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Read over the websitel

Read up on Deep Learning, Transformers

After announcement, sign up for presenting a paper
See the schedule for dates of project proposal, mid-project update, and final presentations.

Reminder: Please sign up for one session for now. Depending on how it shapes out, there may
be an opportunity to do an optional second one.

Sessions are topic-focused. If there are other papers you recommend or want to present in
addition to or instead of, let us know! We will take a look at the quality/relevance and approve.

The first one is next Tuesday 09/02 so it would be great to have someone sign up for that one
ASAP!

There are a few that are still not filled in.


https://faculty.cc.gatech.edu/~zk15/teaching/AY2025_cs8803vlm_fall/index.html

Deep Learning
Fundamentals
Linear classification
Loss functions
Optimization
Optimizers
Backpropagation
Computation Graph
Multi-layer
Perceptrons

Neural Network
Components and
Architectures
Hardware & software
Convolutions
Convolution Neural
Networks

Pooling

Activation functions
Batch normalization
Transfer learning
Data augmentation
Architecture design
RNN/LSTMs
Attention &
Transformers

Applications & Learning
Algorithms

Semantic & instance
Segmentation
Reinforcement Learning
Large-language Models
Variational Autoencoders
Diffusion Models
Generative Adversarial Nets
Self-supervised Learning
Vision-Language Models
VLM for Robotics

Georgia |

Deep Learning

Tech|)/



Example with an image with 4 pixels, and 3 classes (cat/dog/ )

Stretch pixels into column

\ 4
56
02 | -0.5| 01 | 2.0 1.1 -96.8 | Cat score
231
15 | 1.3 | 21 | 0.0 +| 3.2 | = | 437.9 | Dog score
24
Input image 0 |025] 0.2 | -0.3 -1.2 61.95 | Ship score
2
w b

Adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, from CS 231n

) Example Ge%g%ﬁ&



We can find the steepest descent direction by
computing the derivative (gradient):

o« .. fla+h)—f(a)
fi(a) = |im h

Steepest descent direction is the negative
gradient

Intuitively: Measures how the function changes
as the argument a changes by a small step size

As step size goes to zero

In Machine Learning: Want to know how the
loss function changes as weights are varied

Can consider each parameter separately
by taking partial derivative of loss
function with respect to that parameter

) Derivatives

Ax

Image and equation from:
https.//en.wikipedia.org/wiki/Derivative#/media/
File:Tangent_animation.qgif

Georgla [&




The same two-layered neural network
corresponds to adding another weight
matrix

We will prefer the linear algebra
view, but use some terminology from
neural networks (& biology)

input layer

hidden layer
X Wl Wz

fx, W, W;3) =oc(Wyo0(Wyx))

Figure adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

) The Linear Algebra View




To develop a general algorithm for
this, we will view the function as a
computation graph

Graph can be any directed acyclic
graph (DAG)

Modules must be differentiable to
support gradient computations for
gradient descent

A training algorithm will then
process this graph, one module at a
time

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

) . A General Framework




Task: Sequence to Sequence Modeling

one to one one to many many to one many to many many to many




Machine Translation

we are eating bread » estamos comiendo pan



Some Important Concepts

* Propagation of information (forward) T ey

— Mixing!

— Two entangled things: Encoded input, state

of decoding $ 4

* Propagation of gradients backwards g




Machine Translation

estamos comiendo pan

RNN Encoder » RNN Decoder

we are eating bread



Model: Recurrent Neural Network

RNN: Computational Graph: Many to Man L
Yy P L4 Y P L Yz P L3 yr P Lt
t t f f




Machine Translation with RNNs

Encoder: h, = f, (X, hq)

h > h, > h, h, h,
A A
X4 Xy X3 X4
we are eating bread

Slide credit: Justin Johnson



Machine Translation with RNNs

Encoder: h, = f, (X, hq)

So = h,

we are eating bread

Slide credit: Justin Johnson



Machine Translation with RNNs

Encoder: h, = f, (X, hq)

Decoder: s, = gy(Y; St.q) estamos
Y1
hO g h1 g hz h3 h4 Sg — T S
X1 X2 X3 X4 yo

we are eating  bread [START]

Slide credit: Justin Johnson



Machine Translation with RNNs

Encoder: h, = f, (X, hq)

Decoder: s, = gy(Y St.1) estamos comiendo

Y1 Yo
X4 X2 X3 X4 Yo " Y1
we are eating bread [START] estamos

Slide credit: Justin Johnson



Machine Translation with RNNs

Encoder: h, = f, (X, hq)

Decoder: s, = gy(Ys Siq) estamos comiendo  pan [STOP]
Yi ] Yo T ] Y3 Ya
RESESE

we are eating bread [START] estamos comiendo pan

Slide credit: Justin Johnson



Machine Translation with RNNs

Encoder: h, = f, (X, hq)

Decoder: s, = » St
t= 9ulYe Sir) Problem: s; is used to

encode input and
maintain decoder state

h > h, > h, h, h, S ——T* Sy — TS, —[*S; — [ S,
‘ 4 4 4 4
X4 Xy X3 X4
we are eating bread

Slide credit: Justin Johnson



Machine Translation with RNNs

Encoder: h, = f, (X, hq)

Decoder: s, = g(Yy Si.1s

c) Solution: add a
context vector c = h,
and predict s, from h,

h > h, > h, h, * h, » Sy — > Sy — TS, — T S3 — T S,
‘ 4 4 4 4
C
X4 Xy X3 X4
we are eating bread

Slide credit: Justin Johnson



Machine Translation with RNNs

Encoder: h, = f, (X, hq)

Decoder: s, = gy(Ye Se1, estamos comiendo  pan [STOP]
c) Solution: add a
context vector c = h, Y1 Y2 Y3 Y4
and predict s, from h, X 5 X 5
hy > h, > hy > hs " hy "So T TSt T [ TS [ T Ss T [T Sa
» C
X1 X2 X3 X4 Yo " Y4 Y2 "'Y3
we are eating bread [START] estamos comiendo pan

