Topics:
 Vision Transformers
* |ntro to VLMSs

CS 8803-VLM
ZSOLT KIRA

Many slides by Justin Johnson



e This week:
* VLM background (lectures)
e No reviews due this week

 Papers will be out today (sorry!)
* Signup will be due this week
 Please sign up for first ones!

 Attendance sheet being passed around



Attention Layer

Inputs:
Query vectors: Q (Shape: Ny x Dg)

Input vectors: X (Shape: Ny x Dy)
Key matrix: (Shape: Dy x D)
Value matrix: W,, (Shape: Dy x D))

Computation:

Key vectors: K =X (Shape: Ny x Dy)
Value vectors: V = XW,, (Shape: Ny x Dy))
Similarities: E = (Shape: Ng x Ny) E;; = Q; - K,/ sqrt(Dg)
Attention weights: A = softmax(E, dim=1) (Shape: Ng X Ny)

Output vectors: Y = AV (Shape: Ng x D) Y; = > AV,

E, E; E,

E,» Esp | Esp

Eys| |Ess| |Eags
R
Q Q Q
2 3 4

Slide credit: Justin Johnson
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Self-Attention Layer o

One query per input vector f
Inputs: Vs |7 Al Az As 3
Input vectors: X (Shape: Ny x Dy) 1V, = AL, A, A,
Key matrix: (Shape: Dy x Dy) ’ ’ ’
Value matrix: W, (Shape: Dy x Dy) TV = AL Ay Ay
Query matrix: W, (Shape: Dy x D) t
Softrr;ax(T)

Computation:

Query vectors: O = XW, K, = Ein | Eyn | Ej,
Key vectors: K =X (Shape: Ny x Dy)

Value vectors: V = XW, (Shape: Ny x D)) Ki 1= Eiq| [Baq| [EBsq
Similarities: E = QK™ (Shape: Ny x Ny) E;; = Q, - K,/ sqrt(Dy) & i &

Attention weights: A = softmax(E, dim=1) (Shape: Ny x Ny)
Output vectors: Y = AV (Shape: Ny x Dy) Y; = > A}V,

Slide credit: Justin Johnson



Big cat [END]

¢ 4 t
- Product(—), Sum(1)
Masked Self-Attention Layer :
Inputs: Vs |70 0 Ass
Input vectors: X (Shape: Ny x D —
K:y matrix: (éhap% DXXX DQ);) Don'’t let vectors “look vz L Aoz | B
Value matrix: W,, (Shape: Dy x D) ahead” in the sequence Vi 1= AL A Ay
Query matrix: (Shape: Dy x D) t
Used for language Softmax(f)
modelin redict next
Computation: word) 9P Kg |7 - Eas
Query vectors: O =X K, |—|| - E,, |Ei,
Key vectors: K =X (Shape: Ny x Dy)
Value vectors: V = XW, (Shape: Ny x D)) Ki 1= Eiq| [Baq| [EBsq
Similarities: E = (Shape: Ny x Ny) E;; = Q, - K,/ sqrt(Dy) (5 (5 (5
Attention weights: A = softmax(E, dim=1) (Shape: Ny x Ny)
Output vectors: Y = AV (Shape: Ny x D) Y; = AV, t f f

[START] Big  cat

Slide credit: Justin Johnson



Multihead Self-Attention Layer || |

Inputs: Concat
Input vectors: X (Shape: Ny x Dy)

Key matrix: (Shape: Dy x D)

Value matrix: W,, (Shape: Dy, x D)) Use H independent e e e -

Query matrix: W, (Shape: Dy x Dq) ) ) b . e ) ] |[ B ) ) | ) )
Attention Heads” in o o =
parallel - ) - ) ] ) [

Computation: - @ - -

Query vectors: Q = XW

Key vectors: K =X (Shape: Ny x Dy) o
Value vectors: V = XW, (Shape: Ny x D)) Split
Similarities: E = QK' (Shape: Ny x Ny) E;; = Q; - K,/ sqrt(Dg)
Attention weights: A = softmax(E, dim=1) (Shape: Ny x Ny)

Output vectors: Y = AV (Shape: Ny x Dy) Y; = > A}V, X % %
1 2 K}

Slide credit: Justin Johnson



Three Ways of Processing Sequences

Recurrent Neural Network

Yio T Yo T Ys T " Vs

I

X4 X, X3 Xy

Works on Ordered Sequences
(+) Good at long sequences:
After one RNN layer, h; "sees”
the whole sequence

(-) Not parallelizable: need to
compute hidden states
sequentially

1D Convolution

Y1 Yo Y3 Y4

| XTXIX]

X X5 X3 Xy

Works on Multidimensional
Grids

(-) Bad at long sequences: Need
to stack many conv layers for
outputs to “see” the whole
sequence

(+) Highly parallel: Each output
can be computed in parallel

Self-Attention

Works on Sets of Vectors

(+) Good at long sequences:
after one self-attention layer,
each output “sees” all inputs!
(+) Highly parallel: Each output
can be computed in parallel

