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How would you describe this image?

6

Source: Instagram

Introduction Paper 1: OWL-ViT Paper 2: LSeg Paper 3: DetCLIP-v3

https://www.instagram.com/p/DJPHgeKs11A/


Flamingo
few-shot 

multimodal LLM 

BLIP-3
Stronger LLM

BLIP-2
Q-Former, frozen 
image encoders 

with LLMs

VLM Timeline: What have we seen so far?

VilBERT
early two-stream 

fusion model

2019

7

VLM Backbones:
Classification

2020 2021 2022 2023 2024

ViT
flat global 

self-attention 
for images

Swin T
hierarchical 
Transformer
With shifter 

windows

CLIP
contrastive image–
text embeddings at 

scale

Representation & Alignment

BLIP-1
unifying pre-
training for 

captioning + 
retrieval + VQA

Generative Multimodal: Create Captions

Introduction Paper 1: OWL-ViT Paper 2: LSeg Paper 3: DetCLIP-v3



OWL-ViT
open-vocab 

segmentation

LSeg
pixel-text contrastive 

segmentation

Flamingo
BLIP-3

BLIP-2

VLM Timeline: What will we cover today?

VilBERT
2019

8

VLM Backbones

2020 2021 2022 2023 2024

ViT Swin T

CLIP
Representation & Alignment

BLIP-1

Generative Multimodal

OWL-ViT v2
scaled through self-

training

DetCLIP-v3
generative open-
vocab detection

Language-Driven Detection and Segmentation

Introduction Paper 1: OWL-ViT Paper 2: LSeg Paper 3: DetCLIP-v3



Computer Vision Tasks

Source: UMich CV Lecture Slides
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LSeg

OWL-ViT

DetCLIP-v3

Introduction Paper 1: OWL-ViT Paper 2: LSeg Paper 3: DetCLIP-v3

https://web.eecs.umich.edu/%7Ejustincj/slides/eecs498/WI2022/598_WI2022_lecture15.pdf


Metrics: IoU and AP50 
(Average Precision at 50% Intersection over Union)

Source: UMich CV Lecture Slides
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IoU: Intersection over Union AP: Average Precision

Introduction Paper 1: OWL-ViT Paper 2: LSeg Paper 3: DetCLIP-v3

https://web.eecs.umich.edu/%7Ejustincj/slides/eecs498/WI2022/598_WI2022_lecture15.pdf


OWL-ViT
Simple Open-Vocabulary Object Detection 
with Vision Transformers

11
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What objects do you see?

12

Source: Instagram

Paper 2: LSeg Paper 3: DetCLIP-v3Paper 1: OWL-ViTIntroduction

https://www.instagram.com/p/DJPHgeKs11A/


What objects do you see?

13

Source: Instagram

object 1

object 2

object 3

Paper 2: LSeg Paper 3: DetCLIP-v3Paper 1: OWL-ViTIntroduction

https://www.instagram.com/p/DJPHgeKs11A/


What objects do you see? Now you can only choose from one of the COCO* 
dataset labels

14

Source: Instagram

object 1

object 2

object 3

Sample COCO labels

*COCO - Common Objects in Context [link]

Paper 2: LSeg Paper 3: DetCLIP-v3Paper 1: OWL-ViTIntroduction

https://www.instagram.com/p/DJPHgeKs11A/
https://cocodataset.org/#home


Problem Statement: Object Detection in the Real World

15

Paper 2: LSeg Paper 3: DetCLIP-v3Paper 1: OWL-ViTIntroduction

Closed-Vocabulary Detection Problem:
● Models (e.g., COCO, LVIS) are trained on a 

fixed set of categories (80, 1,200, etc.)
● Out-of-vocabulary objects are either ignored or 

misclassified
● Scaling to cover “every object in the world” with 

manual labels is impossible

Need: An object detector that:
● Works with natural language labels (no fixed 

class list)
● Generalizes to unseen categories without 

retraining
● Retains competitive performance on known

categories

mug

“toaster”

“saucer”



Proposed Solution: OWL-ViT: 
Vision Transformer for 
Open-World Localization

16

Paper 2: LSeg Paper 3: DetCLIP-v3Paper 1: OWL-ViTIntroduction

Contributions
● Open-Vocabulary Detection: detects objects 

described in text, not limited to training labels
● Zero-Shot Generalization: finds novel 

categories without retraining (e.g., “espresso 
machine”)