Slide credit: Justin Johnson



Machine Translation with RNNs

Encoder: h, = f, (X, hq)

Decoder: s, = g(Yy Si.1s

c)
bottleneck
Problem: Input sequence
hq * h, > h, h, h, Sy — bottlenecked through
5 x fixed-sized vector.
c —
X4 X5 X3 X4
we are eating bread

Slide credit: Justin Johnson



Machine Translation with RNNs

Encoder: h, = f, (X, hq)

Decoder: s, = g(Yy Si.1s

c)
bottleneck
Idea: use new context
hg > h, > h, h, h, Sy — vector at each step of
“ X decoder!
c —
X4 X5 X3 X4
we are eating bread

Slide credit: Justin Johnson



e
Machine Translation with RNNs and Attention

From final hidden state:
Initial decoder state s,

h, " hy " hs " hy " S
X4 Xy X3 X4
we are eating bread

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015

Slide credit: Justin Johnson



e
Machine Translation with RNNs and Attention

Compute alignment scores
e = fatr(Se.q, i) (fo is an
MLP)

From final hidden state:

e11T e121 e13T €14 Initial decoder state s,
I .

h, " hy " hs " hy " S

X4 Xy X3 X4

we are eating bread

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015

Slide credit: Justin Johnson



e
Machine Translation with RNNs and Attention

Compute alignment scores

i = fau(Se.1, M) (fa is @n
a1 aq dq3 CEP MLP)
t t t t
softmax Normalize to get
t 1 t 1 From final hidden state: attention weights
€11 €12 23 €14 | Initial decoder state s, O<a, <1 Ya, =
4 A 4 | Dt
[ | 1
h, " hy " hs " hy " S
X X5 X3 Xy
we are eating bread

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015

Slide credit: Justin Johnson



e
Machine Translation with RNNs and Attention

[ Compute alignment scores

|
%@ %@ 2*@ 2*@ € = far(St1, i) (fart is an
a4 dqo dq3 IV MLP)

t t t t

softmax Normalize to get
t 1 t | From final hidden state: attention weights
ef11 \ 9‘1‘21 911‘3T \ €14 | Initial decoder state s O<a,;<1 Ya,=
NN LN I : 1
h, > h, > hg > h, > Sg + Set context vector ¢ to a
] ‘ I [ linear combination of hidden
states

X1 Xy X3 X4 " C4 C; = ah,
we are eating bread

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015

Slide credit: Justin Johnson



e
Machine Translation with RNNs and Attention

2|g $I§ 2% 2% Compute alignment scores
& 4 4 t € = far(St1, i) (fart is an
3111 a;z a;3 8}4 estamos MLP)
softmax Normalize to get

f f f I From final hidden state: Y attention weights
611T \ 9‘1‘21 911‘3T \ €14 | Initial decoder state s O<a, <1 Ya,=

h, ¥ hy — h; — h, > Sp ¥ > S Set context vector ¢ to a

] ‘ I [ b ‘ ‘ linear combination of hidden

states
X4 X, X3 X, " C1 | Yo C = 2@

we are eating bread
[START]

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015

Slide credit: Justin Johnson



e
Machine Translation with RNNs and Attention

2% $I§ 2% | Compute alignment scores
& 4 4 2*@ € = far(St1, i) (fart is an
a11 1 a;z 8;3 8}4 estamos MLP)
softmax Normalize to get
f f f I From final hidden state: Y attention weights
€11 \ e121 €13 \ €14 Initial decoder state s, ‘ 0O<a, <1 Ya, =
4 A 4 | Dt
h ¥ hy — h; — h, > Sp : > S Set context vector ¢ to a
] ‘ I [ ‘ ‘ linear combination of hidden
states
X4 X, X3 X, " C1 | Yo C = 2@

we are eating bread

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015

Slide credit: Justin Johnson



e
Machine Translation with RNNs and Attention

2|g $I§ 2% 2% Compute alignment scores
& 4 4 t € = far(St1, i) (fart is an
a11 1 a;z 8;3 8}4 estamos MLP)
softmax Normalize to get
f f f I From final hidden state: Y attention weights
e e e e 4
f11 \ ‘121 ‘131 \ ‘141 Initial decoder state s, ‘ O<a;<1 Ya,=
AL N I ; 1
hy =1 hy, = h; = hy > So = S Set context vector ¢ to a
linear combination of hidden
Intuition: Context vector states
attends to the relevant ‘ _
X4 X s *4 | part of the input sequence G || Yo Ci = 2@yh,

“estamos” = “‘we are”
we are eating bread

a,=0.45, a,,=0.45, a,;,=0.05, a,,=0.05

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015

Slide credit: Justin Johnson



e
Machine Translation with RNNs and Attention

% % YA % Repeat: Use s,
34 a‘ a* a* to compute new
121 %2 fs %4 estamos context vector c,
softmax
f 1 | | Y1
€21 €22 €23 €24

X4 Xy X3 X4 Ci | Yo Co

we are eating bread
[START]

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015

Slide credit: Justin Johnson



e
Machine Translation with RNNs and Attention

% % YA % Repeat: Use s,
34 a‘ a* a* to compute new
121 %2 f?’ %4 estamos comiendo  context vector c,
soffmax Use c, to
t f t 1 Y Y2 compute s,, Y,
e‘%1 \ €22 efs \ ef4 } T ‘
) +

X4 Xy X3 X4 Ci | Yo Co | | Yy

we are eating bread
[START] estamos

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015

Slide credit: Justin Johnson



e
Machine Translation with RNNs and Attention

X R /R X
dyq dpo d3 Aoy

estamos comiendo

we are eating

bread

:SO

Intuition: Context vector

attends to the relevant part

of the input sequence
‘comiendo” = “eating”