(-) Very memory intensive

Slide credit: Justin Johnson



The Transformer

X X5 X3 X,

Vaswani et al, “Attention is all you need”, NeurlPS 2017

Slide credit: Justin Johnson



The Transformer

t
All vectors interact Self-Attention
with each other t t t t
1 1 1 1
X4 X, X3 X4

Vaswani et al, “Attention is all you need”, NeurlPS 2017

Slide credit: Justin Johnson



Y1 Yo Y3 Ya

The Transformer S O B B ) B

Vaswani et al, “Attention is all you need”, NeurlPS 2017

MLP independently le_P MItP Mlt_P le_P
on each vector i f : .
(weight shared!)
t
All vectors interact Self-Attention
with each other t t t t
1 1 1 1
X1 Xy X3 X4

Slide credit: Justin Johnson



The Transformer

MLP independently
on each vector

Residual connection

All vectors interact
with each other

Vaswani et al, “Attention is all you need”, NeurlPS 2017

Y1 Yo Y3 Ya
t t t t
t t t t
MLP MLP MLP MLP
t t t t
4
Self-Attention
t t t t
1 1 1 1
X4 Xy X3 X4

Slide credit: Justin Johnson



The Transformer

Recall Layer Normalization:
Given hy, ..., hy  (Shape: D)

scale: y (Shape: D) _

shift: 8 (Shape: D) MLP independently

u; = (1/D)%; h, (scalar) on each vector

o; = (3 (h; - w;)*)V? (scalar)

z; = (hj- )/ o

iy zi+p Residual connection
All vectors interact

Ba et al, 2016 with each other

Vaswani et al, “Attention is all you need”, NeurlPS 2017

Y1 Yo Y3 Ya
t t t t
t
I I I I
MLP MLP MLP MLP
|
Layer Normalization

:
Self-Attention
t t t t
I I I I
X4 X, X3 X4

Slide credit: Justin Johnson



The Transformer

MLP independently
on each vector

Residual connection

All vectors interact
with each other

Vaswani et al, “Attention is all you need”, NeurlPS 2017

Y1 Yo Y3 Ya
t t t t
t
I I I I
MLP MLP MLP MLP
|
Layer Normalization

:
Self-Attention
t t t t
I I I I
X4 X, X3 X4

Slide credit: Justin Johnson



The Transformer

Residual connection

MLP independently
on each vector

Residual connection

All vectors interact
with each other

Vaswani et al, “Attention is all you need”, NeurlPS 2017

Y1 Y2 Y3 Ya
I | I I
Layer Normalization
:

I I I I
MLP MLP MLP MLP
Layer Normalization
:
Self-Attention
t t t t
I I I I
X4 X, X3 X4

Slide credit: Justin Johnson



The Transformer 0 B O

Layer Normalization
Transformer Block: :%)

Input: Set of vectors x

Output: Set of vectors y I I I I
MLP MLP MLP MLP

Self-attention is the only
interaction between vectors!

Layer Normalization

Layer norm and MLP work :@:9
independently per vector

Self-Attention
Highly scalable, highly -t t t t
parallelizable t t t t
X4 Xy X3 X4

Vaswani et al, “Attention is all you need”, NeurlPS 2017

Slide credit: Justin Johnson



! ! ! !

The Transformer

‘MW“MW“MW“MW‘

I

t i t
Transformer Block: Lay‘*fﬂ““m: alation
Input: Set of vectors x seenion
Output: Set of vectors y T

1 ! ! 1

Layer@iNormalization

Self-attention is the only A Transformer is a = M.LP:MLP =
interaction between vectors! sequence of transformer L v
blocks —
Layer norm and MLP work | I
independently per vector oo

LayertNormalization

I

Highly scalable, highly
parallelizable

‘Mm“MW“MW“MW‘

LayertNormalization

i

Self-Attention
f t 1 t

N

Vaswani et al, “Attention is all you need”, NeurlPS 2017

Slide credit: Justin Johnson



Qutput
Probabilities
[he Transformer
I Linear |
4 ] )
(LAdd & Norm J<~ Details:
Feed . . .
= i  Tokenization is messy!
i Trained chunking
[ Add & Norm | .
(D) || S mechanism
T Attention . « Position encoding
X . .
z I « sin/cos: Normalized,
T by tokens h
Nx | (e N Lii nearby tokens have
Multi-Head Multi-Head similar values, etc.
Attention Attention e Added to input
X ) X 7 )
\ J L ) embedding
Positional D Positional
Encoding & Encoding
Input Output
Embedding Embedding  \When to use decoder-
| only versus encoder-
Inputs Outputs decoder model is open
(shifted right) problem
« GPT is decoder only!
Encoder-Decoder

Vaswani et al, “Attention is all you need”, NeurlPS 2017



Language models estimate the probability of sequences of words:

p(S) — p(W17W27 e 7Wn)

Another task: Masked language modeling is a related pre-training
task — an auxiliary task, different from the final task we're really interested
in, but which can help us achieve better performance by finding good
initial parameters for the model.

By pre-training on masked language modeling before training on our final
task, it is usually possible to obtain higher performance than by simply
training on the final task.