● Simplicity + Scaling: large-scale pre-training 
+ ViT + end-to-end fine-tuning outperforms 
more complex architectures



Approach: Two Stages: Large-Scale Pre-Training + Detection Fine-Tuning

17

Stage 1: Contrastively pre-train image and text 
encoders on large-scale image-text data

● Vision: 
○ Model: ViT: [B]ase, [L]arge, [H]uge / 16-32 

(patch size); R50+H – ResNet50 + ViT-
H[uge]

● Text: Transformer with 12 layers & 8 heads
● Data: 3.6 billion image-text pairs; batch size 256
● Both Text and Image encoders are trained from 

scratch

Paper 2: LSeg Paper 3: DetCLIP-v3Paper 1: OWL-ViTIntroduction
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Stage 2: Add Detection Heads and fine-tune on medium-sized detection 
data

● Text: Text encoder from CLIP is retained; At inference, user 
supplies arbitrary text labels (“espresso machine”) → “query 
embedding”

● Vision: 
○ Remove the token pooling + projection layer
○ Linearly project each output token representation to 

obtain per-object image embeddings for classification 
○ Max number of predicted objects = number of tokens 

(576+)
○ Box coordinates come from a separate MLP head

● Data: Medium-scale detection datasets (e.g., LVis, COCO, 
Objects365)

● Text encoder is frozen; we’re only retraining the ViT

Paper 2: LSeg Paper 3: DetCLIP-v3Paper 1: OWL-ViTIntroduction

Approach: Two Stages: Large-Scale Pre-Training + Detection Fine-Tuning



Data: LVIS – Test-bed for RARE (“unseen”) categories

19

Paper 2: LSeg Paper 3: DetCLIP-v3Paper 1: OWL-ViTIntroduction

LVIS: A Dataset for Large Vocabulary Instance Segmentation [arxiv]

https://arxiv.org/pdf/1908.03195


RESULTS: Open-Vocab Detection Performance
Highly competitive results for zero-shot performance (on “unseen” classes)
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Training: LVIS base (common categories)
Testing: 
● APLVIS – Precision on ALL categories
● APrare – Rare (-> unseen categories) – basically, zero-shot inference

See this Appendix slide for more info on specific datasets

Paper 2: LSeg Paper 3: DetCLIP-v3Paper 1: OWL-ViTIntroduction



Idea: Use image embeddings (instead of text) to “query” the input image and find most relevant objects
21

RESULTS: Image-Conditioned Detection Performance
OWL-ViT strongly outperforms the best task-specific models by a 72% margin

query:

Paper 2: LSeg Paper 3: DetCLIP-v3Paper 1: OWL-ViTIntroduction



Discussion: Loss Functions for Open-Vocabulary Detection

Paper 2: LSeg Paper 3: DetCLIP-v3Paper 1: OWL-ViTIntroduction

22

● Long-tailed datasets (e.g., LVIS) are 

federated, not every object is 

annotated exhaustively

● Objects can have multiple valid 

labels (e.g., “cup” and “mug”)

● Softmax cross-entropy (pick one 

label) will penalize reasonable 

predictions

Challenge OWL-ViT Adaptation Discussion

● Replace softmax with sigmoid 

focal loss

● Each class scored independently → 

allows multiple labels per object

● Focal term helps with imbalance 

between frequent vs. rare classes

● Does this change make evaluation 

fairer or just easier for the model?

● How do we decide what counts as 

a “correct” label in open vocab? 

(cup vs. mug)

● Should we trust model predictions 

that go beyond what the dataset 

annotates?



v1 Limitation: Detection phase has very little data compared 

to the pre-training phase

v2 Solution:

● OWLv2 uses OWL-ViT to automatically generate 

pseudo-labels (bounding boxes + class labels) on vast 

web-scraped image–text data; use for noisy supervision

● Go from a few hundred thousand detection examples 

to billions

Results:

● Substantial Gains in Rare-Category Detection:

○ APrare jumps from 31.2% to ~44.6%

23

OWLv2: Improving OWL performance by scaling Self-Training

Scaling Open-Vocabulary Object Detection [NeurIPS 
‘23]

Paper 2: LSeg Paper 3: DetCLIP-v3Paper 1: OWL-ViTIntroduction

https://proceedings.neurips.cc/paper_files/paper/2023/file/e6d58fc68c0f3c36ae6e0e64478a69c0-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/e6d58fc68c0f3c36ae6e0e64478a69c0-Paper-Conference.pdf