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015

Y1 Yo
— |
Sq > S,

Ci | Yo Co || Yy

[START] estamos

Repeat: Use s,
to compute new
context vector c,

Use c, to
compute s,, Y,

Slide credit: Justin Johnson



e
Machine Translation with RNNs and Attention

Use a different context vector in each timestep of decoder

- Input sequence not bottlenecked through single vector

- At each timestep of decoder, context vector “looks at”
different parts of the input sequence

A 4

estamos comiendo

Y1

|

Yo

|

pan [STOP]

h1 h2 > h3 h4 SO 31 > 32 > S3 " S4
‘ ] RERIN iR
X1 X2 X3 X4 Cil Yo |Co || Yy Cs || Y2 Cq | Y3
we are eating bread
[START] estamos comiendo pan

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015

Slide credit: Justin Johnson



e
Machine Translation with RNNs and Attention

Visualize attention weights a,

Example: English to S BE . . .
. @ Q = © ] S5 N go]

French translation ve 9285895 22 §
EF o oS oLuw<a 296 £ H Y,

y
Input: “The agreement on accord
. sur

the European Economic a
Area was signed in August o one
” economique
1992 européenne
a

(r s été

Output: “L’accord sur la signé
Zone economique en
” rq 7 . ” aout
europeenne a été signe en 1992

aolt 1992.”

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015

<end>

Slide credit: Justin Johnson



Machine Translation with RNNs and Attention

Visualize attention weights a,

Example: English to
French translation

European

Economic

Input: “The agreement on Diagonal attention accord
) means words sur

the European Economic correspond in order N
Area was signed in August - zone
’” economique
1992, européenne

Output: “L’accord sur la
Zone economique
europeenne a éteé signe en Diagonal attention

aout 1992.” means words
correspond in order

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015

Slide credit: Justin Johnson



Machine Translation with RNNs and Attention

Visualize attention weights a,

Example: English to
French translation

agreement

European
Economic
Area

The

the

LI
accord
sur

Input: “The agreement on Diagonal attention
the means words

correspond in order la

Zone

was signed in August e
” économique
1 992 . européenne

Output: “L’accord sur la

a été signe en Diagonal attention

aout 1992.” means words
correspond in order

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015

Slide credit: Justin Johnson



e
Machine Translation with RNNs and Attention

estamos comiendo pan [STOP]
Y+ Yo Y3 Ya
SO S1 > 32 > S3 " S4

’ N " N
dp1 do) do3 doy

t t t t

softmax

| | 1 |
€21 €20 €23 €24

h, h, > h, h,
X4 X5 X3 X,
we are eating bread

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015

[START] estamos comiendo pan

Slide credit: Justin Johnson



Image Captioning with RNNs and Attention

CNN hy1|hys | hys " So

Use a CNN to compute a
grid of features for an image

Catimage is free to use under the Pixabay License

Xu et al, “Show, Attend, and Tell: Neural Image Caption Generation with Visual Attention”, ICML 2015
Slide credit: Justin Johnson



Image Captioning with RNNs and Attention

Alignment scores
et I,J = fatt(st—ll hl,J) €111 €112 €113
€121 €127 €123

€31 €132 €133

CNN hy1|hys | hys " So

Use a CNN to compute a
grid of features for an image

Xu et al, “Show, Attend, and Tell: Neural Image Caption Generation with Visual Attention”, ICML 2015
Slide credit: Justin Johnson



Image Captioning with RNNs and Attention

Alignment scores Attention weights

et,i,j - fatt(st—ll hI’J) €111 | €112 | €113 d1,11 | 11,2 | A113

softmax

at' . = SOftmaX(et,,) €121 €122 (€123 = 3151 3127 3123

rere

€131 €132 | €133 131 9132 | 9133
h 1,1 h 1,2 h1,3
CNN hy1|hyo | hys " So
h3,1 h3,2 h3,3

Use a CNN to compute a
grid of features for an image

Xu et al, “Show, Attend, and Tell: Neural Image Caption Generation with Visual Attention”, ICML 2015
Slide credit: Justin Johnson



Image Captioning with RNNs and Attention

Alignment scores Attention weights

et,i,j = fatt(st—ll h I,J) €111 €112 €13 9111 9112 113
_ softmax
at,:,: - SOftm ax(et’:,:) €121 | €122 €123 | = 3151 81,5 3153
Ct = ZI,Jat,I,J hI,J €131 | €132 | €133 131 | 132 | 133
t
hl 1 h1,2 h1,3
CN N h2’1 hZ,Z h2’3 > 50
h3 1 h3,2 h3 3

Use a CNN to compute a O— Cy
grid of features for an image

Xu et al, "Show, Attend, and Tell: Neural Image Caption Generation with Visual Attention”, ICML 2015
Slide credit: Justin Johnson



Image Captioning with RNNs and Attention

Alignment scores Attention weights
et,i,j = fa'l_'t(st—l! hIJJ) €111 €112 €113 d111 9112 @113
_ softmax
at,:,: - SOﬂmax(et,’) €121 €122 €123 T 3151 | 12 123 cat
Ct = ZIJJat,IIJ hl,‘] €131 €132 €133 d131 | 9132 9133
1. YI
hia | D1 hl,g\ ‘
CNN h2,1 hz,z hz,a > Sg " Sq
o o | e |
Ve
Use a CNN to compute a O— Ci || Yo

grid of features for an image

[START]

Xu et al, “Show, Attend, and Tell: Neural Image Caption Generation with Visual Attention”, ICML 2015
Slide credit: Justin Johnson



Image Captioning with RNNs and Attention

€ij = fart(Se1, hi,j)
a...= softmax(e; . .) cat

rere

Ce = 2 AN

Y1
hll h12 h1,3 ‘
CNN hy1 | hao | has > S, > s,
31 Dz | b o
Use a CNN to compute a C1 || Yo
grid of features for an image
[START]

Xu et al, “Show, Attend, and Tell: Neural Image Caption Generation with Visual Attention”, ICML 2015
Slide credit: Justin Johnson