) Recap and Intro FacEBooK Al OGEER

J&

—3



£3 &3 £3 68 3 68 D

Masked Language Models acesook Al Gegrgia |



UEE]SS “ seat SUEE]SS have n SUEE]SS </s>

Masked Language Models acesook Al Gegrgia |



transformer

encoder
! ! ! ! ! ! ! ! !
- (D D D D D O &3
embeddings

) Masked Language Models Facesook i Gegrgia |

—3



transformer
encoder

! ! ! ! ! ! ! ! !

- (O ) & D D & &
embeddings

+ + + + + + + + +

EBEECEEEEEE

position
embeddings

Masked Language Models acesook Al Gegrgia |




predictions

! ! !

transformer
encoder

! ! ! ! ! ! ! ! !

- (O ) & D D & &
embeddings

+ + + + + + + + +

EBEECEEEEEE

position
embeddings

Masked Language Models acesook Al Gegrgia |




transformer
encoder

word
embeddings

! ! ! ! ! ! ! ! !
+ + + + + + + + +
&3 &5 £3 £3 £5 €3 3 63 £B

position
embeddings

Token-level Tasks FACEBOOK Al Ge°'9'a@1




predictions

BCOEBEECEC S
! ! ! ! ! ! ! ! f

transformer
encoder
embeddings
+ + + + + + + + +
) 1
embeddings . S ¢ . 4

Token-level Tasks racesook a1 Gegroia |




prediction

transformer
encoder

! ! ! ! ! ! ! ! !

word
+ + + + + + + + +
EEEEEEERESEDEDESED

position
embeddings

Sentence-level Tasks e Georg-a@




o classification
prediction - d POSITIVE
transformer
encoder

! ! ! ! ! ! ! ! !

word
+ + + + + + + + +
EEEEEEERESEDEDESED

position
embeddings

Sentence-level Tasks e Georg-a@




Training Stages

* Collect examples of (instruction, output) pairs across many tasks and finetune an LM

Please answer the following question.
What is the boiling point of Nitrogen?

&

1 . P re _t ra i n i n g Answer the following question by

reasoning step-by-step.
The cafeteria had 23 apples. If they

1 1 d 20 for lunch and bought 6 more,
2. Instruction Tuning o oy appies oy vt

The cafeteria had 23 apples
originally. They used 20 to
make lunch. So they had 23 -
20 = 3. They bought 6 more

Language apples, so they have 3 + 6 = 9.
model —
3. Alignment Tuning |
* Evaluate on unseen tasks “\ Geoffrey Hinton is a British-Canadian

\'| computer scientist born in 1947. George

4 . P O St_Tra I n I n g Q: Can Geoffrey Hinton have a ‘| Washington died in 1799. Thus, they

conversation with George Washington? |/ could not have had a conversation
together. So the answer is “no”.

[FLAN-T5; Chung et al., 202

Give the rationale before answering.

(A) Pretrain—finetune (BERT, T5)

(o N\
Pretrained Finetune on Inference . .
taskA > ontaskA (C) Instruction tuning (FLAN)
I ™
* Typically requires many - Instruction-tune on
task-specific examples Pretrained . » Inference
+ One specialized model mBan(‘y tSSKS' on task A
for each task J S

- - Model \eakrns to perforiﬂ Inference olr(w

. many tasks via natura unseen tas
(B) Prompting (GPT-3) . language instructions
-~ ~ N J

Improve performance

via few-shot prompting
Pretrained or prompt engineering Inference
LM * ontask A
L% J

Yin et al., A Survey on Multimodal Large Language Models




Pre-training

* Goal: Align modalities & learn
multimodal knowledge

— Data: Large-scale image-text pairs

 Example datasets
— CC3M, LAION-5B, COYO-700M

— Trend: GPT-4V for high-quality fine-
grained data

Yin et al., A Survey on Multimodal Large Language Models

Date

Dataset Samples
Coarse-grained Image-Text

CC-3M [54] 3.3M 2018
CC-12M [55] 12.4M 2020
SBU Captions [56] M 2011
LAION-5B [57] 5.9B Mar-2022
LAION-2B [57] 2.3B Mar-2022
LAION-COCO [=5] 600M Sep-2022
COYO-700M [20] 747M Aug-2022
Fine-grained Image-Text

ShareGPT4V-PT [57] 1.2M Nowv-2023
LVIS-InstructdV [91] 111K Nowv-2023
ALLaVA [92] 709K Feb-2024
Video-Text

MSR-VTT [97] 200K 2016
Audio-Text

WavCaps [94] 24K Mar-2023




Instruction Tuning

Goal: Teach models to follow
multimodal instructions

— Data collection methods:
1. Adapting existing datasets

2. Self-instruction: LLM expands
instructions

3. Mixing language-only and multimodal

data

— LLaVA-instruct: Bounding boxes/captlon
-> GPT4 -> more data

Below is an instruction that describes a task. Write a response
that appropriately completes the request

