Topics:

Transformers

CS 8803-VLM ZSOLT KIRA

- Read over the <u>website</u>!
- Read up on Deep Learning, Transformers

After announcement, sign up for presenting a paper

- See the schedule for dates of project proposal, mid-project update, and final presentations.
- Reminder: Please sign up for one session for now. Depending on how it shapes out, there may be an opportunity to do an optional second one.
- Sessions are topic-focused. If there are other papers you recommend or want to present in addition to or instead of, let us know! We will take a look at the quality/relevance and approve.
- The first one is next Tuesday 09/02 so it would be great to have someone sign up for that one ASAP!
- There are a few that are still not filled in.

Deep Learning Fundamentals

Linear classification
Loss functions
Optimization
Optimizers
Backpropagation
Computation Graph
Multi-layer
Perceptrons

Neural Network Components and Architectures Hardware & softw

Hardware & software Convolutions **Convolution Neural** Networks Pooling **Activation functions** Batch normalization Transfer learning Data augmentation Architecture design RNN/LSTMs Attention & **Transformers**

Applications & Learning Algorithms

Semantic & instance Segmentation Reinforcement Learning Large-language Models Variational Autoencoders **Diffusion Models** Generative Adversarial Nets Self-supervised Learning Vision-Language Models **VLM** for Robotics

Example with an image with 4 pixels, and 3 classes (cat/dog/ship)

Adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, from CS 231n

We can find the steepest descent direction by computing the derivative (gradient):

$$f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$$

- Steepest descent direction is the negative gradient
- Intuitively: Measures how the function changes as the argument a changes by a small step size
 - As step size goes to zero
- In Machine Learning: Want to know how the loss function changes as weights are varied
 - Can consider each parameter separately by taking partial derivative of loss function with respect to that parameter

Image and equation from: https://en.wikipedia.org/wiki/Derivative#/media/ File:Tangent_animation.gif

The same two-layered neural network corresponds to adding another weight matrix

 We will prefer the linear algebra view, but use some terminology from neural networks (& biology)

Figure adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

To develop a general algorithm for this, we will view the function as a **computation graph**

Graph can be any directed acyclic graph (DAG)

 Modules must be differentiable to support gradient computations for gradient descent

A training algorithm will then process this graph, one module at a time

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

Task: Sequence to Sequence Modeling

Machine Translation

we are eating bread

estamos comiendo pan

Some Important Concepts

- Propagation of information (forward)
 - Mixing!
 - Two entangled things: Encoded input, state of decoding

Propagation of gradients backwards

Machine Translation

estamos comiendo pan

RNN Encoder

RNN Decoder

we are eating bread

Model: Recurrent Neural Network

Encoder: $h_t = f_W(x_t, h_{t-1})$

Encoder: $h_t = f_W(x_t, h_{t-1})$

Encoder: $h_t = f_W(x_t, h_{t-1})$ estamos Decoder: $s_t = g_U(y_t, s_{t-1})$ **y**₁ h_0 h_2 h_3 h_4 S_1 s_0 X_2 X_3 y_0 X_1 X_4 eating [START] bread we are

Encoder: $h_t = f_W(x_t, h_{t-1})$

Decoder: $s_t = g_U(y_t, s_{t-1})$

estamos comiendo

From final hidden state: **Initial decoder state** s₀

Compute alignment scores

$$e_{t,i} = f_{att}(s_{t-1}, h_i)$$
 (f_{att} is an MLP)

Compute alignment scores

$$e_{t,i} = f_{att}(s_{t-1}, h_i)$$
 (f_{att} is an MLP)

Normalize to get attention weights

$$0 < a_{t,i} < 1 \sum_{i} a_{t,i} = 1$$

Compute alignment scores

$$e_{t,i} = f_{att}(s_{t-1}, h_i)$$
 (f_{att} is an MLP)

Normalize to get attention weights

$$0 < a_{t,i} < 1 \sum_{i} a_{t,i} = 1$$

Set context vector **c** to a linear combination of hidden states

$$c_t = \sum_i a_{t,i} h_i$$

Compute alignment scores

$$e_{t,i} = f_{att}(s_{t-1}, h_i)$$
 (f_{att} is an MLP)

