder: h, = f, (X, hq)

Decoder: s, = g(Yy Si.1s

c)
bottleneck
Problem: Input sequence
hq * h, > h, h, h, Sy — bottlenecked through
5 x fixed-sized vector.
c —
X4 X5 X3 X4
we are eating bread

Slide credit: Justin Johnson



Machine Translation with RNNs

Encoder: h, = f, (X, hq)

Decoder: s, = g(Yy Si.1s

c)
bottleneck
Idea: use new context
hg > h, > h, h, h, Sy — vector at each step of
“ X decoder!
c —
X4 X5 X3 X4
we are eating bread

Slide credit: Justin Johnson



e
Machine Translation with RNNs and Attention

From final hidden state:
Initial decoder state s,

h, " hy " hs " hy " S
X4 Xy X3 X4
we are eating bread

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015

Slide credit: Justin Johnson



e
Machine Translation with RNNs and Attention

Compute alignment scores
e = fatr(Se.q, i) (fo is an
MLP)

From final hidden state:

e11T e121 e13T €14 Initial decoder state s,
I .

h, " hy " hs " hy " S

X4 Xy X3 X4

we are eating bread

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015

Slide credit: Justin Johnson



e
Machine Translation with RNNs and Attention

Compute alignment scores

i = fau(Se.1, M) (fa is @n
a1 aq dq3 CEP MLP)
t t t t
softmax Normalize to get
t 1 t 1 From final hidden state: attention weights
€11 €12 23 €14 | Initial decoder state s, O<a, <1 Ya, =
4 A 4 | Dt
[ | 1
h, " hy " hs " hy " S
X X5 X3 Xy
we are eating bread

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015

Slide credit: Justin Johnson



e
Machine Translation with RNNs and Attention

[ Compute alignment scores

|
%@ %@ 2*@ 2*@ € = far(St1, i) (fart is an
a4 dqo dq3 IV MLP)

t t t t

softmax Normalize to get
t 1 t | From final hidden state: attention weights
ef11 \ 9‘1‘21 911‘3T \ €14 | Initial decoder state s O<a,;<1 Ya,=
NN LN I : 1
h, > h, > hg > h, > Sg + Set context vector ¢ to a
] ‘ I [ linear combination of hidden
states

X1 Xy X3 X4 " C4 C; = ah,
we are eating bread

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015

Slide credit: Justin Johnson



e
Machine Translation with RNNs and Attention

2|g $I§ 2% 2% Compute alignment scores
& 4 4 t € = far(St1, i) (fart is an
3111 a;z a;3 8}4 estamos MLP)
softmax Normalize to get

f f f I From final hidden state: Y attention weights
611T \ 9‘1‘21 911‘3T \ €14 | Initial decoder state s O<a, <1 Ya,=

h, ¥ hy — h; — h, > Sp ¥ > S Set context vector ¢ to a

] ‘ I [ b ‘ ‘ linear combination of hidden

states
X4 X, X3 X, " C1 | Yo C = 2@

we are eating bread
[START]

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015

Slide credit: Justin Johnson



e
Machine Translation with RNNs and Attention

2% $I§ 2% | Compute alignment scores
& 4 4 2*@ € = far(St1, i) (fart is an
a11 1 a;z 8;3 8}4 estamos MLP)
softmax Normalize to get
f f f I From final hidden state: Y attention weights
€11 \ e121 €13 \ €14 Initial decoder state s, ‘ 0O<a, <1 Ya, =
4 A 4 | Dt
h ¥ hy — h; — h, > Sp : > S Set context vector ¢ to a
] ‘ I [ ‘ ‘ linear combination of hidden
states
X4 X, X3 X, " C1 | Yo C = 2@

we are eating bread

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015

Slide credit: Justin Johnson



e
Machine Translation with RNNs and Attention

2|g $I§ 2% 2% Compute alignment scores
& 4 4 t € = far(St1, i) (fart is an
a11 1 a;z 8;3 8}4 estamos MLP)
softmax Normalize to get
f f f I From final hidden state: Y attention weights
e e e e 4
f11 \ ‘121 ‘131 \ ‘141 Initial decoder state s, ‘ O<a;<1 Ya,=
AL N I ; 1
hy =1 hy, = h; = hy > So = S Set context vector ¢ to a
linear combination of hidden
Intuition: Context vector states
attends to the relevant ‘ _
X4 X s *4 | part of the input sequence G || Yo Ci = 2@yh,

“estamos” = “‘we are”
we are eating bread

a,=0.45, a,,=0.45, a,;,=0.05, a,,=0.05

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015

Slide credit: Justin Johnson



e
Machine Translation with RNNs and Attention

% % YA % Repeat: Use s,
34 a‘ a* a* to compute new
121 %2 fs %4 estamos context vector c,
softmax
f 1 | | Y1
€21 €22 €23 €24

X4 Xy X3 X4 Ci | Yo Co

we are eating bread
[START]

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015

Slide credit: Justin Johnson



e
Machine Translation with RNNs and Attention

% % YA % Repeat: Use s,
34 a‘ a* a* to compute new
121 %2 f?’ %4 estamos comiendo  context vector c,
soffmax Use c, to
t f t 1 Y Y2 compute s,, Y,
e‘%1 \ €22 efs \ ef4 } T ‘
) +