Strengths Weaknesses

● Open-Vocabulary Detection 
(Text & Image Queries)

● Simple, Modular, and Efficient 
Architecture

● Scales with data and model size

● Limited amount of detection data 
(solved in v2)

● Purely discriminative (no captioning)
(solved in DetCLIP-v3)

● Frozen text encoder limits richness
(solved in DetCLIP-v3)

● Box precision is only moderate
(solved in Grounding DINO)

Summary

24

OWL-ViT’s role: the proof of concept that contrastive pretrained ViTs can be adapted into open-vocab 
detectors with almost no architectural changes.
Where it falls short: it’s not generative (can’t invent labels)

Paper 2: LSeg Paper 3: DetCLIP-v3Paper 1: OWL-ViTIntroduction



LSeg
Language-driven Semantic Segmentation

25
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Problem Statement
● CLIP at pixel-level segmentation
● Allows model to potentially learn more precise object recognition 

26

Paper 3: DetCLIP-v3Introduction Paper 2: LSegPaper 1: OWL-ViT



Problem Statement
● CLIP at pixel-level segmentation
● Allows model to potentially learn more precise object recognition 
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Paper 3: DetCLIP-v3Introduction Paper 2: LSegPaper 1: OWL-ViT



Problem Statement
● CLIP at pixel-level segmentation
● Allows model to potentially learn more precise object recognition 

28

Paper 3: DetCLIP-v3Introduction Paper 2: LSegPaper 1: OWL-ViT



Approach: Architecture 

● Text embeddings per input word
● Image embedding per input pixel (after downsampling)

30

Paper 3: DetCLIP-v3Introduction Paper 2: LSegPaper 1: OWL-ViT



Approach: Contrastive Learning 

● Inner product between text and image embeddings
○ Then Softmax (Over what dimension?)

31

Paper 3: DetCLIP-v3Introduction Paper 2: LSegPaper 1: OWL-ViT



Approach, Contrastive Learning 

● Softmax over pixels with low temperature (t)
○ Why low temperature? 

32

Paper 3: DetCLIP-v3Introduction Paper 2: LSegPaper 1: OWL-ViT



Approach, Spatial Regularization

● Depthwise convolution for regularization
○ Why do regularization at all?

● Then bilinear interpolation to recover original resolution

33

Paper 3: DetCLIP-v3Introduction Paper 2: LSegPaper 1: OWL-ViT



Experiments and Results
Zero-shot performance matches SOTA one-shot

34

Paper 3: DetCLIP-v3Introduction Paper 2: LSegPaper 1: OWL-ViT



Only provides one prediction 
per pixel (could be multiple 
valid ones)

Negative samples 
missing from training

● Higher memory usage compared to bounding box approach
● Granularity Gap:

35

LSeg demonstrates that you can do semantic segmentation without being tied to a fixed class list by 
aligning per-pixel image embeddings directly with language embeddings.

Paper 3: DetCLIP-v3Introduction Paper 2: LSegPaper 1: OWL-ViT

Strengths Weaknesses

● Embedding training allows for hierarchical knowledge 
at test time

● Per pixel contrastive loss = tighter prediction 
boundaries



DetCLIP-v3
Towards Versatile Generative Open-Vocabulary 
Object Detection

36
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DetCLIP-v3: Background & Motivation

● Existing OVD models are limited by 
their reliance on a predefined object 
category list, which hinders their 
usage in practical scenarios.

● In contrast, human cognition 
demonstrates much more versatility. 
For example, humans are able to 
understand objects from different 
granularities, in a hierarchical
manner.

Slide inspired by Lewei Yao
37

Introduction Paper 1: OWL-ViT Paper 3: DetCLIP-v3Paper 2: LSeg



DetCLIP-v3: Overview

Overview

Slide inspired by Lewei Yao

DetCLIPv3 is a high-performing detector that excels not only at open-vocabulary object 
detection, but also generating hierarchical descriptions for detected objects.

38

Introduction Paper 1: OWL-ViT Paper 3: DetCLIP-v3Paper 2: LSeg



Architecture

Model
Architecture

Slide inspired by Lewei Yao

The model is powered by an open-vocabulary object detector, coupled with an 
object captioner for generating hierarchical and descriptive object concepts.