Normalize to get attention weights

$$0 < a_{t,i} < 1$$
 $\sum_{i} a_{t,i} = 1$

Set context vector **c** to a linear combination of hidden states

$$c_t = \sum_i a_{t,i} h_i$$

This is all differentiable! Do not supervise attention weights – backprop through everything

eating

we

are

bread

Compute alignment scores

$$e_{t,i} = f_{att}(s_{t-1}, h_i)$$
 (f_{att} is an MLP)

Normalize to get attention weights

$$0 < a_{t,i} < 1$$
 $\sum_{i} a_{t,i} = 1$

Set context vector **c** to a linear combination of hidden states

$$c_t = \sum_i a_{t,i} h_i$$

 $a_{11}=0.45$, $a_{12}=0.45$, $a_{13}=0.05$, $a_{14}=0.05$

Bahdanau et al, "Neural machine translation by jointly learning to align and translate", ICLR 2015

This is all differentiable! Do not supervise attention weights – backprop through everything

Repeat: Use s₁ to compute new context vector c₂

Repeat: Use s₁ to compute new context vector c₂

Use c_2 to compute s_2 , y_2

Repeat: Use s₁ to compute new context vector c₂

Use c_2 to compute s_2 , y_2

Use a different context vector in each timestep of decoder Input sequence not bottlenecked through single vector comiendo [STOP] estamos pan At each timestep of decoder, context vector "looks at" different parts of the input sequence **y**₂ **y**₃ y_4 h_2 h₄ S_1 s_2 S_3 S_4 h_3 S_0 X_2 C_1 **y**₀ C_2 **y**₁ C_3 C_4 X_1 X_3 X_4 **y**₂ **y**₃ eating bread we are [START] comiendo estamos pan

Example: English to French translation

Input: "The agreement on the European Economic Area was signed in August 1992."

Output: "L'accord sur la zone économique européenne a été signé en août 1992."

Example: English to French translation

Input: "The agreement on the European Economic Area was signed in August 1992."

Output: "L'accord sur la zone économique européenne a été signé en août 1992."

Diagonal attention means words correspond in order

Diagonal attention means words correspond in order

Example: English to French translation

Input: "The agreement on the European Economic Area was signed in August 1992."

Output: "L'accord sur la zone économique européenne a été signé en août 1992."

Diagonal attention means words correspond in order Attention figures out different word orders

Diagonal attention means words correspond in order

Machine Translation with RNNs and Attention

Bahdanau et al, "Neural machine translation by jointly learning to align and translate", ICLR 2015

Use a CNN to compute a grid of features for an image

cat image is free to use under the Pixabay Licens

Alignment scores

Use a CNN to compute a grid of features for an image

Use a CNN to compute a grid of features for an image

Use a CNN to compute a grid of features for an image

[START]

Idea: Can we use **attention** as a fundamental building block for a generic sequence (input) to sequence (output) layer?

Inputs:

State vector: s_i (Shape: D_Q)

Hidden vectors: \mathbf{h}_{i} (Shape: $N_{X} \times D_{H}$)

Similarity function: f_{att}

Computation:

Similarities: e (Shape: N_X) $e_i = f_{att}(s_{t-1}, h_i)$

Attention weights: a = softmax(e) (Shape: N_X)

Output vector: $y = \sum_i a_i h_i$ (Shape: D_X)

Inputs:

Query vector: **q** (Shape: D_Q)

Input vectors: X (Shape: $N_X \times D_X$)

Similarity function: f_{att}

Computation:

Similarities: e (Shape: N_X) $e_i = f_{att}(\mathbf{q}, \mathbf{X}_i)$

Attention weights: a = softmax(e) (Shape: N_X)

Output vector: $y = \sum_i a_i X_i$ (Shape: D_X)

Inputs:

Query vector: **q** (Shape: D_Q)

Input vectors: X (Shape: $N_X \times D_Q$)

Similarity function: dot product

Computation:

Similarities: e (Shape: N_X) $e_i = q \cdot X$

Attention weights: a = softmax(e) (Shape: N_X)

Output vector: $y = \sum_i a_i X_i$ (Shape: D_X)

Changes:

Use dot product for similarity

Inputs:

Query vector: **q** (Shape: D_Q)

Input vectors: X (Shape: $N_x \times D_0$)

Similarity function: scaled dot product

Computation:

Similarities: e (Shape: N_X) $e_i = \mathbf{q} \cdot \mathbf{X}_i / \operatorname{sqrt}(D_Q)$

Attention weights: a = softmax(e) (Shape: N_x)

Output vector: $y = \sum_i a_i X_i$ (Shape: D_X)