X4 Xy X3 X4 Ci | Yo Co | | Yy

we are eating bread
[START] estamos

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015

Slide credit: Justin Johnson



e
Machine Translation with RNNs and Attention

X R /R X
dyq dpo d3 Aoy

estamos comiendo

we are eating

bread

:SO

Intuition: Context vector

attends to the relevant part

of the input sequence
‘comiendo” = “eating”

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015

Y1 Yo
— |
Sq > S,

Ci | Yo Co || Yy

[START] estamos

Repeat: Use s,
to compute new
context vector c,

Use c, to
compute s,, Y,

Slide credit: Justin Johnson



e
Machine Translation with RNNs and Attention

Use a different context vector in each timestep of decoder

- Input sequence not bottlenecked through single vector

- At each timestep of decoder, context vector “looks at”
different parts of the input sequence

A 4

estamos comiendo

Y1

|

Yo

|

pan [STOP]

h1 h2 > h3 h4 SO 31 > 32 > S3 " S4
‘ ] RERIN iR
X1 X2 X3 X4 Cil Yo |Co || Yy Cs || Y2 Cq | Y3
we are eating bread
[START] estamos comiendo pan

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015

Slide credit: Justin Johnson



e
Machine Translation with RNNs and Attention

Visualize attention weights a,

Example: English to S BE . . .
. @ Q = © ] S5 N go]

French translation ve 9285895 22 §
EF o oS oLuw<a 296 £ H Y,

y
Input: “The agreement on accord
. sur

the European Economic a
Area was signed in August o one
” economique
1992 européenne
a

(r s été

Output: “L’accord sur la signé
Zone economique en
” rq 7 . ” aout
europeenne a été signe en 1992

aolt 1992.”

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015

<end>

Slide credit: Justin Johnson



Machine Translation with RNNs and Attention

Visualize attention weights a,

Example: English to
French translation

European

Economic

Input: “The agreement on Diagonal attention accord
) means words sur

the European Economic correspond in order N
Area was signed in August - zone
’” economique
1992, européenne

Output: “L’accord sur la
Zone economique
europeenne a éteé signe en Diagonal attention

aout 1992.” means words
correspond in order

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015

Slide credit: Justin Johnson



Machine Translation with RNNs and Attention

Visualize attention weights a,

Example: English to
French translation

agreement

European
Economic
Area

The

the

LI
accord
sur

Input: “The agreement on Diagonal attention
the means words

correspond in order la

Zone

was signed in August e
” économique
1 992 . européenne

Output: “L’accord sur la

a été signe en Diagonal attention

aout 1992.” means words
correspond in order

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015

Slide credit: Justin Johnson



e
Machine Translation with RNNs and Attention

estamos comiendo pan [STOP]
Y+ Yo Y3 Ya
SO S1 > 32 > S3 " S4

’ N " N
dp1 do) do3 doy

t t t t

softmax

| | 1 |
€21 €20 €23 €24

h, h, > h, h,
X4 X5 X3 X,
we are eating bread

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015

[START] estamos comiendo pan

Slide credit: Justin Johnson



Image Captioning with RNNs and Attention

CNN hy1|hys | hys " So

Use a CNN to compute a
grid of features for an image

Catimage is free to use under the Pixabay License

Xu et al, “Show, Attend, and Tell: Neural Image Caption Generation with Visual Attention”, ICML 2015
Slide credit: Justin Johnson



Image Captioning with RNNs and Attention

Alignment scores
et I,J = fatt(st—ll hl,J) €111 €112 €113
€121 €127 €123

€31 €132 €133

CNN hy1|hys | hys " So

Use a CNN to compute a
grid of features for an image

Xu et al, “Show, Attend, and Tell: Neural Image Caption Generation with Visual Attention”, ICML 2015
Slide credit: Justin Johnson



Image Captioning with RNNs and Attention

Alignment scores Attention weights

et,i,j - fatt(st—ll hI’J) €111 | €112 | €113 d1,11 | 11,2 | A113

softmax

at' . = SOftmaX(et,,) €121 €122 (€123 = 3151 3127 3123

rere

€131 €132 | €133 131 9132 | 9133
h 1,1 h 1,2 h1,3
CNN hy1|hyo | hys " So
h3,1 h3,2 h3,3

Use a CNN to compute a
grid of features for an image

Xu et al, “Show, Attend, and Tell: Neural Image Caption Generation with Visual Attention”, ICML 2015
Slide credit: Justin Johnson



Image Captioning with RNNs and Attention

Alignment scores Attention weights

et,i,j = fatt(st—ll h I,J) €111 €112 €13 9111 9112 113
_ softmax
at,:,: - SOftm ax(et’:,:) €121 | €122 €123 | = 3151 81,5 3153
Ct = ZI,Jat,I,J hI,J €131 | €132 | €133 131 | 132 | 133
t
hl 1 h1,2 h1,3
CN N h2’1 hZ,Z h2’3 > 50
h3 1 h3,2 h3 3

Use a CNN to compute a O— Cy
grid of features for an image

Xu et al, "Show, Attend, and Tell: Neural Image Caption Generation with Visual Attention”, ICML 2015
Slide credit: Justin Johnson



Image Captioning with RNNs and Attention

Alignment scores Attention weights
et,i,j = fa'l_'t(st—l! hIJJ) €111 €112 €113 d111 9112 @113
_ softmax
at,:,: - SOﬂmax(et,’) €121 €122 €123 T 3151 | 12 123 cat
Ct = ZIJJat,IIJ hl,‘] €131 €132 €133 d131 | 9132 9133
1. YI
hia | D1 hl,g\ ‘
CNN h2,1 hz,z hz,a > Sg " Sq
o o | e |
Ve
Use a CNN to compute a O— Ci || Yo

grid of features for an image

[START]