Image Captioning with RNNs and Attention

Alignment scores

et,i,j = fatt(st—]_l hI,J) €11 €212 | €213
a;..=softmax(e;..) e e e cat
Ct - Zh_]at,h_]hhj €31 €232 | €233
Y1
t
hl,l hl,Z h1,3 ‘
CNN h2,1 hz,z h2,3 > So " 54
h31 | hss | hss \ ‘ ‘
Use a CNN to compute a C1 | Yo
grid of features for an image
[START]

Xu et al, “Show, Attend, and Tell: Neural Image Caption Generation with Visual Attention”, ICML 2015
Slide credit: Justin Johnson



Image Captioning with RNNs and Attention

Alignment scores Attention weights
et,i,j = fatt(st—ll hl,J) €11 €212 | €213 10 A12 | 213
ft o
at’:’: = SOftmaX(et”) €221 | €222 | €223 T 221 | 8222 | 223 cat sﬂ:hng
Ct - zl Jat |Jh|J €31 €232 €233 31 232 233
s Y1 Y2
t ‘\
h11 |h12 | has \ ‘ ‘
CNN Ny | hap | has " So g 52
s |hss | hss ]
Use a CNN to compute a C1 1| Yo C2 || Y1
grid of features for an image 5
[START] cat
Ve
"

Xu et al, “Show, Attend, and Tell: Neural Image Caption Generation with Visual Attention”, ICML 2015



Y1 Yo Y3 Y4

+ + )
Ao dog Aoy .
estamos comiendo

EIEIE E—
t 1 t +
\’_hlz_‘ \’_hls_‘ \’_hI] Sp | 5 Sz
I[dea: Can we use attention

B as a fundamental building X4 X, Xg | | Xg

we  are eating bread block for a generic sequence
[START] estamos .
(input) to sequence (output)
layer?




Attention Layer

M . . 3;21 a;zz a;zs T estamos comiendo  pan [STOP]

State vector: s, (Shape: D) | T |

Hidden vectors: h. (Shape: N, x D,,) TR B o i

Similarity function: f_, E—t 47 + N | |
bt e 5 E =
iRk BRI
Xq X2 X3 Xa ﬂ Yo C Y E‘ Y2 M Y3
we are eating bread ! 1 J

[START] estamos comiendo  pan
Computation:

Similarities: e (Shape: Ny) e, =f_ (s, h;)
Attention weights: a = softmax(e) (Shape: Ny)
Output vector: y = } ah;, (Shape: Dy)

Slide credit: Justin Johnson



Attention Layer

L npu ts 3;1 3;2 323

estamos comiendo n [STOP]
Query vector: g (Shape: Dg) | : S, : | t i
Input vectors: X (Shape: Ny x D|) ‘y’ ‘yz M V*“
t

Similarity function: f_, 3 ﬁ 47 thﬂ | ] |

I )

| S
1T L
X4 X, X3 X4 ﬂ Yo gk E‘ Y2 M Y3

t t

1
[START] estamos comiendo  pan

we are eating bread

Computation:

Similarities: e (Shape: Ny) e, =f_(a, X;)
Attention weights: a = softmax(e) (Shape: Ny)
Output vector: y = } .aX, (Shape: Dy)

Slide credit: Justin Johnson



Attention Layer

Inputs:

Query vector: ¢ (Shape: D)
Input vectors: X (Shape: Ny x D)

Similarity function: dot produc

Computation:

Similarities: e (Shape: Ny

’ ei=Q'*|

Attention weights: a = softmax(e) (Shape: Ny)

Output vector: y = Y a X,

(Shape: Dy)

Az dss

t t estamos comiendo  pan [STOP]

softmax

T
t
2

|
ﬁ ﬁ % | I l

"

| 4 s
Bk L
X, X3 X4 ﬂyo EHiE‘Yz Mya

t t

1
[START] estamos comiendo  pan

are eating bread

Changes:
- Use dot product for similarity

Slide credit: Justin Johnson



Attention Layer

Inputs:
Query vector: ¢ (Shape: D)

Input vectors: X (Shape: Ny x D)
Similarity function: scaled dot product

Computation:

Similarities: e (Shape: N I) e =q - Xi/sqrt(D

)

Attention weights: a = softmax(e) (Shape: Ny)

Output vector: y = } .aX, (Shape: Dy)

Az dss

t t

softmax

T
t
2

€23 €24

i

estamos comiendo  pan [STOP]

e
I

are eating bread

Changes:

T

t t

T
[START] estamos comiendo  pan

- Use scaled dot product for similarity

Slide credit: Justin Johnson



Attention Layer

Inputs: Sty d

Z] 22 23 estamos comiendo n STOP,
Query vectors: Q (Shape: Ng x DlQ) | : o : | t pan 8707
Input vectors: X (Shape: Ny x Dj) o [enl [eal [en \ X vl y| y] ‘

t t 1

h | th_‘ J_‘ ’_hl_‘ 0 $4

"

| 4 s
1T L
X4 X, X3 X4 ﬂ Yo Ek E‘ Y2 M Y3

t t

1
[START] estamos comiendo  pan

we are eating bread

Computation:

Similarities: E = QX' (Shape: Ng X Ny) E;; = Q, - X;/ sqrt(Dq)

Attention weights: A = softmax(E, dim=1) (Shape: NQxNX) Changes:

Output vectors: Y = AX (Shape: Ng X Dy) Y; = 2,4, X - Use dot product for similarity

- Multiple query vectors

Slide credit: Justin Johnson



-
Attention Layer

M ] . a;m a;zz a;zs 3%4 estamos comiendo  pan [STOP]
Query vectors: Q (Shape: Ng x Dg) | softmax |
Input vectors: X (Shape: Ny x Dy) e e e noooe w
Key matrix: W, (Shape: Dy x Dy) S S S [ R
0 h h h h s s
Value matrix: W, (Shape: Dy x D,)) ' {l {l | l“l ’ h | ll ] lH
Xq X5 X3 X4 ﬂ Yo gk @ Y2 t:‘ Y3