Changes:

Use scaled dot product for similarity

Inputs:

Query vectors: Q (Shape: $N_Q \times D_Q$) Input vectors: X (Shape: $N_X \times D_Q$)

Computation:

Similarities: $E = QX^T$ (Shape: $N_Q \times N_X$) $E_{i,j} = Q_i \cdot X_j / sqrt(D_Q)$ Attention weights: A = softmax(E, dim=1) (Shape: $N_Q \times N_X$) Output vectors: Y = AX (Shape: $N_Q \times D_X$) $Y_i = \sum_i A_{i,j} X_i$

Changes:

- Use dot product for similarity
- Multiple query vectors

Inputs:

Query vectors: \mathbb{Q} (Shape: $N_Q \times D_Q$) Input vectors: \mathbb{X} (Shape: $N_X \times D_X$)

Key matrix: W_K (Shape: $D_X \times D_Q$)

Value matrix: W_V (Shape: $D_X \times D_V$)

Computation:

Key vectors: $K = XW_K$ (Shape: $N_X \times D_Q$) **Value vectors**: $V = XW_V$ (Shape: $N_X \times D_V$)

Similarities: $E = QK^{T}$ (Shape: $N_Q \times N_X$) $E_{i,j} = Q_i \cdot K_j$ / $sqrt(D_Q)$

Attention weights: A = softmax(E, dim=1) (Shape: $N_Q \times N_X$)

Output vectors: Y = AV (Shape: $N_Q \times D_V$) $Y_i = \sum_j A_{i,j} V_j$

Changes:

- Use dot product for similarity
- Multiple query vectors
- Separate key and value

Inputs:

Query vectors: Q (Shape: $N_Q \times D_Q$) Input vectors: X (Shape: $N_X \times D_X$) Key matrix: W_K (Shape: $D_X \times D_Q$) Value matrix: W_V (Shape: $D_X \times D_V$)

Computation:

Key vectors: $K = XW_K$ (Shape: $N_X \times D_Q$)

Value vectors: $V = XW_V$ (Shape: $N_X \times D_V$)

Similarities: $E = \mathbf{QK^T}$ (Shape: $N_Q \times N_X$) $E_{i,j} = \mathbf{Q}_i \cdot \mathbf{K}_j / \operatorname{sqrt}(D_Q)$

Attention weights: A = softmax(E, dim=1) (Shape: $N_Q \times N_X$)

Output vectors: Y = AV (Shape: $N_Q \times D_V$) $Y_i = \sum_j A_{i,j} V_j$

 X_1

 X_2

 X_3

Q 1 Q

(

(

Inputs:

Query vectors: Q (Shape: $N_Q \times D_Q$) Input vectors: X (Shape: $N_X \times D_X$) Key matrix: W_K (Shape: $D_X \times D_Q$) Value matrix: W_V (Shape: $D_X \times D_V$)

Computation:

Key vectors: $K = XW_K$ (Shape: $N_X \times D_Q$) Value vectors: $V = XW_V$ (Shape: $N_X \times D_V$)

Similarities: $E = \mathbf{QK^T}$ (Shape: $N_Q \times N_X$) $E_{i,j} = \mathbf{Q_i} \cdot \mathbf{K_j} / \operatorname{sqrt}(D_Q)$

Attention weights: A = softmax(E, dim=1) (Shape: $N_Q \times N_X$)

Inputs:

Query vectors: Q (Shape: $N_Q \times D_Q$) Input vectors: X (Shape: $N_X \times D_X$) Key matrix: W_K (Shape: $D_X \times D_Q$) Value matrix: W_V (Shape: $D_X \times D_V$)

Computation:

Key vectors: $K = XW_K$ (Shape: $N_X \times D_Q$) Value vectors: $V = XW_V$ (Shape: $N_X \times D_V$) Similarities: $E = QK^T$ (Shape: $N_Q \times N_X$) $E_{i,i} = Q_i \cdot K_i / sqrt(D_Q)$

Attention weights: A = softmax(E, dim=1) (Shape: $N_0 \times N_x$)

Inputs:

Query vectors: \mathbf{Q} (Shape: $N_0 \times D_0$) **Input vectors**: X (Shape: $N_X \times D_X$) **Key matrix**: W_{κ} (Shape: $D_{\chi} \times D_{\Omega}$) Value matrix: W_V (Shape: $D_X \times D_V$)