Xu et al, “Show, Attend, and Tell: Neural Image Caption Generation with Visual Attention”, ICML 2015
Slide credit: Justin Johnson



Image Captioning with RNNs and Attention

€ij = fart(Se1, hi,j)
a...= softmax(e; . .) cat

rere

Ce = 2 AN

Y1
hll h12 h1,3 ‘
CNN hy1 | hao | has > S, > s,
31 Dz | b o
Use a CNN to compute a C1 || Yo
grid of features for an image
[START]

Xu et al, “Show, Attend, and Tell: Neural Image Caption Generation with Visual Attention”, ICML 2015
Slide credit: Justin Johnson



Image Captioning with RNNs and Attention

Alignment scores

et,i,j = fatt(st—]_l hI,J) €11 €212 | €213
a;..=softmax(e;..) e e e cat
Ct - Zh_]at,h_]hhj €31 €232 | €233
Y1
t
hl,l hl,Z h1,3 ‘
CNN h2,1 hz,z h2,3 > So " 54
h31 | hss | hss \ ‘ ‘
Use a CNN to compute a C1 | Yo
grid of features for an image
[START]

Xu et al, “Show, Attend, and Tell: Neural Image Caption Generation with Visual Attention”, ICML 2015
Slide credit: Justin Johnson



Image Captioning with RNNs and Attention

Alignment scores Attention weights
et,i,j = fatt(st—ll hl,J) €11 €212 | €213 10 A12 | 213
ft o
at’:’: = SOftmaX(et”) €221 | €222 | €223 T 221 | 8222 | 223 cat sﬂ:hng
Ct - zl Jat |Jh|J €31 €232 €233 31 232 233
s Y1 Y2
t ‘\
h11 |h12 | has \ ‘ ‘
CNN Ny | hap | has " So g 52
s |hss | hss ]
Use a CNN to compute a C1 1| Yo C2 || Y1
grid of features for an image 5
[START] cat
Ve
"

Xu et al, “Show, Attend, and Tell: Neural Image Caption Generation with Visual Attention”, ICML 2015



Y1 Yo Y3 Y4

+ + )
Ao dog Aoy .
estamos comiendo

EIEIE E—
t 1 t +
\’_hlz_‘ \’_hls_‘ \’_hI] Sp | 5 Sz
I[dea: Can we use attention

B as a fundamental building X4 X, Xg | | Xg

we  are eating bread block for a generic sequence
[START] estamos .
(input) to sequence (output)
layer?




Attention Layer

M . . 3;21 a;zz a;zs T estamos comiendo  pan [STOP]

State vector: s, (Shape: D) | T |

Hidden vectors: h. (Shape: N, x D,,) TR B o i

Similarity function: f_, E—t 47 + N | |
bt e 5 E =
iRk BRI
Xq X2 X3 Xa ﬂ Yo C Y E‘ Y2 M Y3
we are eating bread ! 1 J

[START] estamos comiendo  pan
Computation:

Similarities: e (Shape: Ny) e, =f_ (s, h;)
Attention weights: a = softmax(e) (Shape: Ny)
Output vector: y = } ah;, (Shape: Dy)

Slide credit: Justin Johnson



Attention Layer

L npu ts 3;1 3;2 323

estamos comiendo n [STOP]
Query vector: g (Shape: Dg) | : S, : | t i
Input vectors: X (Shape: Ny x D|) ‘y’ ‘yz M V*“
t

Similarity function: f_, 3 ﬁ 47 thﬂ | ] |

I )

| S
1T L
X4 X, X3 X4 ﬂ Yo gk E‘ Y2 M Y3

t t

1
[START] estamos comiendo  pan

we are eating bread

Computation:

Similarities: e (Shape: Ny) e, =f_(a, X;)
Attention weights: a = softmax(e) (Shape: Ny)
Output vector: y = } .aX, (Shape: Dy)

Slide credit: Justin Johnson



Attention Layer

Inputs:

Query vector: ¢ (Shape: D)
Input vectors: X (Shape: Ny x D)

Similarity function: dot produc

Computation:

Similarities: e (Shape: Ny

’ ei=Q'*|

Attention weights: a = softmax(e) (Shape: Ny)

Output vector: y = Y a X,

(Shape: Dy)

Az dss

t t estamos comiendo  pan [STOP]

softmax

T
t
2

|
ﬁ ﬁ % | I l

"

| 4 s
Bk L
X, X3 X4 ﬂyo EHiE‘Yz Mya

t t

1
[START] estamos comiendo  pan

are eating bread

Changes:
- Use dot product for similarity

Slide credit: Justin Johnson



Attention Layer

Inputs:
Query vector: ¢ (Shape: D)

Input vectors: X (Shape: Ny x D)
Similarity function: scaled dot product

Computation:

Similarities: e (Shape: N I) e =q - Xi/sqrt(D

)

Attention weights: a = softmax(e) (Shape: Ny)

Output vector: y = } .aX, (Shape: Dy)

Az dss

t t

softmax

T
t
2

€23 €24

i

estamos comiendo  pan [STOP]

e
I

are eating bread

Changes:

T

t t

T
[START] estamos comiendo  pan

- Use scaled dot product for similarity

Slide credit: Justin Johnson



Attention Layer

Inputs: Sty d

Z] 22 23 estamos comiendo n STOP,
Query vectors: Q (Shape: Ng x DlQ) | : o : | t pan 8707
Input vectors: X (Shape: Ny x Dj) o [enl [eal [en \ X vl y| y] ‘

t t 1

h | th_‘ J_‘ ’_hl_‘ 0 $4

"

| 4 s
1T L
X4 X, X3 X4 ﬂ Yo Ek E‘ Y2 M Y3

t t

1
[START] estamos comiendo  pan

we are eating bread

Computation:

Similarities: E = QX' (Shape: Ng X Ny) E;; = Q, - X;/ sqrt(Dq)

Attention weights: A = softmax(E, dim=1) (Shape: NQxNX) Changes:

Output vectors: Y = AX (Shape: Ng X Dy) Y; = 2,4, X - Use dot product for similarity

- Multiple query vectors

Slide credit: Justin Johnson



-
Attention Layer

M ] . a;m a;zz a;zs 3%4 estamos comiendo  pan [STOP]
Query vectors: Q (Shape: Ng x Dg) | softmax |
Input vectors: X (Shape: Ny x Dy) e e e noooe w
Key matrix: W, (Shape: Dy x Dy) S S S [ R
0 h h h h s s
Value matrix: W, (Shape: Dy x D,)) ' {l {l | l“l ’ h | ll ] lH
Xq X5 X3 X4 ﬂ Yo gk @ Y2 t:‘ Y3

1
we are eating bread
[START] estamos comiendo  pan

Computation:
\-Ps(ey vectors: K = XW, (Shape: Ny x DQl
)

Value vectors: V = XW,, (Shape: Ny x D
imilarities: E = QKT (Shape: Ng x Ny) E;; = Q, - K,/ sqrt(Dg)
Attention weights: A = softmax(E, dim=1) (Shape: NQ X Ny) Changes:
Output vectors: Y = AV (Shape: Ng x Dy) Y; = 2 A,V - Use dot product for similarity

- Multiple query vectors
-  Separate and value

Slide credit: Justin Johnson



-
Attention Layer

Inputs:
Query vectors: Q (Shape: Ng x Dg)

Input vectors: X (Shape: Ny x Dy)
Key matrix: (Shape: Dy x D)
Value matrix: W,, (Shape: Dy x D))

Computation:
Key vectors: K = X (Shape: Ny x Dy) X4
Value vectors: V = XW,, (Shape: Ny x D,))
Similarities: E = QK" (Shape: Ng x Ny) E;; = Q; - K,/ sqrt(Dg) X,
Attention weights: A = softmax(E, dim=1) (Shape: Ng X Ny)
Output vectors: Y = AV (Shape: Ng xD,) Y; = > A}V, X,

Slide credit: Justin Johnson



-
Attention Layer

Inputs:
Query vectors: Q (Shape: Ny x Dg)

Input vectors: X (Shape: Ny x Dy)
Key matrix: (Shape: Dy x D)
Value matrix: W,, (Shape: Dy x D))

Computation:

Key vectors: K =X (Shape: Ny x Dy) X, ™ K,
Value vectors: V = XW,, (Shape: Ny x D,))

Similarities: E = (Shape: Ng x Ny) E;; = Q; - K,/ sqrt(Dg) X, — K,
Attention weights: A = softmax(E, dim=1) (Shape: Ng X Ny)

Output vectors: Y = AV (Shape: Ng xD,) Y; = > A}V, X; — K,

Slide credit: Justin Johnson



-
Attention Layer

Inputs:
Query vectors: Q (Shape: Ny x Dg)

Input vectors: X (Shape: Ny x Dy)
Key matrix: (Shape: Dy x D)
Value matrix: W,, (Shape: Dy x D))

Computation:

Key vectors: K =X (Shape: Ny x Dy) Xy ™ Ky — Eyy E, E; ; E,
Value vectors: V = XW,, (Shape: Ny x D,))

Similarities: E = (Shape: Ng x Ny) E;; = Q; - K,/ sqrt(Dg) X, —1 K, = Eq5 E,, E;, E,,
Attention weights: A = softmax(E, dim=1) (Shape: Ng X Ny)

Output vectors: Y = AV (Shape: Ng xD,) Y; = > A}V, Xs — Ky — Eq, E,. Ess e

Slide credit: Justin Johnson



-
Attention Layer

Inputs:

Query vectors: Q (Shape: Ny x Dg) A A Az 4 As
Input vectors: X (Shape: Ny x Dy)

Key matrix: (Shape: Dy x D) A, A, Az, Ao

Value matrix: W,, (Shape: Dy x D))

Softmax( T )
Computation:

Key vectors: K =X (Shape: Ny x Dy) Xy ™ Ky — Eyy E, E; ; E,
Value vectors: V = XW,, (Shape: Ny x D,))

Similarities: E = (Shape: Ng x Ny) E;; = Q; - K,/ sqrt(Dg) X, —1 K, = Eq5 E,, E;, E,,
Attention weights: A = softmax(E, dim=1) (Shape: Ng X Ny)

Output vectors: Y = AV (Shape: Ng xD,) Y; = > A}V, Xs — Ky — Eq, Sha Ess e

| S |

Q Q Q Q

1 2 3 4

Slide credit: Justin Johnson



-
Attention Layer

Inputs:

Query vectors: Q (Shape: Ny x Dg) "V, — A A Az 4 As
Input vectors: X (Shape: Ny x Dy)

Key matrix: (Shape: Dy x D) " Vo, — A, A, Az, Ao

Value matrix: W,, (Shape: Dy x D))