1
we are eating bread
[START] estamos comiendo  pan

Computation:
\-Ps(ey vectors: K = XW, (Shape: Ny x DQl
)

Value vectors: V = XW,, (Shape: Ny x D
imilarities: E = QKT (Shape: Ng x Ny) E;; = Q, - K,/ sqrt(Dg)
Attention weights: A = softmax(E, dim=1) (Shape: NQ X Ny) Changes:
Output vectors: Y = AV (Shape: Ng x Dy) Y; = 2 A,V - Use dot product for similarity

- Multiple query vectors
-  Separate and value

Slide credit: Justin Johnson



-
Attention Layer

Inputs:
Query vectors: Q (Shape: Ng x Dg)

Input vectors: X (Shape: Ny x Dy)
Key matrix: (Shape: Dy x D)
Value matrix: W,, (Shape: Dy x D))

Computation:
Key vectors: K = X (Shape: Ny x Dy) X4
Value vectors: V = XW,, (Shape: Ny x D,))
Similarities: E = QK" (Shape: Ng x Ny) E;; = Q; - K,/ sqrt(Dg) X,
Attention weights: A = softmax(E, dim=1) (Shape: Ng X Ny)
Output vectors: Y = AV (Shape: Ng xD,) Y; = > A}V, X,

Slide credit: Justin Johnson



-
Attention Layer

Inputs:
Query vectors: Q (Shape: Ny x Dg)

Input vectors: X (Shape: Ny x Dy)
Key matrix: (Shape: Dy x D)
Value matrix: W,, (Shape: Dy x D))

Computation:

Key vectors: K =X (Shape: Ny x Dy) X, ™ K,
Value vectors: V = XW,, (Shape: Ny x D,))

Similarities: E = (Shape: Ng x Ny) E;; = Q; - K,/ sqrt(Dg) X, — K,
Attention weights: A = softmax(E, dim=1) (Shape: Ng X Ny)

Output vectors: Y = AV (Shape: Ng xD,) Y; = > A}V, X; — K,

Slide credit: Justin Johnson



-
Attention Layer

Inputs:
Query vectors: Q (Shape: Ny x Dg)

Input vectors: X (Shape: Ny x Dy)
Key matrix: (Shape: Dy x D)
Value matrix: W,, (Shape: Dy x D))

Computation:

Key vectors: K =X (Shape: Ny x Dy) Xy ™ Ky — Eyy E, E; ; E,
Value vectors: V = XW,, (Shape: Ny x D,))

Similarities: E = (Shape: Ng x Ny) E;; = Q; - K,/ sqrt(Dg) X, —1 K, = Eq5 E,, E;, E,,
Attention weights: A = softmax(E, dim=1) (Shape: Ng X Ny)

Output vectors: Y = AV (Shape: Ng xD,) Y; = > A}V, Xs — Ky — Eq, E,. Ess e

Slide credit: Justin Johnson



-
Attention Layer

Inputs:

Query vectors: Q (Shape: Ny x Dg) A A Az 4 As
Input vectors: X (Shape: Ny x Dy)

Key matrix: (Shape: Dy x D) A, A, Az, Ao

Value matrix: W,, (Shape: Dy x D))

Softmax( T )
Computation:

Key vectors: K =X (Shape: Ny x Dy) Xy ™ Ky — Eyy E, E; ; E,
Value vectors: V = XW,, (Shape: Ny x D,))

Similarities: E = (Shape: Ng x Ny) E;; = Q; - K,/ sqrt(Dg) X, —1 K, = Eq5 E,, E;, E,,
Attention weights: A = softmax(E, dim=1) (Shape: Ng X Ny)

Output vectors: Y = AV (Shape: Ng xD,) Y; = > A}V, Xs — Ky — Eq, Sha Ess e

| S |

Q Q Q Q

1 2 3 4

Slide credit: Justin Johnson



-
Attention Layer

Inputs:

Query vectors: Q (Shape: Ny x Dg) "V, — A A Az 4 As
Input vectors: X (Shape: Ny x Dy)

Key matrix: (Shape: Dy x D) " Vo, — A, A, Az, Ao

Value matrix: W,, (Shape: Dy x D))

Computation:

Key vectors: K =X (Shape: Ny x Dy) - Xy — Ky —  Eyy E, E; ; E,
Value vectors: V = XW,, (Shape: Ny x D,))

Similarities: E = (Shape: Ng x Ny) E;; = Q; - K,/ sqrt(Dg) X, 1 K, —1 | Eq, E,, E; E,,
Attention weights: A = softmax(E, dim=1) (Shape: Ng X Ny)

Output vectors: Y = AV (Shape: Ng xD,) Y; = > A}V, Xs — Ky — Eq, E,. Ess e

Slide credit: Justin Johnson



Attention Layer

Inputs:
Query vectors: Q (Shape: Ny x Dg)

Input vectors: X (Shape: Ny x Dy)
Key matrix: (Shape: Dy x D)
Value matrix: W,, (Shape: Dy x D))

Computation:

Key vectors: K =X (Shape: Ny x Dy)
Value vectors: V = XW,, (Shape: Ny x D,))
Similarities: E = (Shape: Ng x Ny) E;; = Q; - K,/ sqrt(Dg)
Attention weights: A = softmax(E, dim=1) (Shape: Ng X Ny)

Output vectors: Y = AV (Shape: Ng xD,) Y; = > A}V,

E, E; E,

E,» Esp | Esp

Eys| |Ess| |Eags
R
Q Q Q
2 3 4

Slide credit: Justin Johnson



-
Self-Attention Layer

One query per input vector

Inputs:
Input vectors: X (Shape: Ny x Dy)

Key matrix: (Shape: Dy x D)

Query matrix: W, (Shape: Dy x D§)

Computation:

Query vectors: Q = XW

Key vectors: K =X (Shape: Ny x Dy)

Value vectors: V = XW,, (Shape: Ny x D,))