39

Introduction Paper 1: OWL-ViT Paper 3: DetCLIP-v3Paper 2: LSeg



Architecture

Model
Architecture

Slide inspired by Lewei Yao

A dual-path model comprising a visual detector and text encoder
Visual object detector employs a DETR-like architecture
Utilizes text features to select the top-k visual tokens from a pixel encoder based on 
similarity

40

Introduction Paper 1: OWL-ViT Paper 3: DetCLIP-v3Paper 2: LSeg



Architecture

Model
Architecture

Slide inspired by Lewei Yao

A Transformer-based architecture initialized with the weights of QFormer1

2 types of visual queries: image and object-level (provided by the OV detector)
Visual queries interact with features from the pixel encoder via deformable cross-attention

[1] Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi. Blip-2: Bootstrapping language-image pre-
training with frozen image encoders and large language models.

41

Introduction Paper 1: OWL-ViT Paper 3: DetCLIP-v3Paper 2: LSeg



Data

Dataset
Construction

Slide inspired by Lewei Yao
42

To construct a dataset with diverse object-level multi-granular 
descriptions, an auto-annotation pipeline is developed with 4 
steps:

1. Re-captioning image-text pairs with a VLM (InstructBLIP)
2. Entity extraction using GPT-4
3. Fine-tuning the VLM (LLaVA) for large-scale annotation
4. Auto-labeling for bounding boxes

Introduction Paper 1: OWL-ViT Paper 3: DetCLIP-v3Paper 2: LSeg



Training

Training Strategy

Learning to generate diverse object-level descriptions requires significant computational 
resources.

To improve training efficiency, DetCLIPv3 is trained under a ‘pretraining + finetuning’ paradigm 
consisting of 3 training stages:

Training the OV detector with human-annotated datasets (Objects365 + GoldG)1

Pretraining the object captioner (and freeze other parts) using image-text pairs with low 
resolution input2

Holistic finetuning with all datasets on high resolution inputs. In this stage, all parts of the 
network are unfrozen and a filtered subset of high-quality, auto-annotated image-text pairs 
are leveraged for training object-level description generation.

3

Slide inspired by Lewei Yao
43

Introduction Paper 1: OWL-ViT Paper 3: DetCLIP-v3Paper 2: LSeg



Experiments

Table 1. Zero-shot fixed AP on LVIS  minival.

DetCLIPv3 achieves SoTA zero-shot OVD performance on a 1203-class dataset LVIS, surpassing previous 
methods by a large margin.

Slide inspired by Lewei Yao
44

Introduction Paper 1: OWL-ViT Paper 3: DetCLIP-v3Paper 2: LSeg



Experiments

Table 4. Distribution shift performance on COCO-O.

DetCLIPv3 presents robust generalization to domain shifts. 
For example, it achieves SoTA performance on the COCO-O 
dataset.

Slide inspired by Lewei Yao
45

Introduction Paper 1: OWL-ViT Paper 3: DetCLIP-v3Paper 2: LSeg



Visualization (OVD)

Slide inspired by Lewei Yao
46

Introduction Paper 1: OWL-ViT Paper 3: DetCLIP-v3Paper 2: LSeg



Visualization (object captioning)

Slide inspired by Lewei Yao
47

Introduction Paper 1: OWL-ViT Paper 3: DetCLIP-v3Paper 2: LSeg



Summary
48
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Key Takeaways

● Early work like LSeg established the foundation for language-driven semantic segmentation, 

enabling zero-shot generalization to new categories.

● Building on these principles, OWL-ViT presented a robust and scalable recipe for open-

vocabulary object detection.

● DetCLIPv3 marks a significant shift by introducing generative open-vocabulary object 

detection.

● Collectively, these advancements demonstrate a clear progression towards increasingly 

sophisticated and versatile visual understanding.

Synthesizing it all

49
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Questions

1. Closed vs. Open Vocabulary: Are there any advantages of having a fixed, closed label set (like COCO’s 80 

categories)? 

2. Boxes vs Pixels: Is pixel-level segmentation (LSeg) more useful than bounding boxes (OWL-ViT)?

3. Text Encoder Fine-tuning: OWL-ViT froze the text encoder. DetCLIPv3 fine-tuned and even added a caption 

head. Which strategy is safer for generalization, and which risks overfitting?

4. Evaluation Metrics: Current metrics (AP50, AP75, mAP) assume fixed vocabularies. How could we fairly 

measure success in truly open-vocab models?

5. Applications & Safety: In our coffee shop example, would you trust OWL-ViT to detect allergens (e.g., 

“peanut butter jar”)? What about rare but critical safety items (e.g., “fire extinguisher”)?