Computation:

Key vectors: K =X (Shape: Ny x Dy) - Xy — Ky —  Eyy E, E; ; E,
Value vectors: V = XW,, (Shape: Ny x D,))

Similarities: E = (Shape: Ng x Ny) E;; = Q; - K,/ sqrt(Dg) X, 1 K, —1 | Eq, E,, E; E,,
Attention weights: A = softmax(E, dim=1) (Shape: Ng X Ny)

Output vectors: Y = AV (Shape: Ng xD,) Y; = > A}V, Xs — Ky — Eq, E,. Ess e

Slide credit: Justin Johnson



Attention Layer

Inputs:
Query vectors: Q (Shape: Ny x Dg)

Input vectors: X (Shape: Ny x Dy)
Key matrix: (Shape: Dy x D)
Value matrix: W,, (Shape: Dy x D))

Computation:

Key vectors: K =X (Shape: Ny x Dy)
Value vectors: V = XW,, (Shape: Ny x D,))
Similarities: E = (Shape: Ng x Ny) E;; = Q; - K,/ sqrt(Dg)
Attention weights: A = softmax(E, dim=1) (Shape: Ng X Ny)

Output vectors: Y = AV (Shape: Ng xD,) Y; = > A}V,

E, E; E,

E,» Esp | Esp

Eys| |Ess| |Eags
R
Q Q Q
2 3 4

Slide credit: Justin Johnson



-
Self-Attention Layer

One query per input vector

Inputs:
Input vectors: X (Shape: Ny x Dy)

Key matrix: (Shape: Dy x D)

Query matrix: W, (Shape: Dy x D§)

Computation:

Query vectors: Q = XW

Key vectors: K =X (Shape: Ny x Dy)

Value vectors: V = XW,, (Shape: Ny x D,))

Similarities: E = QK' (Shape: Ny x Ny) E;; = Q; - K,/ sqrt(Dg)
Attention weights: A = softmax(E, dim=1) (Shape: Ny x Ny)
Output vectors: Y = AV (Shape: Ny x D) Y; = > A}V,

Slide credit: Justin Johnson



-
Self-Attention Layer

One query per input vector
Inputs:
Input vectors: X (Shape: Ny x Dy)
Key matrix: (Shape: Dy x D)
Value matrix: W,, (Shape: Dy x D))
Query matrix: W, (Shape: Dy x Dg)

Computation:

Query vectors: Q = XW

Key vectors: K =X (Shape: Ny x Dy)

Value vectors: V = XW,, (Shape: Ny x D,))

Similarities: E = QK' (Shape: Ny x Ny) E;; = Q; - K,/ sqrt(Dg) Q

Attention weights: A = softmax(E, dim=1) (Shape: N, x Ny) ‘ b
Output vectors: Y = AV (Shape: Ny x D) Y; = > A}V, t t f
X1 X2 X3

Slide credit: Justin Johnson



-
Self-Attention Layer

One query per input vector
Inputs:
Input vectors: X (Shape: Ny x Dy)
Key matrix: (Shape: Dy x D)
Value matrix: W,, (Shape: Dy x D))
Query matrix: W, (Shape: Dy x Dg)

Computation:
Query vectors: Q = XW, K,

Key vectors: K =X (Shape: Ny x Dy)

Value vectors: V = XW,, (Shape: Ny x D,)) K
Similarities: E = QK' (Shape: Ny x Ny) E;; = Q; - K,/ sqrt(Dg) Q
Attention weights: A = softmax(E, dim=1) (Shape: Ny x Ny) ‘
Output vectors: Y = AV (Shape: Ny x D) Y, = 3 AV, f

c
'

b
X b
X L

Slide credit: Justin Johnson



-
Self-Attention Layer

One per input vector
Inputs:
Input vectors: X (Shape: Ny x Dy)
Key matrix: (Shape: Dy x D)
Value matrix: W,, (Shape: Dy x D))
Query matrix: (Shape: Dy x Dg)

Computation:

Query vectors: O =X Ko = E;, | Eyn | Ej3
Key vectors: K =X (Shape: Ny x Dy)

Value vectors: V = XW,, (Shape: Ny x D) Ki 1= Eiq| [Baq| [EBsq
Similarities: E = (Shape: Ny x Ny) E;; = Q; - K,/ sqrt(Dg) (5 (5
Attention weights: A = softmax(E, dim=1) (Shape: Ny x Ny)

Output vectors: Y = AV (Shape: Ny x D) Y; = YAV, t f

Slide credit: Justin Johnson



-
Self-Attention Layer

One per input vector
Inputs: A3 Az As 3
Input vec_tors: X (Shape: Ny x Dy) Aol A, A;,
Key matrix: (Shape: Dy x D)
Value matrix: W,, (Shape: Dy x D) Al Ay [ Agy
Query matrix: (Shape: Dy x D) t
Softmax(1)

t
Computation: Ks |=1[E1a] |Eas Ess
Query vectors: O =X Ko |=||Ei2| |Ezs| |Esy
Key vectors: K =X (Shape: Ny x Dy)
Value vectors: V = XW,, (Shape: Ny x D)) Ki = By [Banl [ Ba
Similarities: E = (Shape: Ny x Ny) E;; = Q; - K,/ sqrt(Dg) (5

Attention weights: A = softmax(E, dim=1) (Shape: Ny x Ny)
Output vectors: Y = AV (Shape: Ny x D) Y; = > A}V,