Similarities: E = QK' (Shape: Ny x Ny) E;; = Q; - K,/ sqrt(Dg)
Attention weights: A = softmax(E, dim=1) (Shape: Ny x Ny)
Output vectors: Y = AV (Shape: Ny x D) Y; = > A}V,

Slide credit: Justin Johnson



-
Self-Attention Layer

One query per input vector
Inputs:
Input vectors: X (Shape: Ny x Dy)
Key matrix: (Shape: Dy x D)
Value matrix: W,, (Shape: Dy x D))
Query matrix: W, (Shape: Dy x Dg)

Computation:

Query vectors: Q = XW

Key vectors: K =X (Shape: Ny x Dy)

Value vectors: V = XW,, (Shape: Ny x D,))

Similarities: E = QK' (Shape: Ny x Ny) E;; = Q; - K,/ sqrt(Dg) Q

Attention weights: A = softmax(E, dim=1) (Shape: N, x Ny) ‘ b
Output vectors: Y = AV (Shape: Ny x D) Y; = > A}V, t t f
X1 X2 X3

Slide credit: Justin Johnson



-
Self-Attention Layer

One query per input vector
Inputs:
Input vectors: X (Shape: Ny x Dy)
Key matrix: (Shape: Dy x D)
Value matrix: W,, (Shape: Dy x D))
Query matrix: W, (Shape: Dy x Dg)

Computation:
Query vectors: Q = XW, K,

Key vectors: K =X (Shape: Ny x Dy)

Value vectors: V = XW,, (Shape: Ny x D,)) K
Similarities: E = QK' (Shape: Ny x Ny) E;; = Q; - K,/ sqrt(Dg) Q
Attention weights: A = softmax(E, dim=1) (Shape: Ny x Ny) ‘
Output vectors: Y = AV (Shape: Ny x D) Y, = 3 AV, f

c
'

b
X b
X L

Slide credit: Justin Johnson



-
Self-Attention Layer

One per input vector
Inputs:
Input vectors: X (Shape: Ny x Dy)
Key matrix: (Shape: Dy x D)
Value matrix: W,, (Shape: Dy x D))
Query matrix: (Shape: Dy x Dg)

Computation:

Query vectors: O =X Ko = E;, | Eyn | Ej3
Key vectors: K =X (Shape: Ny x Dy)

Value vectors: V = XW,, (Shape: Ny x D) Ki 1= Eiq| [Baq| [EBsq
Similarities: E = (Shape: Ny x Ny) E;; = Q; - K,/ sqrt(Dg) (5 (5
Attention weights: A = softmax(E, dim=1) (Shape: Ny x Ny)

Output vectors: Y = AV (Shape: Ny x D) Y; = YAV, t f

Slide credit: Justin Johnson



-
Self-Attention Layer

One per input vector
Inputs: A3 Az As 3
Input vec_tors: X (Shape: Ny x Dy) Aol A, A;,
Key matrix: (Shape: Dy x D)
Value matrix: W,, (Shape: Dy x D) Al Ay [ Agy
Query matrix: (Shape: Dy x D) t
Softmax(1)

t
Computation: Ks |=1[E1a] |Eas Ess
Query vectors: O =X Ko |=||Ei2| |Ezs| |Esy
Key vectors: K =X (Shape: Ny x Dy)
Value vectors: V = XW,, (Shape: Ny x D)) Ki = By [Banl [ Ba
Similarities: E = (Shape: Ny x Ny) E;; = Q; - K,/ sqrt(Dg) (5

Attention weights: A = softmax(E, dim=1) (Shape: Ny x Ny)
Output vectors: Y = AV (Shape: Ny x D) Y; = > A}V,

Slide credit: Justin Johnson



-
Self-Attention Layer

One query per input vector

Inputs: Vs |7 Al Az As 3
Input vectors: X (Shape: Ny x Dy) oV, |~ A A, As,
Key matrix: (Shape: Dy x Dq) ’ ’ ’
Value matrix: W,, (Shape: Dy x D)) TV = AL A A
Query matrix: W, (Shape: Dy x D) — t o
ortmax
t

Computation:

Query vectors: 0 = XW, Ko |=||Ei2| |Ezs| |Esy
Key vectors: K = X (Shape: Ny x Dy)

Value vectors: V = XW,, (Shape: Ny x D, Ki | = E1] [Eaq| |EBsq
Similarities: E = QK™ (Shape: Ny x Ny) E;; = Q, - K,/ sqrt(Dy) & i &

Attention weights: A = softmax(E, dim=1) (Shape: Ny x Ny)
Output vectors: Y = AV (Shape: Ny x D) Y; = > A}V,

Slide credit: Justin Johnson



-
Y1 Y2 Y3

Self-Attention Layer SRS N

One query per input vector f
Inputs: Vs |7 Al Az As 3
Input vectors: X (Shape: Ny x Dy) 1V, = AL, A, A,
Key matrix: (Shape: Dy x Dy) ’ ’ ’
Value matrix: W,, (Shape: Dy x D)) TV = AL Ay Ay
Query matrix: W, (Shape: Dy x D) t
Softrr;ax(T)

Computation:

Query vectors: O = XW, K, = Ein | Eyn | Ej,
Key vectors: K =X (Shape: Ny x Dy)

Value vectors: V = XW,, (Shape: Ny x D) Ki 1= Eiq| [Baq| [EBsq
Similarities: E = QK™ (Shape: Ny x Ny) E;; = Q, - K,/ sqrt(Dy) & i &

Attention weights: A = softmax(E, dim=1) (Shape: Ny x Ny)
Output vectors: Y = AV (Shape: Ny x D) Y; = > A}V,

Slide credit: Justin Johnson



e
Self-Attention Layer SRS SR

Consider permuting , - !
Inputs: the input vectors:
Input vectors: X (Shape: Ny x Dy) > —
Key matrix: (Shape: Dy x D)
Value matrix: W,, (Shape: Dy x D)) -
Query matrix: W, (Shape: Dy x Dg) — t

o rrflaX(T)
Computation: -
Query vectors: Q = XW, —
Key vectors: K = X (Shape: Ny x Dy)
Value vectors: V = XW,, (Shape: Ny x D)) -
Similarities: E = QK (Shape: Ny x Ny) E;; = Q; - K,/ sqrt(Dg) t t t
Attention weights: A = softmax(E, dim=1) (Shape: Ny x Ny)
Output vectors: Y = AV (Shape: Ny x D) Y, = 3 AV, t t t
X3 X1 X2