Instruction: <instruction>
Input: {<image>, <text>|
Response: <output>

s

Dataset Sample Modality Source Composition
P D ata a I It I S I m O rta nt | LLaVA-Instruct 158K [+T—=T MS-COCO 23K caption + 58K M-T QA + 77K reasoning
q u y p . LVIS-Instruct 220K I+T—T LVIS 110K caption + 110K M-T QA
ALLaVA 1.4M I+T—T VFlan, LAION 709K caption + 709K S-T QA
Video-ChatGPT 100K V+T—=T ActivityNet 7K description + 4K M-T QA
VideoChat 11K V4T =T WebVid description + summarization + creation
Clotho-Detail 39K A+T—=T Clotho caption

Yin et al., A Survey on Multimodal Large Language Models




Alignment Tuning

P G I . AI . ° h Step 1 Step 2 Step 3
O a ° I g n O u t p u tS W I t Collect demonstration data, Collect comparison data, Optimize a policy against

and train a reward model.

and train a supervised policy.

human preferences

A promptis
sampled from our
prompt dataset.

— Techniques:

— RLHF (Reinforcement

Learning with Human
Feedback)

— DPO (Direct Preference
Optimization)

— Key papers: LLaVA-RLHF,
RLHF-V, Silkie (uses GPT4-V)

A labeler
demonstrates the
desired output
behavior.

This datais used
to fine-tune GPT-3
with supervised
learning.

Yin et al., A Survey on Multimodal Large Language Models

Explain the moon
landing to a 6 year old

e

2

Some people went
to the moon...

SFT
| ¥}

O/OMO
S5%
V4
EEE

A prompt and
several model
outputs are
sampled.

A labeler ranks
the outputs from
best to worst.

This datais used
to train our
reward model.

Explain the moon
landing to a 6 year old

RM
N

0-0-0-0

the reward model using
reinforcement learning.

A new prompt

. »

is sampled from Tr

the dataset. about frogs

The policy oo
enerates 058,

g 0/)?.%.

an output. \}SX./

Once upon a time...

The reward model
RM

calcul:;es a ./.)?.Si\.
reward ror X 7
the output. }2{
The reward is

used to update le
the policy

using PPO.

[Ouyang et al., 2022]




e S S S W T S

Transformer-Base
Transformer-Large
BERT-Base
BERT-Large
XLNet-Large
RoBERTa

GPT-2
Megatron-LM
Turing-NLG

GPT-3

Gopher

12
12
24
24
24
48
72
78
96
80

1024
768
1024
1024
1024
1600
3072
4256
12,288
16,384

16
12
16
16
16
?
32
28
96
128

213M
110M
340M
~340M
355M
1.5B
8.3B
178
175B
2808

13GB
13GB
126 GB
160 GB
40 GB
174 GB
?

694GB
10.55TB

8x P100 (12 hours)
8x P100 (3.5 days)

512x TPU-v3 (2.5 days)
1024x V100 GPU (1 day)

512x V100 GPU (9 days)

256x V100 GPU
?

4096x TPUv3 (38 days)

Slide credit: Justin Johnson



Can Attention/Transformers be used
from more than text processing?



VILBERT: A Visolinguistic Transformer

% eﬂylmagg\ | 25-\

P ans!ein

56114236

pop artist performs at the a worker helps to clear
festival in a city. the debris.

Image and captions from: Sharma, Piyush, et al. "Conceptual captions: A cleaned,
hypernymed, image alt-text dataset for automatic image captioning." ACL. 2018.

blue sofa in the living
room.




VILBERT: A Visolinguistic Transformer

Faster R-CNN Multimodal Transformer

RPNH HEENEN

E > F',?OOO'I Vision e Language

~— HEENEN
blue sofa in the living
room.

Lu et al "Vilbert: Pretraining task-agnostic visiolinguistic representations for vision-and-language tasks." NeurlPS. 2019.
Ren et al. "Faster r-cnn: Towards real-time object detection with region proposal networks." NeurlPS. 2015.



What about for just image inputs? Without Convolution?

Preprint. Under review.

AN IMAGE 1S WORTH 16X16 WORDS:
TRANSFORMERS FOR IMAGE RECOGNITION AT SCALE

Alexey Dosovitskiy* T, Lueas Beyer*, Alexander Kolesnikov*, Dirk Weissenborn*,
Xiaohua Zhai*, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer,
Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, Neil Houlsby*!
*equal technical contribution, 'equal advising
Google Research, Brain Team
{adosovitskiy, neilhoulsby}@google.com

ABSTRACT

‘While the Transformer architecture has become the de-facto standard for natural
language processing tasks, its applications to computer vision remain limited. In
vision, attention is either applied in conjunction with convolutional networks, or
used to replace certain components of convolutional networks while keeping their
overall structure in place. We show that this reliance on CNNs is not necessary
and a pure transformer applied directly to sequences of image patches can perform
very well on image classification tasks. When pre-trained on large amounts of
data and transferred to multiple mid-sized or small image recognition benchmarks
(ImageNet, CIFAR-100, VTAB, etc.), Vision Transformer (ViT) attains excellent
results compared to state-of-the-art convolutional networks while requiring sub-
stantially fewer computational resources to [rainEl