Slide credit: Justin Johnson



-
Self-Attention Layer

One query per input vector

Inputs: Vs |7 Al Az As 3
Input vectors: X (Shape: Ny x Dy) oV, |~ A A, As,
Key matrix: (Shape: Dy x Dq) ’ ’ ’
Value matrix: W,, (Shape: Dy x D)) TV = AL A A
Query matrix: W, (Shape: Dy x D) — t o
ortmax
t

Computation:

Query vectors: 0 = XW, Ko |=||Ei2| |Ezs| |Esy
Key vectors: K = X (Shape: Ny x Dy)

Value vectors: V = XW,, (Shape: Ny x D, Ki | = E1] [Eaq| |EBsq
Similarities: E = QK™ (Shape: Ny x Ny) E;; = Q, - K,/ sqrt(Dy) & i &

Attention weights: A = softmax(E, dim=1) (Shape: Ny x Ny)
Output vectors: Y = AV (Shape: Ny x D) Y; = > A}V,

Slide credit: Justin Johnson



-
Y1 Y2 Y3

Self-Attention Layer SRS N

One query per input vector f
Inputs: Vs |7 Al Az As 3
Input vectors: X (Shape: Ny x Dy) 1V, = AL, A, A,
Key matrix: (Shape: Dy x Dy) ’ ’ ’
Value matrix: W,, (Shape: Dy x D)) TV = AL Ay Ay
Query matrix: W, (Shape: Dy x D) t
Softrr;ax(T)

Computation:

Query vectors: O = XW, K, = Ein | Eyn | Ej,
Key vectors: K =X (Shape: Ny x Dy)

Value vectors: V = XW,, (Shape: Ny x D) Ki 1= Eiq| [Baq| [EBsq
Similarities: E = QK™ (Shape: Ny x Ny) E;; = Q, - K,/ sqrt(Dy) & i &

Attention weights: A = softmax(E, dim=1) (Shape: Ny x Ny)
Output vectors: Y = AV (Shape: Ny x D) Y; = > A}V,

Slide credit: Justin Johnson



e
Self-Attention Layer SRS SR

Consider permuting , - !
Inputs: the input vectors:
Input vectors: X (Shape: Ny x Dy) > —
Key matrix: (Shape: Dy x D)
Value matrix: W,, (Shape: Dy x D)) -
Query matrix: W, (Shape: Dy x Dg) — t

o rrflaX(T)
Computation: -
Query vectors: Q = XW, —
Key vectors: K = X (Shape: Ny x Dy)
Value vectors: V = XW,, (Shape: Ny x D)) -
Similarities: E = QK (Shape: Ny x Ny) E;; = Q; - K,/ sqrt(Dg) t t t
Attention weights: A = softmax(E, dim=1) (Shape: Ny x Ny)
Output vectors: Y = AV (Shape: Ny x D) Y, = 3 AV, t t t
X3 X1 X2

Slide credit: Justin Johnson



e
Self-Attention Layer SRS SR

Consider permuting , — !
Inputs: the input vectors:
Input vectors: X (Shape: Ny x Dy) s —
Key matrix: (Shape: Dy x Dq) Queries and Keys will
Value matrix: W,, (Shape: Dy x D)) be the same, but -
Query matrix: W, (Shape: Dy x Dg) permuted t
Softrr;ax(T)
c jon: Ko T
omputation:
Query vectors: O = XW, K,
Key vectors: K = X (Shape: Ny x Dy)
Value Vectors: V = XW,, (Shape: N, x D) Ks 1T
Similarities: E = QK" (Shape: Ny x Ny) E;; = @, - K,/ sqrt(Dg) ) 6 é
Attention weights: A = softmax(E, dim=1) (Shape: Ny x Ny) ) ‘ )
Output vectors: Y = AV (Shape: Ny x D) Y; = AV, 1 T T
X, X, X,

Slide credit: Justin Johnson



e
Self-Attention Layer SRS SR

Consider permuting , — !
Inputs: the input vectors:
Input vectors: X (Shape: Ny x Dy) : —
Key matrix: W, (Shape: Dy x Dq) Similarities will be the
Value matrix: W, (Shape: Dy x D,) same, but permuted -
Query matrix: W, (Shape: Dy x Dg) — nflaX(T)
4
Computation: Ko 1T/ Baz2] [Erz =%
Query vectors: O = XW, K, | Es; E EW
Key vectors: K = X (Shape: Ny x Dy)
Value vectors: V = XW,, (Shape: Ny x D)) Ks |7 Bss [Eial [ Eos
Similarities: E = QK (Shape: Ny x Ny) E;; = Q; - K,/ sqrt(Dg) é é (5
Attention weights: A = softmax(E, dim=1) (Shape: Ny x Ny) ‘ )
Output vectors: Y = AV (Shape: Ny x D) Y, = 3 AV, f t 1
X3 X1 X2

Slide credit: Justin Johnson



e
Self-Attention Layer SRS SR

Consider permuting , i
Inputs: the input vectors: Asp| [Arz] [Ao
Input vectors: X (Shape: Ny x Dy) > - A A A
‘. . 3,1 1,1 2.1
Key matrix: W, (Shape: Dy x Dq) Attention weights will ) 1
Value matrix: W,, (Shape: Dy x D,)) be the same, but ' Asz | Az [ Ags
Softmax(1)
t
Computation: Ko |=|[Eaz] [Er2] [Ea
Query vectors: Q = XW, K, [—|| Es; E, E,,
Key vectors: K = XW, (Shape: Ny x Dy) |
Value vectors: V = XW,, (Shape: Ny x D)) Ks = Bss Bz Eags
Similarities: E = QKT (Shape: Ny x Ny) E;; = Q, - K;/ sqrt(Dy) & & &
Attention weights: A = softmax(E, dim=1) (Shape: Ny x Ny) ‘ )
Output vectors: Y = AV (Shape: Ny x D) Y; = YAV, f t 1
X3 X1 X2