Slide credit: Justin Johnson



e
Self-Attention Layer SRS SR

Consider permuting , — !
Inputs: the input vectors:
Input vectors: X (Shape: Ny x Dy) s —
Key matrix: (Shape: Dy x Dq) Queries and Keys will
Value matrix: W,, (Shape: Dy x D)) be the same, but -
Query matrix: W, (Shape: Dy x Dg) permuted t
Softrr;ax(T)
c jon: Ko T
omputation:
Query vectors: O = XW, K,
Key vectors: K = X (Shape: Ny x Dy)
Value Vectors: V = XW,, (Shape: N, x D) Ks 1T
Similarities: E = QK" (Shape: Ny x Ny) E;; = @, - K,/ sqrt(Dg) ) 6 é
Attention weights: A = softmax(E, dim=1) (Shape: Ny x Ny) ) ‘ )
Output vectors: Y = AV (Shape: Ny x D) Y; = AV, 1 T T
X, X, X,

Slide credit: Justin Johnson



e
Self-Attention Layer SRS SR

Consider permuting , — !
Inputs: the input vectors:
Input vectors: X (Shape: Ny x Dy) : —
Key matrix: W, (Shape: Dy x Dq) Similarities will be the
Value matrix: W, (Shape: Dy x D,) same, but permuted -
Query matrix: W, (Shape: Dy x Dg) — nflaX(T)
4
Computation: Ko 1T/ Baz2] [Erz =%
Query vectors: O = XW, K, | Es; E EW
Key vectors: K = X (Shape: Ny x Dy)
Value vectors: V = XW,, (Shape: Ny x D)) Ks |7 Bss [Eial [ Eos
Similarities: E = QK (Shape: Ny x Ny) E;; = Q; - K,/ sqrt(Dg) é é (5
Attention weights: A = softmax(E, dim=1) (Shape: Ny x Ny) ‘ )
Output vectors: Y = AV (Shape: Ny x D) Y, = 3 AV, f t 1
X3 X1 X2

Slide credit: Justin Johnson



e
Self-Attention Layer SRS SR

Consider permuting , i
Inputs: the input vectors: Asp| [Arz] [Ao
Input vectors: X (Shape: Ny x Dy) > - A A A
‘. . 3,1 1,1 2.1
Key matrix: W, (Shape: Dy x Dq) Attention weights will ) 1
Value matrix: W,, (Shape: Dy x D,)) be the same, but ' Asz | Az [ Ags
Softmax(1)
t
Computation: Ko |=|[Eaz] [Er2] [Ea
Query vectors: Q = XW, K, [—|| Es; E, E,,
Key vectors: K = XW, (Shape: Ny x Dy) |
Value vectors: V = XW,, (Shape: Ny x D)) Ks = Bss Bz Eags
Similarities: E = QKT (Shape: Ny x Ny) E;; = Q, - K;/ sqrt(Dy) & & &
Attention weights: A = softmax(E, dim=1) (Shape: Ny x Ny) ‘ )
Output vectors: Y = AV (Shape: Ny x D) Y; = YAV, f t 1
X3 X1 X2

Slide credit: Justin Johnson



Self-Attention Layer

Inputs:
Input vectors: X (Shape: Ny x Dy)

Key matrix: (Shape: Dy x D)
Value matrix: W,, (Shape: Dy x D))
Query matrix: W, (Shape: Dy x Dg)

Computation:

Query vectors: Q = XW,

Key vectors: K = X (Shape: Ny x Dy)
Value vectors: V = XW,, (Shape: Ny x D,))

Similarities: E = QK" (Shape: Ny x Ny) E;;

Consider permuting
the input vectors:

Values will be the
same, but permuted

=Q, - K;/sqart(Dy)

Attention weights: A = softmax(E, dim=1) (Shape: Ny x Ny)

Output vectors: Y = AV (Shape: Ny x Dy))

Y= Zin,jVj

v

4 4 4
Product(—), Sum(?1)
t

Ass | | Aqs Aoz
t

Softmax(1)

Slide credit: Justin Johnson



Self-Attention Layer

Inputs:
Input vectors: X (Shape: Ny x Dy)

Key matrix: (Shape: Dy x D)
Value matrix: W,, (Shape: Dy x D))
Query matrix: W, (Shape: Dy x Dg)

Computation:

Query vectors: Q = XW,

Key vectors: K = X (Shape: Ny x Dy)
Value vectors: V = XW,, (Shape: Ny x D,))

Similarities: E = QK" (Shape: Ny x Ny) E;;

Consider permuting
the input vectors:

Outputs will be the
same, but permuted

=Q, - K;/sqart(Dy)

Attention weights: A = softmax(E, dim=1) (Shape: Ny x Ny)

Output vectors: Y = AV (Shape: Ny x Dy))

Y= Zin,jVj

A

broduct(—»), Sum(Tl)

v

Ass | | Aqs Aoz
t

Softmax(1)

Slide credit: Justin Johnson



Self-Attention Layer

Consider permuting

Inputs: the input vectors:
Input vectors: X (Shape: Ny x Dy)

Key matrix: W, (Shape: Dy x Do) Outputs will be the
Value matrix: W,, (Shape: Dy x D)) same, but permuted

Query matrix: W, (Shape: Dy x Dg)

Self-attention layer is

_ Permutation
Computation: Equivariant

Query vectors: O = XW, f(s(x)) = s(f(x))
Key vectors: K = X (Shape: Ny x Dy)

Value vectors: V = XW,, (Shape: Ny x D,))

Similarities: E = QK' (Shape: Ny x Ny) E;; = Q; - K,/ sqrt(Dg)
Attention weights: A = softmax(E, dim=1) (Shape: Ny x Ny)
Output vectors: Y = AV (Shape: Ny x D) Y; = > A}V,

v

Y3 Y1 Y2
]Droduct(—:), Sum(Tl)
t
A3,2 A1 2 A2,2
A3,1 A1 1 A2,1
A3,3 A1,3 A2,3
t
Softmax(1)
t
E3,2 E1 2 E2,2
E3,1 E1,1 E2,1
E3,3 E1,3 E2,3
1 1 1
Q Q Q
f t ¥
X, X, X,

Slide credit: Justin Johnson



Self-Attention Layer

Self attention doesn’t “know”
the order of the vectors it is
processing!