Computation:

Key vectors: $K = XW_K$ (Shape: $N_X \times D_O$) **Value vectors**: $V = XW_V$ (Shape: $N_X \times D_V$) **Similarities**: $E = QK^T$ (Shape: $N_Q \times N_X$) $E_{i,i} = Q_i \cdot K_i / sqrt(D_Q)$

Attention weights: A = softmax(E, dim=1) (Shape: $N_0 \times N_x$)

Inputs:

Query vectors: Q (Shape: $N_Q \times D_Q$) Input vectors: X (Shape: $N_X \times D_X$) Key matrix: W_K (Shape: $D_X \times D_Q$) Value matrix: W_V (Shape: $D_X \times D_V$)

Computation:

Key vectors: $K = XW_K$ (Shape: $N_X \times D_Q$)

Value vectors: $V = XW_V$ (Shape: $N_X \times D_V$)

Similarities: $E = QK^T$ (Shape: $N_Q \times N_X$) $E_{i,j} = Q_i \cdot K_j / sqrt(D_Q)$

Attention weights: A = softmax(E, dim=1) (Shape: $N_Q \times N_X$)

Inputs:

Query vectors: Q (Shape: $N_Q \times D_Q$) Input vectors: X (Shape: $N_X \times D_X$) Key matrix: W_K (Shape: $D_X \times D_Q$) Value matrix: W_V (Shape: $D_X \times D_V$)

Computation:

Key vectors: $K = XW_K$ (Shape: $N_X \times D_Q$)

Value vectors: $V = XW_V$ (Shape: $N_X \times D_V$)

Similarities: $E = QK^T$ (Shape: $N_Q \times N_X$) $E_{i,j} = Q_i \cdot K_j / sqrt(D_Q)$

Attention weights: A = softmax(E, dim=1) (Shape: $N_Q \times N_X$)

One query per input vector

```
Inputs:
```

```
Input vectors: X (Shape: N_X \times D_X)

Key matrix: W_K (Shape: D_X \times D_Q)

Value matrix: W_V (Shape: D_X \times D_V)

Query matrix: W_Q (Shape: D_X \times D_Q)
```

Computation:

```
Query vectors: Q = XW_Q
```

Key vectors: $K = XW_K$ (Shape: $N_X \times D_Q$) **Value vectors**: $V = XW_V$ (Shape: $N_X \times D_V$)

Similarities: $E = QK^T$ (Shape: $N_X \times N_X$) $E_{i,j} = Q_i \cdot K_j / sqrt(D_Q)$

Attention weights: A = softmax(E, dim=1) (Shape: $N_X \times N_X$)

One query per input vector

Inputs:

```
Input vectors: X (Shape: N_X \times D_X)

Key matrix: W_K (Shape: D_X \times D_Q)

Value matrix: W_V (Shape: D_X \times D_V)

Query matrix: W_Q (Shape: D_X \times D_Q)
```

Computation:

```
Query vectors: Q = XW_Q
```

Key vectors: $K = XW_K$ (Shape: $N_X \times D_Q$) **Value vectors**: $V = XW_V$ (Shape: $N_X \times D_V$)

Similarities: $E = QK^T$ (Shape: $N_X \times N_X$) $E_{i,j} = Q_i \cdot K_j / sqrt(D_Q)$

Attention weights: A = softmax(E, dim=1) (Shape: $N_X \times N_X$)

One query per input vector

Inputs:

```
Input vectors: X (Shape: N_X \times D_X)

Key matrix: W_K (Shape: D_X \times D_Q)

Value matrix: W_V (Shape: D_X \times D_V)

Query matrix: W_Q (Shape: D_X \times D_Q)
```

Computation:

```
Query vectors: Q = XW_Q
```

Key vectors: $K = XW_K$ (Shape: $N_X \times D_Q$) Value vectors: $V = XW_V$ (Shape: $N_X \times D_V$)

Similarities: $E = QK^T$ (Shape: $N_X \times N_X$) $E_{i,j} = Q_i \cdot K_j / sqrt(D_Q)$

Attention weights: A = softmax(E, dim=1) (Shape: $N_X \times N_X$)

One query per input vector

Inputs:

Input vectors: X (Shape: $N_X \times D_X$) Key matrix: W_K (Shape: $D_X \times D_Q$) Value matrix: W_V (Shape: $D_X \times D_V$) Query matrix: W_Q (Shape: $D_X \times D_Q$)