[cs.CV] 22 Oct 2020

Slide progression inspired by Soheil Feizi

) What About Vision with just Self-Attention? Gegeth




|dea #3: Standard Transformer on Pixels

Treat an image as a
set of pixel values

7
Iﬁ.“f

!
HE B

I ! ! I
Layer Normalization
:

I I I I
MLP MLP MLP MLP
1 ] | |
Layer Normalization

:é
Self-Attention
t t t t

Feed as input to
standard Transformer

Chen et al, “Generative Pretraining from Pixels”, ICML 2020

Slide credit: Justin Johnson



|dea #3: Standard Transformer on Pixels

Treat an image as a
set of pixel values

7
Iﬁ.“f

!
HE B

I ! ! I
Layer Normalization
:

I I I I
MLP MLP MLP MLP
1 ] | |
Layer Normalization

:é
Self-Attention
t t t t

Feed as input to
standard Transformer

Chen et al, “Generative Pretraining from Pixels”, ICML 2020

Problem: Memory use!

R x R image needs R*
elements per attention

matrix

Slide credit: Justin Johnson



|dea #3: Standard Transformer on Pixels

Treat an image as a
set of pixel values

7
Iv#

!
HE B

I ! ! I
Layer Normalization
:

I I I I
MLP MLP MLP MLP
1 ] | |
Layer Normalization
:é
Self-Attention
t t t t

Feed as input to
standard Transformer

Chen et al, “Generative Pretraining from Pixels”, ICML 2020

Problem: Memory use!

R x R image needs R*
elements per attention
matrix

R=128, 48 layers, 16
heads per layer takes
768GB of memory for
attention matrices for a
single example...

Slide credit: Justin Johnson



Slide credit: Justin Johnson

|dea #4: Standard Transformer on Patches

Cat image is free for commercial

Dosovitskiy et al, “An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale”, ICLR 2021 T —_—



Slide credit: Justin Johnson

|dea #4: Standard Transformer on Patches

Cat image is free for commercial

Dosovitskiy et al, “An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale”, ICLR 2021 T —_—



Slide credit: Justin Johnson

|dea #4: Standard Transformer on Patches

N input patches, each . ‘ AL ; -
of shape 3x16x16 B d G- T
Cat image is free for commercial

Dosovitskiy et al, “An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale”, ICLR 2021 use under a Pixabay license



Slide credit: Justin Johnson

|dea #4: Standard Transformer on Patches

Linear projection to

D-dimensional vector I E I
N input patches, each : ;_'J
of shape 3x16x16 B , d ‘
Cat image is free for commercial

Dosovitskiy et al, “An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale”, ICLR 2021 use under a Pixabay license




Slide credit: Justin Johnson

|dea #4: Standard Transformer on Patches

embedding: learned D-

Add positional |:
dim vector per position +

Linear projection to
D-dimensional vector I

|

Cat image is free for commercial
Dosovitskiy et al, “An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale”, ICLR 2021 t use u,fdefi p?x:sw:e,::e

N input patches, each
of shape 3x16x16




Slide credit: Justin Johnson

|dea #4: Standard Transformer on Patches

Output vectors

Exact same as
NLP Transformer!

Transformer }

[

Add positional
embedding: learned D-
dim vector per position

Cat image is free for commercial

Dosovitskiy et al, “An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale”, ICLR 2021 use under a Pixabay license

Linear projection to
D-dimensional vector

N input patches, each
of shape 3x16x16




Slide credit: Justin Johnson

|dea #4: Standard Transformer on Patches

Output vectors

Exact same as
NLP Transformer!

Transformer }

Add positional Special extra input:
embedding: learned D- [ [ |:| classification token
+ + (D dims, learned)

dim vector per position

Cat image is free for commercial

Dosovitskiy et al, “An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale”, ICLR 2021 use under a Pixabay license

Linear projection to
D-dimensional vector

N input patches, each
of shape 3x16x16




Slide credit: Justin Johnson

|dea #4: Standard Transformer on Patches

Linear projection
to C-dim vector
of predicted

Output vectors class scores

Exact same as
NLP Transformer!

Transformer }

[

+

Add positional
embedding: learned D-
dim vector per position

Special extra input:
[ |:| classification token

+ (D dims, learned)

Cat image is free for commercial

Dosovitskiy et al, “An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale”, ICLR 2021 use under a Pixabay license

Linear projection to
D-dimensional vector

N input patches, each
of shape 3x16x16




Vision Transformer (ViT) vs ResNets

O
-

o0
N
1 1 L 1 i

: B = Base
80f L = Large
. H = Huge

ResNet-152x4 ViT-L/32 | /32,/16, /14 s patch
ViT-B/32 ViT-L/16 | Size; smaller patch

_ , size is a bigger model
ViT-B/16 ViT-H/14 (more patches)

ImageNet Topl Accuracy [%]
~J
N

701
ImageNet ImageNet-21k JFT-300M

Pre-training dataset

Dosovitskiy et al, “An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale”, ICLR 2021  siide credit: Justin Johnson