Inputs:
Input vectors: X (Shape: Ny x Dy)

Key matrix: (Shape: Dy x D)
Value matrix: W,, (Shape: Dy x D))
Query matrix: (Shape: Dy x Dg)

Computation:

Query vectors: O = X

Key vectors: K =X (Shape: Ny x Dy)

Value vectors: V = XW,, (Shape: Ny x D,))

Similarities: E = (Shape: Ny x Ny) E;; = Q, - K,/ sqrt(Dq)
Attention weights: A = softmax(E, dim=1) (Shape: Ny x Ny)
Output vectors: Y = AV (Shape: Ny x D) Y; = > A}V,

Yy Y, Y3

4 4 4
Product(—), Sum(?1)
t

A1 > A2,3 A3,3
A1 2 A2,2 A3,2

Aq 1 A 4 Az 4
t

Softmax(1)

Slide credit: Justin Johnson



Self-Attention Layer

Inouts: Self attention doesn’t “know” V,
NDLES. _ _ the order of the vectors it is

Input vectors: X (Shape: Ny x Dy) rocessing! V,
Key matrix: (Shape: Dy x D) P g

Value matrix: W, (Shape: Dy x D) Vi

In order to make processing
position-aware, concatenate
input with positional

encoding K,

Query matrix: W, (Shape: Dy x Dg)

Computation:

Query vectors: Q = XW

Key vectors: K =X (Shape: Ny x Dy)
Value vectors: V = XW,, (Shape: Ny x D,
Similarities: E = QK' (Shape: Ny x Ny) E;; = Q; - K,/ sqrt(Dg)
Attention weights: A = softmax(E, dim=1) (Shape: Ny x Ny)
Output vectors: Y = AV (Shape: Ny x D) Y; = > A}V,

E can be learned lookuptable, K
S)r fixed function

Y1 Y2 Y3
4 4 4
Product(—), Sum(?1)

t
A1 '3 A2,3 A3,3
A1 2 A2,2 A3,2
A1,1 A2,1 A3,1
t
Softmax(1)
t

E1 '3 E2,3 E3,3

E1 ,2 E2,2 E3,2

E1 A E2,1 E3,1
1 1 1

Q Q Q
t f f

X1 X2 X3

E(1) [E@2) [EQ)

Slide credit: Justin Johnson



Big cat [END]

¢ 4 t
- Product(—), Sum(?1)
Masked Self-Attention Layer :
Inputs: Vs |70 0 Ass
Input vectors: X (Shape: Ny x D —
K:y matrix: (éhap% DXXX DQ);) Don’t let vectors “look vz L Aoz | B
Value matrix: W,, (Shape: Dy x D) ahead” in the sequence Vi 1= AL A Ay
Query matrix: (Shape: Dy x D) t
Used for language Softmax(f)
modelin redict next
Computation: word) 9P Kg |7 - Eas
Query vectors: O =X K, |—|| - E,, |Ei,
Key vectors: K =X (Shape: Ny x Dy)
Value vectors: V = XW,, (Shape: Ny x D) Ki 1= Eiq| [Baq| [EBsq
Similarities: E = (Shape: Ny x Ny) E;; = Q, - K,/ sqrt(Dy) (5 (5 (5
Attention weights: A = softmax(E, dim=1) (Shape: Ny x Ny)
Output vectors: Y = AV (Shape: Ny x D) Y; = YAV, t f f

[START] Big  cat

Slide credit: Justin Johnson



Multihead Self-Attention Layer || |

Inputs: Concat
Input vectors: X (Shape: Ny x Dy)

Key matrix: (Shape: Dy x D)

Value matrix: W,, (Shape: Dy x D)) Use H independent e gL _

Query matrix: W, (Shape: Dy x Dq) ) ) b . e ) ] |[ B ) ) | ) )
Attention Heads” in o o =
parallel -] o] [ -] ] -] g [

Computation: - @ - -

Query vectors: Q = XW

Key vectors: K =X (Shape: Ny x Dy) o
Value vectors: V = XW,, (Shape: Ny x D) Split
Similarities: E = QK' (Shape: Ny x Ny) E;; = Q; - K,/ sqrt(Dg)
Attention weights: A = softmax(E, dim=1) (Shape: Ny x Ny)

Output vectors: Y = AV (Shape: Ny x D) Y; = > A}V, X % %
1 2 K}

Slide credit: Justin Johnson



Three Ways of Processing Sequences

Recurrent Neural Network

Yio T Yo T Ys T " Vs

I

X4 X, X3 Xy

Works on Ordered Sequences
(+) Good at long sequences:
After one RNN layer, h; ”sees”
the whole sequence

(-) Not parallelizable: need to
compute hidden states
sequentially

1D Convolution

Y1 Yo Y3 Y4

| XTXIX]

X X5 X3 Xy

Works on Multidimensional
Grids

(-) Bad at long sequences: Need
to stack many conv layers for
outputs to “see” the whole
sequence

(+) Highly parallel: Each output
can be computed in parallel

Self-Attention

Works on Sets of Vectors

(+) Good at long sequences:
after one self-attention layer,
each output “sees” all inputs!
(+) Highly parallel: Each output
can be computed in parallel

(-) Very memory intensive

Slide credit: Justin Johnson
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