Computation:

Query vectors: $Q = XW_Q$

Key vectors: $K = XW_K$ (Shape: $N_X \times D_Q$) Value vectors: $V = XW_V$ (Shape: $N_X \times D_V$)

Similarities: $E = \mathbf{QK^T}$ (Shape: $N_X \times N_X$) $E_{i,j} = \mathbf{Q_i} \cdot \mathbf{K_j} / \operatorname{sqrt}(D_Q)$

Attention weights: A = softmax(E, dim=1) (Shape: $N_X \times N_X$)

One query per input vector

Inputs:

Input vectors: X (Shape: $N_X \times D_X$) Key matrix: W_K (Shape: $D_X \times D_Q$) Value matrix: W_V (Shape: $D_X \times D_V$) Query matrix: W_Q (Shape: $D_X \times D_Q$)

Computation:

Query vectors: $Q = XW_Q$

Key vectors: $K = XW_K$ (Shape: $N_X \times D_Q$) **Value vectors**: $V = XW_V$ (Shape: $N_X \times D_V$)

Similarities: $E = \mathbf{QK^T}$ (Shape: $N_X \times N_X$) $E_{i,j} = \mathbf{Q_i} \cdot \mathbf{K_j} / \operatorname{sqrt}(D_Q)$

Attention weights: A = softmax(E, dim=1) (Shape: $N_X \times N_X$)

One query per input vector

Inputs:

Input vectors: X (Shape: $N_X \times D_X$) Key matrix: W_K (Shape: $D_X \times D_Q$) Value matrix: W_V (Shape: $D_X \times D_V$) Query matrix: W_Q (Shape: $D_X \times D_Q$)

Computation:

Query vectors: $Q = XW_Q$

Key vectors: $K = XW_K$ (Shape: $N_X \times D_Q$) **Value vectors**: $V = XW_V$ (Shape: $N_X \times D_V$)

Similarities: $E = QK^T$ (Shape: $N_X \times N_X$) $E_{i,j} = Q_i \cdot K_j / sqrt(D_Q)$

Attention weights: A = softmax(E, dim=1) (Shape: $N_X \times N_X$)

One query per input vector

Inputs:

Input vectors: X (Shape: $N_X \times D_X$) Key matrix: W_K (Shape: $D_X \times D_Q$) Value matrix: W_V (Shape: $D_X \times D_V$) Query matrix: W_Q (Shape: $D_X \times D_Q$)

Computation:

Query vectors: $Q = XW_Q$

Key vectors: $K = XW_K$ (Shape: $N_X \times D_Q$) **Value vectors**: $V = XW_V$ (Shape: $N_X \times D_V$)

Similarities: $E = \mathbf{QK^T}$ (Shape: $N_X \times N_X$) $E_{i,j} = \mathbf{Q_i} \cdot \mathbf{K_j} / \operatorname{sqrt}(D_Q)$

Attention weights: A = softmax(E, dim=1) (Shape: $N_X \times N_X$)

Inputs:

Input vectors: X (Shape: $N_X \times D_X$) Key matrix: W_K (Shape: $D_X \times D_Q$) Value matrix: W_V (Shape: $D_X \times D_V$) Query matrix: W_O (Shape: $D_X \times D_Q$) Consider **permuting** the input vectors:

Computation:

Query vectors: $Q = XW_Q$

Key vectors: $K = XW_K$ (Shape: $N_X \times D_Q$) Value vectors: $V = XW_V$ (Shape: $N_X \times D_V$)

Similarities: $E = \mathbf{QK^T}$ (Shape: $N_X \times N_X$) $E_{i,j} = \mathbf{Q_i} \cdot \mathbf{K_j} / \operatorname{sqrt}(D_Q)$

Attention weights: A = softmax(E, dim=1) (Shape: $N_X \times N_X$)

Inputs:

Input vectors: X (Shape: $N_X \times D_X$) Key matrix: W_K (Shape: $D_X \times D_Q$) Value matrix: W_V (Shape: $D_X \times D_V$) Query matrix: W_O (Shape: $D_X \times D_Q$) Consider **permuting** the input vectors:

Queries and Keys will be the same, but permuted

Computation:

Query vectors: $Q = XW_Q$

Key vectors: $K = XW_K$ (Shape: $N_X \times D_Q$) **Value Vectors**: $V = XW_V$ (Shape: $N_X \times D_V$)