Vision Transformer (ViT) vs ResNets

O
-

Recall: ImageNet
dataset has 1k

size is a bigger model
(more patches)

worse than ResNets ViT-B/16 ViT-H/14

X
>.‘ .
. = 85
categories, 1.2M "
. 0 1
im -
LS :ﬁ) 1 B = Base
— 801 L = Large
. o,
When trained on =2 H = Huge
ImageNet, ViT > .
5 | £ 2 75 - ResNets ViT-L/32 | /32,/16, /14 s patch
models perform ED - ViT-B/32 VIT-L/16 | size; smaller patch
=
—_

701
ImageNet ImageNet-21k JFT-300M

Pre-training dataset

Dosovitskiy et al, “An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale”, ICLR 2021  siide credit: Justin Johnson



Vision Transformer (ViT) vs ResNets

90
ImageNet-21khas ¥ |
14M images with 21k > o
categories § |
=
. < . & B = Base
If you pretrain on = 80 L = Large
ImageNet-21k and = H = Huge
INE-tUnE on Z 751 ResNets ViT-L/32 | /32,/16, /14 s patch
ImageNe_t, V!T does ?O;D - ViT-B/32 ViT-L/16 size;‘smatl)lller patchd |
. Size IS a pIgger moae
better: big ViTs match E VIT-B/16 VIT-H4 | (oor atfﬁes)
big ResNets 70 - P
ImageNet ImageNet-21k JFT-300M

Pre-training dataset

Dosovitskiy et al, “An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale”, ICLR 2021  siide credit: Justin Johnson



Vision Transformer (ViT) vs ResNets

; 90

JFT-300M is an —_—
: IS &
internal Google =
dataset with 300M S 851
labeled images § :

£ 9 ® -;- B = Base

. — 80 T =

If you pretrain on o h_L:ngz
JFT and finetuneon £
ImageNet, large % 75 - ResNets ViT-L/32 | /32,/16, /14 is patch
ViTs outperform oh ViT-B/32 ValELJip.| Szesmaller paich

= , 6 ViT-H/14 size is a bigger model
large ResNets — i VIT-B/1 i (more patches)

ImagleNet ImageNet-Zlk JFT-éOOM

Pre-training dataset

Dosovitskiy et al, “An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale”, ICLR 2021  sjige credit: Justin Johnson



Hierarchical ViT: Swin Transformer
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Liu et al “Swin Transformer: Hierarchical Vision Transformer usina Shifted Windows” CVPR 2021 Slide credit: Justin Johnson



Hierarchical ViT: Swin Transformer
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patches and project neighborhoods;
to C dimensions now patches are
(effectively) 8x8

Liu et al “Swin Transformer: Hierarchical Vision Transformer usina Shifted Windows” CVPR 2021 Slide credit: Justin Johnson



Hierarchical ViT: Swin Transformer
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lLiu et al “Swin Transformer: Hierarchical Vision Transformer usina Shifted Windows” CVPR 2021
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Hierarchical ViT: Swin Transformer
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to C dimensions now patches are
(effectively) 8x8

lLiu et al “Swin Transformer: Hierarchical Vision Transformer usina Shifted Windows” CVPR 2021
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Hierarchical ViT: Swin Transformer
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Hierarchical ViT: Swin Transformer
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Hierarchical ViT: Swin Transformer
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Liu et al “Swin Transformer: Hierarchical Vision Transformer usina Shifted Windows” CVPR 2021 Slide credit: Justin Johnson



Hierarchical ViT: Swin Transformer

Problem: 224x224 image

with 56x56 grid of 4x4 H W H W
patches: attention matrix C X 2 X 7 2C X g X )
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lLiu et al “Swin Transformer: Hierarchical Vision Transformer usina Shifted Windows” CVPR 2021
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Swin Transformer: Window Attention

With H x W grid of tokens, each attention
matrix is H*W? — quadratic in image size

Liu et al “Swin Transformer: Hierarchical Vision Transformer usina Shifted Windows” CVPR 2021 Slide credit: Justin Johnson



Swin Transformer: Window Attention

lLiu et al “Swin Transformer: Hierarchical Vision Transformer usina Shifted Windows” CVPR 2021

With H x W grid of tokens, each attention
matrix is H*W? — quadratic in image size

Rather than allowing each token to attend
to all other tokens, instead divide into
windows of M x M tokens (here M=4); only
compute attention within each window

Slide credit: Justin Johnson



Swin Transformer: Window Attention

lLiu et al “Swin Transformer: Hierarchical Vision Transformer usina Shifted Windows” CVPR 2021

With H x W grid of tokens, each attention
matrix is H*W? — quadratic in image size

Rather than allowing each token to attend
to all other tokens, instead divide into
windows of M x M tokens (here M=4); only
compute attention within each window

Total size of all attention matrices is now:
M4(H/M)(W/M) = M?HW

Linear in image size for fixed M!
Swin uses M=7 throughout the network

Slide credit: Justin Johnson



Swin Transformer: Window Attention

Problem: tokens only interact with other tokens within
the same window; no communication across windows