Discussion Points

50
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Appendix
51
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Datasets [Detailed]

CS8803:VLMs  | Fall 2025

Dense & Structured Annotations
● Visual Genome

~100k images with dense region descriptions, attributes, relationships. Often 
used to link vision with language beyond flat labels (captioning, grounding).

● FSS-1000 (Few-Shot Segmentation 1000)
1,000 categories with only a few annotated examples per category. Tailored 
for few-shot segmentation and open-vocab generalization tests.

Specialized / Custom Datasets
● GoldG

A curated grounding dataset (image–text pairs with region annotations). 
Smaller but high-quality for grounding tasks.

● GranuCap50M
Large-scale caption dataset with granular, multi-level labels (auto-generated). 
Used to train DetCLIPv3 for hierarchical captions

● Custom DetCLIP-v3 Dataset
The authors’ auto-annotated mixture: leverages visual LLMs to refine 
captions, generating rich multi-granular supervision for detection + captioning.

General Object Detection Benchmarks
● COCO (Common Objects in Context)

~118k training images, 80 object categories, 
dense annotations (boxes, masks, captions). 

● LVIS (Large Vocabulary Instance Segmentation)
Extension of COCO with 1,200+ categories, long-
tailed distribution. Perfect for open-vocab 
detection.

● PASCAL VOC
20 categories, ~10k images. Mostly a “legacy” 
benchmark.

● Objects365
~365 categories, 600k images, large-scale 
detection dataset

● OpenImagesV4
Very large-scale (~9M images, 600+ categories), 
weakly and sparsely annotated bounding boxes.

● V3Det
Chinese open-domain detection dataset (~13M 
boxes, ~13k categories)

52



Related Work

CS8803:VLMs  | Fall 2025

Open-Vocab Object Detection

Detects any object described by a text 
vocabulary

The Gap: Requires a predefined list of 
categories to search for

DetCLIPv3: Generates rich, hierarchical 
labels for objects without needing a 
predefined list

Dense Captioning

Generates text descriptions for 
specific regions in an image

The Gap: Can only describe a range of 
visual concepts

DetCLIPv3: Taps into image-text pairs 
to describe a much wider, diverse 
range of concepts

Re-captioning for Better Data

A technique to refine noisy, low-
quality image-text data

The Gap: Helps many visual tasks, but 
OVD potential underexplored

DetCLIPv3: Auto-annotation pipeline 
to train generative object detector

53



Approach
Model Design

CS8803:VLMs  | Fall 2025

(left) OV detector localizes objects by category and proposes regions;
(right) captioner assigns hierarchical labels and produces image-level descriptions.
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Approach
Dataset Construction
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Illustration of quality issues existing in image-text pair data 55



Approach
Multi-stage Training Scheme

CS8803:VLMs  | Fall 2025

Re-captioning with VLLM1

Entity Extraction using GPT-42

Dataset Pipeline

Instruction tuning of VLLM for large-scale 
annotation

3

Training the OV detector1

Pretraining the object captioner2

Pretraining + Finetuning Paradigm

Holistic finetuning3
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Strengths

CS8803:VLMs  | Fall 2025

Weaknesses

Versatile Generative Open-Vocabulary 
Detection

State-of-the-Art Performance

Robustness to Distribution Shifts and High 
Transferability

Efficient and Innovative Architecture & 
Training

Incomplete Evaluation Benchmarks for 
Generative Capabilities

Current Lack of Instruction Control in 
Detection

Complexity and Cost of Data Auto-
Annotation Pipeline

Balancing Performance and Training 
Efficiency

57



Lseg: Experiments and Results

CS8803:VLMs  | Fall 2025

● Zero-shot performance matches SOTA one-shot

58



Open vocabulary tasks

CS8803:VLMs  | Fall 2025

Source: UMich CV Lecture Slides

59

https://web.eecs.umich.edu/%7Ejustincj/slides/eecs498/WI2022/598_WI2022_lecture15.pdf


RESULTS: Open-Vocab Detection Performance
Highly competitive results for zero-shot performance (on “unseen” classes)

Table 1
61

Training: LVIS base (common categories)
Testing: 
● APLVIS – Precision on ALL categories
● APrare – Rare (-> unseen categories) –

basically, zero-shot inference

Training: O365 (Objects365) + VG (Visual 
Genome)

See this Appendix slide for more info on specific datasets

Paper 2: LSeg Paper 3: DetCLIP-v3Paper 1: OWL-ViTIntroduction
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