Similarities: $E = \mathbf{QK^T}$ (Shape: $N_X \times N_X$) $E_{i,j} = \mathbf{Q_i} \cdot \mathbf{K_j} / \operatorname{sqrt}(D_Q)$

Attention weights: A = softmax(E, dim=1) (Shape: $N_X \times N_X$)

Inputs:

Input vectors: X (Shape: $N_X \times D_X$) Key matrix: W_K (Shape: $D_X \times D_Q$) Value matrix: W_V (Shape: $D_X \times D_V$) Query matrix: W_O (Shape: $D_X \times D_Q$) Consider **permuting** the input vectors:

Similarities will be the same, but permuted

Computation:

Query vectors: $Q = XW_Q$

Key vectors: $K = XW_K$ (Shape: $N_X \times D_Q$) **Value vectors**: $V = XW_V$ (Shape: $N_X \times D_V$)

Similarities: $E = \mathbf{QK^T}$ (Shape: $N_X \times N_X$) $E_{i,j} = \mathbf{Q_i} \cdot \mathbf{K_j} / \operatorname{sqrt}(D_Q)$

Attention weights: A = softmax(E, dim=1) (Shape: $N_X \times N_X$)

Inputs:

Input vectors: X (Shape: $N_X \times D_X$) Key matrix: W_K (Shape: $D_X \times D_Q$) Value matrix: W_V (Shape: $D_X \times D_V$) Query matrix: W_O (Shape: $D_X \times D_Q$) Consider **permuting** the input vectors:

Attention weights will be the same, but permuted

Computation:

Query vectors: $Q = XW_Q$

Key vectors: $K = XW_K$ (Shape: $N_X \times D_Q$) **Value vectors**: $V = XW_V$ (Shape: $N_X \times D_V$)

Similarities: $E = QK^T$ (Shape: $N_X \times N_X$) $E_{i,j} = Q_i \cdot K_j / sqrt(D_Q)$

Attention weights: A = softmax(E, dim=1) (Shape: $N_X \times N_X$)

Inputs:

Input vectors: X (Shape: $N_X \times D_X$) Key matrix: W_K (Shape: $D_X \times D_Q$) Value matrix: W_V (Shape: $D_X \times D_V$) Query matrix: W_O (Shape: $D_X \times D_Q$) Consider **permuting** the input vectors:

Values will be the same, but permuted

Computation:

Query vectors: $Q = XW_Q$

Key vectors: $K = XW_K$ (Shape: $N_X \times D_Q$) **Value vectors**: $V = XW_V$ (Shape: $N_X \times D_V$)

Similarities: $E = QK^T$ (Shape: $N_X \times N_X$) $E_{i,j} = Q_i \cdot K_j / sqrt(D_Q)$

Attention weights: A = softmax(E, dim=1) (Shape: $N_X \times N_X$)

Inputs:

Input vectors: X (Shape: $N_X \times D_X$) Key matrix: W_K (Shape: $D_X \times D_Q$) Value matrix: W_V (Shape: $D_X \times D_V$) Query matrix: W_O (Shape: $D_X \times D_Q$) Consider **permuting** the input vectors:

Outputs will be the same, but permuted

Computation:

Query vectors: $Q = XW_Q$

Key vectors: $K = XW_K$ (Shape: $N_X \times D_Q$) **Value vectors**: $V = XW_V$ (Shape: $N_X \times D_V$)

Similarities: $E = QK^T$ (Shape: $N_X \times N_X$) $E_{i,j} = Q_i \cdot K_j / sqrt(D_Q)$

Attention weights: A = softmax(E, dim=1) (Shape: $N_X \times N_X$)

Inputs:

Input vectors: X (Shape: $N_X \times D_X$) Key matrix: W_K (Shape: $D_X \times D_Q$) Value matrix: W_V (Shape: $D_X \times D_V$) Query matrix: W_O (Shape: $D_X \times D_Q$)

Computation:

Query vectors: $Q = XW_Q$

Key vectors: $K = XW_K$ (Shape: $N_X \times D_Q$)

Value vectors: $V = XW_V$ (Shape: $N_X \times D_V$)

Similarities: $E = QK^T$ (Shape: $N_X \times N_X$) $E_{i,j} = Q_i \cdot K_j / sqrt(D_Q)$

Attention weights: A = softmax(E, dim=1) (Shape: $N_X \times N_X$)

Output vectors: Y = AV (Shape: $N_X \times D_V$) $Y_i = \sum_j A_{i,j} V_j$

Consider **permuting** the input vectors:

Outputs will be the same, but permuted

Self-attention layer is

Permutation Equivariant

f(s(x)) = s(f(x))

Inputs:

Input vectors: X (Shape: $N_X \times D_X$) Key matrix: W_K (Shape: $D_X \times D_Q$) Value matrix: W_V (Shape: $D_X \times D_V$) Query matrix: W_Q (Shape: $D_X \times D_Q$) Self attention doesn't "know" the order of the vectors it is processing!