Liu et al “Swin Transformer: Hierarchical Vision Transformer usina Shifted Windows” CVPR 2021 Slide credit: Justin Johnson



Swin Transformer: Shifted Window Attention

Solution: Alternate between normal windows and
shifted windows in successive Transformer blocks

Ugly detail:
Non-square
S windows at
edges and
corners

Block L: Normal windows Block L+1: Shifted Windows

Liu et al “Swin Transformer: Hierarchical Vision Transformer usina Shifted Windows” CVPR 2021 Slide credit: Justin Johnson



Swin Transformer: Shifted Window Attention

Solution: Alternate between normal windows and Detail: Relative Positional Bias
shifted windows in successive Transformer blocks

ViT adds positional embedding to
input tokens, encodes absolute
position of each token in the image

Block L: Normal windows Block L+1: Shifted Windows

Liu et al “Swin Transformer: Hierarchical Vision Transformer usina Shifted Windows” CVPR 2021 Slide credit: Justin Johnson



Swin Transformer: Speed vs Accuracy
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Liu et al “Swin Transformer: Hierarchical Vision Transformer usina Shifted Windows” CVPR 2021 Slide credit: Justin Johnson



Swin Transformer: Speed vs Accuracy

-o-RegNetY -o-EffNet -e-ViT+Distillation (DeiT) Swin
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S 81 be used as a backbone for object
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< . .
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Liu et al “Swin Transformer: Hierarchical Vision Transformer usina Shifted Windows” CVPR 2021 Slide credit: Justin Johnson



Other Hierarchical Vision Transformers

MVIT Swin-V?2 Improved MVIT
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Transformers”, ICCV 2021 up Capacity and Resolution”, CVPR 2022 for Classification and Detection”, arXiv 2021

Slide credit: Justin Johnson



Introduction to Vision-Language Models
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CLIP: Connecting
text and images

Read paper 2 View code =

Ilustration: Justin Jay Wang

Learning Transferable Visual Models From Natural Language Supervision
Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh,
Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack
Clark, Gretchen Krueger, llya Sutskever

https://openai.com/index/clip/


https://arxiv.org/search/cs?searchtype=author&query=Radford,+A
https://arxiv.org/search/cs?searchtype=author&query=Kim,+J+W
https://arxiv.org/search/cs?searchtype=author&query=Hallacy,+C
https://arxiv.org/search/cs?searchtype=author&query=Ramesh,+A
https://arxiv.org/search/cs?searchtype=author&query=Goh,+G
https://arxiv.org/search/cs?searchtype=author&query=Agarwal,+S
https://arxiv.org/search/cs?searchtype=author&query=Agarwal,+S
https://arxiv.org/search/cs?searchtype=author&query=Sastry,+G
https://arxiv.org/search/cs?searchtype=author&query=Askell,+A
https://arxiv.org/search/cs?searchtype=author&query=Mishkin,+P
https://arxiv.org/search/cs?searchtype=author&query=Clark,+J
https://arxiv.org/search/cs?searchtype=author&query=Clark,+J
https://arxiv.org/search/cs?searchtype=author&query=Krueger,+G
https://arxiv.org/search/cs?searchtype=author&query=Sutskever,+I
https://arxiv.org/search/cs?searchtype=author&query=Sutskever,+I

Problem Statement

« Create robust vision models with — * Involved training both a text encoder
natural language supervision as well as an image encoder

« Go beyond previous limitations on «— * ResNets/models were relatively

models with specific labels limited to ImageNet classifications
« Enable zero-shot transfer to «—— « Utilize a metric ton of image-text data
unseen tasks available without retraining and

dependency on task-specific datasets

Slides by Gabriela Sanchez and Azeez Ishaqui



Approach

« What is CLIP? Contrastive Language-Image
Pre-training

« 400M (image, text) pairs collected from
various internet sources

* Image encoder piece: Modified ResNet or
Vision Transformer (ViT)

 Picked based on performance

* Text encoder: Transformer with 63M
parameters

Slides by Gabriela Sanchez and Azeez Ishaqui
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Approach (Data Collection)

« Raw web pairs aren’t going to be perfect
» Plenty of noise and even mismatches, abstract pairs
 Either way - CLIP gets stronger with weird stuff

CLIP filteri » y
. Hnierin
4 _ - ege v N
+ 500,000 unique internet queries to cover all domains - f N
» Pulled in captions, descriptions, comments any kind . o
of data paired with images — N
* 1 query could produce max most relevant 20k image- - - m —
text pairs, ensuring diversity |

» De-duplication oy
» Image text pairs underwent de-duplication which just
ensures overlap is minimal

» Each sample should ideally be unique

» Also lowers overlap with benchmarking datasets, 2

real evaluation and generalization capabilities Georgia
Slides by Gabriela Sanchez and Azeez Ishaqui Tech.