Slide credit: Justin Johnson



Self-Attention Layer

Inputs:
Input vectors: X (Shape: Ny x Dy)

Key matrix: (Shape: Dy x D)
Value matrix: W,, (Shape: Dy x D))
Query matrix: W, (Shape: Dy x Dg)

Computation:

Query vectors: Q = XW,

Key vectors: K = X (Shape: Ny x Dy)
Value vectors: V = XW,, (Shape: Ny x D,))

Similarities: E = QK" (Shape: Ny x Ny) E;;

Consider permuting
the input vectors:

Values will be the
same, but permuted

=Q, - K;/sqart(Dy)

Attention weights: A = softmax(E, dim=1) (Shape: Ny x Ny)

Output vectors: Y = AV (Shape: Ny x Dy))

Y= Zin,jVj

v

4 4 4
Product(—), Sum(?1)
t

Ass | | Aqs Aoz
t

Softmax(1)

Slide credit: Justin Johnson



Self-Attention Layer

Inputs:
Input vectors: X (Shape: Ny x Dy)

Key matrix: (Shape: Dy x D)
Value matrix: W,, (Shape: Dy x D))
Query matrix: W, (Shape: Dy x Dg)

Computation:

Query vectors: Q = XW,

Key vectors: K = X (Shape: Ny x Dy)
Value vectors: V = XW,, (Shape: Ny x D,))

Similarities: E = QK" (Shape: Ny x Ny) E;;

Consider permuting
the input vectors:

Outputs will be the
same, but permuted

=Q, - K;/sqart(Dy)

Attention weights: A = softmax(E, dim=1) (Shape: Ny x Ny)

Output vectors: Y = AV (Shape: Ny x Dy))

Y= Zin,jVj

A

broduct(—»), Sum(Tl)

v

Ass | | Aqs Aoz
t

Softmax(1)

Slide credit: Justin Johnson



Self-Attention Layer

Consider permuting

Inputs: the input vectors:
Input vectors: X (Shape: Ny x Dy)

Key matrix: W, (Shape: Dy x Do) Outputs will be the
Value matrix: W,, (Shape: Dy x D)) same, but permuted

Query matrix: W, (Shape: Dy x Dg)

Self-attention layer is

_ Permutation
Computation: Equivariant

Query vectors: O = XW, f(s(x)) = s(f(x))
Key vectors: K = X (Shape: Ny x Dy)

Value vectors: V = XW,, (Shape: Ny x D,))

Similarities: E = QK' (Shape: Ny x Ny) E;; = Q; - K,/ sqrt(Dg)
Attention weights: A = softmax(E, dim=1) (Shape: Ny x Ny)
Output vectors: Y = AV (Shape: Ny x D) Y; = > A}V,

v

Y3 Y1 Y2
]Droduct(—:), Sum(Tl)
t
A3,2 A1 2 A2,2
A3,1 A1 1 A2,1
A3,3 A1,3 A2,3
t
Softmax(1)
t
E3,2 E1 2 E2,2
E3,1 E1,1 E2,1
E3,3 E1,3 E2,3
1 1 1
Q Q Q
f t ¥
X, X, X,

Slide credit: Justin Johnson



Self-Attention Layer

Self attention doesn’t “know”
the order of the vectors it is
processing!

Inputs:
Input vectors: X (Shape: Ny x Dy)

Key matrix: (Shape: Dy x D)
Value matrix: W,, (Shape: Dy x D))
Query matrix: (Shape: Dy x Dg)

Computation:

Query vectors: O = X

Key vectors: K =X (Shape: Ny x Dy)

Value vectors: V = XW,, (Shape: Ny x D,))

Similarities: E = (Shape: Ny x Ny) E;; = Q, - K,/ sqrt(Dq)
Attention weights: A = softmax(E, dim=1) (Shape: Ny x Ny)
Output vectors: Y = AV (Shape: Ny x D) Y; = > A}V,

Yy Y, Y3

4 4 4
Product(—), Sum(?1)
t

A1 > A2,3 A3,3
A1 2 A2,2 A3,2

Aq 1 A 4 Az 4
t

Softmax(1)

Slide credit: Justin Johnson



Self-Attention Layer

Inouts: Self attention doesn’t “know” V,
NDLES. _ _ the order of the vectors it is

Input vectors: X (Shape: Ny x Dy) rocessing! V,
Key matrix: (Shape: Dy x D) P g

Value matrix: W, (Shape: Dy x D) Vi

In order to make processing
position-aware, concatenate
input with positional

encoding K,

Query matrix: W, (Shape: Dy x Dg)

Computation:

Query vectors: Q = XW

Key vectors: K =X (Shape: Ny x Dy)
Value vectors: V = XW,, (Shape: Ny x D,
Similarities: E = QK' (Shape: Ny x Ny) E;; = Q; - K,/ sqrt(Dg)
Attention weights: A = softmax(E, dim=1) (Shape: Ny x Ny)
Output vectors: Y = AV (Shape: Ny x D) Y; = > A}V,