Computation:

Query vectors: $Q = XW_Q$

Key vectors: $K = XW_K$ (Shape: $N_X \times D_Q$) **Value vectors**: $V = XW_V$ (Shape: $N_X \times D_V$)

Similarities: $E = QK^T$ (Shape: $N_X \times N_X$) $E_{i,j} = Q_i \cdot K_j / sqrt(D_Q)$

Attention weights: A = softmax(E, dim=1) (Shape: $N_X \times N_X$)

Inputs:

Input vectors: X (Shape: $N_x \times D_x$) **Key matrix**: W_{K} (Shape: $D_{X} \times D_{O}$) Value matrix: W_V (Shape: $D_X \times D_V$) Query matrix: W_0 (Shape: $D_x \times D_0$) Self attention doesn't "know" the order of the vectors it is processing!

In order to make processing position-aware, concatenate input with **positional** encoding

Computation:

Query vectors: $Q = XW_0$

Key vectors: $K = XW_K$ (Shape: $N_X \times D_Q$) E can be learned lookup table, value vectors: $V = XW_V$ (Shape: $N_X \times D_V$) or fixed function

Similarities: $E = QK^T$ (Shape: $N_X \times N_X$) $E_{i,i} = Q_i \cdot K_i / sqrt(D_Q)$

Attention weights: A = softmax(E, dim=1) (Shape: $N_x \times N_x$)

Masked Self-Attention Layer

Inputs:

Input vectors: X (Shape: $N_X \times D_X$) Key matrix: W_K (Shape: $D_X \times D_Q$) Value matrix: W_V (Shape: $D_X \times D_V$) Query matrix: W_O (Shape: $D_X \times D_Q$)

Don't let vectors "look ahead" in the sequence

Used for language modeling (predict next word)

Computation:

Query vectors: $Q = XW_Q$

Key vectors: $K = XW_K$ (Shape: $N_X \times D_Q$) **Value vectors**: $V = XW_V$ (Shape: $N_X \times D_V$)

Similarities: $E = QK^T$ (Shape: $N_X \times N_X$) $E_{i,j} = Q_i \cdot K_j / sqrt(D_Q)$

Attention weights: A = softmax(E, dim=1) (Shape: $N_X \times N_X$)

Multihead Self-Attention Layer

Inputs:

Input vectors: X (Shape: $N_X \times D_X$) Key matrix: W_K (Shape: $D_X \times D_Q$) Value matrix: W_V (Shape: $D_X \times D_V$) Query matrix: W_O (Shape: $D_X \times D_Q$)

Use H independent "Attention Heads" in parallel

Computation:

Query vectors: $Q = XW_Q$

Key vectors: $K = XW_K$ (Shape: $N_X \times D_Q$) Value vectors: $V = XW_V$ (Shape: $N_X \times D_V$)

Similarities: $E = \mathbf{QK^T}$ (Shape: $N_X \times N_X$) $E_{i,j} = \mathbf{Q_i} \cdot \mathbf{K_j} / \operatorname{sqrt}(D_Q)$

Attention weights: A = softmax(E, dim=1) (Shape: $N_X \times N_X$)

Three Ways of Processing Sequences

Recurrent Neural Network

1D Convolution

Self-Attention

Works on **Ordered Sequences**

- (+) Good at long sequences: After one RNN layer, h_T "sees" the whole sequence
- (-) Not parallelizable: need to compute hidden states sequentially

Works on **Multidimensional Grids**

- (-) Bad at long sequences: Need to stack many conv layers for outputs to "see" the whole sequence
- (+) Highly parallel: Each output can be computed in parallel

Works on **Sets of Vectors**

- (+) Good at long sequences:after one self-attention layer,each output "sees" all inputs!(+) Highly parallel: Each outputcan be computed in parallel
- (-) Very memory intensive