Approach (Image Encodings)

Convolutional Lo.yer +
« ResNet encoder i } ([ Fully comected Layer |

« CNN architecture, conv layers +
pooling - feature vector

« Linear layer for final embedding, L2
normed for ease of similarity

* ViT encoder

« Patches over image, flattened and e |
projected into embedding (like with
teXt) FeeNde:-'“?:':‘ard
» Positional encodings for those Classification  +—— SFCOH
patches, multi-head self attention +
feedforward neural nets are strong Vision Transformer (ViT) | ([ )

« A classification token is added onto Architecture [ TonsomerBosk |
the patch embeddings sequence, then
normalized too

EEFEEE]

N

Classification Process

Patch Embeddings

| OO O B |
ry >

: fi 'f

[ umarmwl’oﬁﬁmﬁmwhg_l Gr Georgia
Tech.
Slides by Gabriela Sanchez and Azeez Ishaqui _ . - - ]




Approach (Similarity)

« Cosine similarity explanation

Cosin Similarities

Conversions into
probabilities

© Softmax across text
i representations

I

"‘”,;Fg»%a"‘:" 1 | o.08] 002
acatiingdenn | | 0.8 | 0.9 | -0.14
pewaroootd | 93 | 04 | 0.8

: Softmax across image
« representations

Slides by Gabriela Sanchez and Azeez Ishaqui

Probabilities

0.7

0.23

0.25

0.1

0.54

0.21

0.19

0.24

0.54

0.56

0.22

0.21

0.12

0.65

0.23

0.18

0.27

0.55

» Increase the cosine similarity
of correct pairs in a batch

» Reduce the cosine similarity of
n? — n incorrect pairings

Cr

Georgia
Tech.



ResNet or Vision Transformer
CBOW or Text Transformer
minibatch of aligned images

# image_encoder
# text_encoder
# I[n, h, w, c]

# T[n, 1] - minibatch of aligned texts

# W_i[d_i, d_e] - learned proj of image to embed

# W_t[d_t, d_e] - learned proj of text to embed

# t - learned temperature parameter

# extract feature representations of each modality
I_f = image_encoder(I) #[n, d_i]

T_f = text_encoder(T) #[n, d_t]

# joint multimodal embedding [n, d_e]
I_e = 12_normalize(np.dot(I_f, W_i), axis=1)
T_e = 12_normalize(np.dot(T_f, W_t), axis=1)

# scaled pairwise cosine similarities [n, n]
logits = np.dot(I_e, T_e.T) * np.exp(t)

# symmetric loss function

labels = np.arange(n)

loss_i = cross_entropy_loss(logits, labels, axis=0)
loss_t = cross_entropy_loss(logits, labels, axis=1)
loss = (loss_i + loss_t)/2



Experiments and Results (Linear Probe)

. . . . e Stanford .
» Linear probe is a simple classifier (log Countrys11 A
. Food101 +22.5
reg) added to pre-trained features Kinetics700
some labeled data SUN397

UCF101
+ Beat logistic regression on ResNet50 HatefulMemes B+
features on 16/27 datasets — multimodal CIFAR100 3.0
training power FER2013 [§+2.8
. g . Caltech101 j§+2.0
+ Significance? ROBUST, no task-specific JmageNet 1.9
data or fine-tuning needed PascalVOC2007 Ep&?
. . -3. irasna
» Particularly good at general object E&%LD .
recognition Food101, StandfordCars ;ﬁ55|5£.5‘é’a
. . . F 102
» Specific context-based understanding like DD
EuroSAT and Satellite Imagery give CLIP cLEVRCounts
PatchCamelyon
more trouble patchCamelyo
EurnSIAT

-40 -30 -20 -10 O 10 20 30 40
A Score (%)
Zero-Shot CLIP vs. Linear Probe on ResNet50

Georgia

Slides by Gabriela Sanchez and Azeez Ishaqui Tech.



Experiments and Results (Few-Shot)

« Few-shot learning is training on a
couple of examples per class

« Qutperforms 16-shot classifiers using
features from other models

« Embeddings learned by CLIP capture a
plenty of transferable knowledge and can
generalize to out of domain concepts

Slides by Gabriela Sanchez and Azeez Ishaqui
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* CLIP |
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Experiments and Results (Scaling)

« Scaling:
* ViT's scale well with compute + data
» ResNets... not so much

 Learned representations that are not just
specific to one type of data

* Largest CLIP model (ViT-L/14@336px)
outperforms existing models by a
significant margin

« 2.6% average improvement

« CLIP benefits from larger models but

strong architectures too which better
capture complex relationships

Slides by Gabriela Sanchez and Azeez Ishaqui
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Strengths, Weaknesses, Relationships (including limitations)

_ « Cons:
* Pros: . .
: _ _ » Not SOTA on all tasks Satellite Imaging,
* Pre-trained robust zero-shot learning with (EuroSAT, RESISC45) etc

encoder-backed supervision

* 1000 ec ute to reach SOTA?!
- Adaptable to distribution shifts X moreé computetor

« “Prompt engineering” effects, like adding

* Scales well with compute "child" to categories list reduced
« Many tasks learned and classifying misclassification of young people into
classes without explicit supervision incorrect categories from 32.3% to 8.7%

« Societal issues — surveillance/privacy
« Data Overlap (3.2% testing dataset avg)

Gr Georgia
Tech.
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