E can be learned lookuptable, K
S)r fixed function

Y1 Y2 Y3
4 4 4
Product(—), Sum(?1)

t
A1 '3 A2,3 A3,3
A1 2 A2,2 A3,2
A1,1 A2,1 A3,1
t
Softmax(1)
t

E1 '3 E2,3 E3,3

E1 ,2 E2,2 E3,2

E1 A E2,1 E3,1
1 1 1

Q Q Q
t f f

X1 X2 X3

E(1) [E@2) [EQ)

Slide credit: Justin Johnson



Big cat [END]

¢ 4 t
- Product(—), Sum(?1)
Masked Self-Attention Layer :
Inputs: Vs |70 0 Ass
Input vectors: X (Shape: Ny x D —
K:y matrix: (éhap% DXXX DQ);) Don’t let vectors “look vz L Aoz | B
Value matrix: W,, (Shape: Dy x D) ahead” in the sequence Vi 1= AL A Ay
Query matrix: (Shape: Dy x D) t
Used for language Softmax(f)
modelin redict next
Computation: word) 9P Kg |7 - Eas
Query vectors: O =X K, |—|| - E,, |Ei,
Key vectors: K =X (Shape: Ny x Dy)
Value vectors: V = XW,, (Shape: Ny x D) Ki 1= Eiq| [Baq| [EBsq
Similarities: E = (Shape: Ny x Ny) E;; = Q, - K,/ sqrt(Dy) (5 (5 (5
Attention weights: A = softmax(E, dim=1) (Shape: Ny x Ny)
Output vectors: Y = AV (Shape: Ny x D) Y; = YAV, t f f

[START] Big  cat

Slide credit: Justin Johnson



Multihead Self-Attention Layer || |

Inputs: Concat
Input vectors: X (Shape: Ny x Dy)

Key matrix: (Shape: Dy x D)

Value matrix: W,, (Shape: Dy x D)) Use H independent e gL _

Query matrix: W, (Shape: Dy x Dq) ) ) b . e ) ] |[ B ) ) | ) )
Attention Heads” in o o =
parallel -] o] [ -] ] -] g [

Computation: - @ - -

Query vectors: Q = XW

Key vectors: K =X (Shape: Ny x Dy) o
Value vectors: V = XW,, (Shape: Ny x D) Split
Similarities: E = QK' (Shape: Ny x Ny) E;; = Q; - K,/ sqrt(Dg)
Attention weights: A = softmax(E, dim=1) (Shape: Ny x Ny)

Output vectors: Y = AV (Shape: Ny x D) Y; = > A}V, X % %
1 2 K}

Slide credit: Justin Johnson



Three Ways of Processing Sequences

Recurrent Neural Network

Yio T Yo T Ys T " Vs

I

X4 X, X3 Xy

Works on Ordered Sequences
(+) Good at long sequences:
After one RNN layer, h; ”sees”
the whole sequence

(-) Not parallelizable: need to
compute hidden states
sequentially

1D Convolution

Y1 Yo Y3 Y4

| XTXIX]

X X5 X3 Xy

Works on Multidimensional
Grids

(-) Bad at long sequences: Need
to stack many conv layers for
outputs to “see” the whole
sequence

(+) Highly parallel: Each output
can be computed in parallel

Self-Attention

Works on Sets of Vectors

(+) Good at long sequences:
after one self-attention layer,
each output “sees” all inputs!
(+) Highly parallel: Each output
can be computed in parallel

(-) Very memory intensive

Slide credit: Justin Johnson



	Slide 1: CS 8803-VLM Zsolt Kira
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8: Task: Sequence to Sequence Modeling
	Slide 9: Machine Translation
	Slide 10: Some Important Concepts
	Slide 11: Machine Translation
	Slide 12: Model: Recurrent Neural Network
	Slide 13: Machine Translation with RNNs
	Slide 14: Machine Translation with RNNs
	Slide 15: Machine Translation with RNNs
	Slide 16: Machine Translation with RNNs
	Slide 17: Machine Translation with RNNs
	Slide 18: Machine Translation with RNNs
	Slide 19: Machine Translation with RNNs
	Slide 20: Machine Translation with RNNs
	Slide 21: Machine Translation with RNNs
	Slide 22: Machine Translation with RNNs
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47: Attention Layer
	Slide 48: Attention Layer
	Slide 49: Attention Layer
	Slide 50: Attention Layer
	Slide 51: Attention Layer
	Slide 52: Attention Layer
	Slide 53: Attention Layer
	Slide 54: Attention Layer
	Slide 55: Attention Layer
	Slide 56: Attention Layer
	Slide 57: Attention Layer
	Slide 58: Attention Layer
	Slide 59: Self-Attention Layer
	Slide 60: Self-Attention Layer
	Slide 61: Self-Attention Layer
	Slide 62: Self-Attention Layer
	Slide 63: Self-Attention Layer
	Slide 64: Self-Attention Layer
	Slide 65: Self-Attention Layer
	Slide 66: Self-Attention Layer
	Slide 67: Self-Attention Layer
	Slide 68: Self-Attention Layer
	Slide 69: Self-Attention Layer
	Slide 70: Self-Attention Layer
	Slide 71: Self-Attention Layer
	Slide 72: Self-Attention Layer
	Slide 73: Self-Attention Layer
	Slide 74: Self-Attention Layer
	Slide 75: Masked Self-Attention Layer
	Slide 76: Multihead Self-Attention Layer
	Slide 77: Three Ways of Processing Sequences

