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Timeline

- (2018 - 2020) Transformer + pretraining

- ImageBERT: Applying BERT-style masked modeling to image-text

- ViLBERT: Two-stream model for vision and language using cross-attention

- (2020 - 2021) Scaling up and contrastive learning

- CLIP: Contrastive learning at scale (400M image-text pairs)

- ALIGN: Similar to CLIP, but with even more (noisy) web data
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Drawbacks of these models

- While these vision-language (V&L) models are on 

the right track, certain shortcomings prevent it from 

being foundational

- Lack of domain and task diversity

- Single domain

- Only 1 unimodal + V&L domain

- All domains but small set of tasks

- Some models (e.g. CLIP) trained on proprietary 

data
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Definition – Domain: combination of modalities 

used (i.e. vision, language, vision-language)



Comparison of V&L models 

- FLAVA covers unimodal, cross-modal, and multi-modal domains across 35 tasks

- 22 vision-only, 8 language-only, 5 V&L
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Architecture - Vision encoder

7

- ViT-B/16 encoder

- Image CLS token



Architecture - Text encoder
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- BERT tokenizer

- Transformer encoder

- Text CLS token



Architecture - Multimodal encoder
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- Transformer model

- Input: Concat multimodal CLS token, image, text hidden states [CLS_M | H_I | H_T]

- Cross-attention between modalities



Architecture
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Q: What do you think about this architecture?

Key takeaway: 1 encoder per domain



Training

Qualitative examples from the multimodal training datasets

Q: Why pretrain the unimodal encoders first?
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1. Unimodal pretraining of image and text encoders

- DINO initialization + masked image modelling, masked language modelling

1. Joint training on all 3 domains

- Global contrastive loss, masked multimodal modelling

- Round-robin sampling between unimodal text, unimodal image, and multimodal objectives

1. Evaluation via finetuning, linear probing, or zero-shot inference



DINO

- Self-supervised learning w/ knowledge 

distillation:

- SSL: Data itself provides the labels for training

- Knowledge distill.: Train student network to 

match distribution of teacher network

- Apply different augmentations for student 

vs. teacher
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DINO

Multi-crop strategy:
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Global 

views:

Local 

views:

Teacher only gets 

global views

Student gets all 

views



DINO
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- “Local-to-global” correspondence

- Each encoder outputs a distribution 

over K dimensions

1. Take softmax:

1. Minimize cross-entropy b/t teacher 

and student distributions: 
Student gets all 

views

Teacher only gets 

global views



DINO

- Features have strong object boundary priors
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DINO 

vs.

DINOv2

vs. 

DINOv3

DINO 



Pretraining objectives

Masking

- Mask subset of the input token sequence and 

then predict using context of non-masked tokens

- Image: Encode image as discrete tokens (dVAE) 

and classify masked tokens

- Text: Tokenize text and classify tokens

- Applicable to both uni- and multi-modal settings
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Discrete variation autoencoders (dVAE)

- Image patches are encoded and mapped to a discrete latent code

- Learnable latent codes form a codebook: e_1, e_1, …, e_K

- During masked pretraining with dVAE, simply need to classify the codebook index 

k ∈ [1, K] of the masked patches
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Q: Why classification vs. reconstruction?



Pretraining objectives

Contrastive learning

- Method for aligning different modalities 
through positive and negative pairs

- Based on user-defined similarity metric 
(typically dot product)

- Sensitive to batch size

- FLAVA uses global contrastive loss: examples 
gathered across all GPUs for loss calculation

- Open-source CLIP: only examples in local GPU 
used in loss calculation
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Pretraining objectives

Image-text matching (ITM)

- Classification to determine whether 

image-text pairs match (yes/no)

19



Multimodal dataset

- Only trains on publicly available datasets

- Significantly smaller than data used by previous models (e.g. CLIP w/ 400M)

- Caveat: Does not take into account unimodal datasets used
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Ablations show overall 

best model includes all 

pretraining objectives

- Contrastive learning

- Unimodal + multimodal 

pretraining

- Initialize unimodal encoders 

with pretrained models



Quantitative results
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UniT: Multimodal Multitask Learning with a Unified 

Transformer

Ronghang Hu Amanpreet Singh

ICCV 2021
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UniT vs FLAVA 

• Let’s start with authors 

• Both UniT and FLAVA are multimodal and multitask.
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What’s the 

difference 

between UniT

and FLAVA?
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What’s the 

difference 

between UniT

and FLAVA?
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What’s the 

difference between 

UniT and FLAVA?
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What’s the 

difference between 

UniT and FLAVA?

Task specific
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What’s the 

difference between 

UniT and FLAVA?

CNN based backbone
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What is the other biggest difference between UniT and 

FLAVA other than model architecture?



Align Before Fuse: Vision and Language

Representation Learning with Momentum Distillation

Junnan Li, Ramprasaath R. Selvaraju, Akhilesh D. Gotmare

Shafiq Joty, Caiming Xiong, Steven C.H. Hoi

NeurIPS 2021
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UniT is an end-to-end multimodal multitask learning framework

ALBEF pretrains the model and fine tune on downstream tasks.



35

What could be the objectives for 

pretraining?
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Contrastive!

AND Mask Language Modeling!

AND Image-Text Matching!
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Data are noisy
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Ablation Study
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Results



Thank you

40


	Slide 1: Early-Fusion and End-to-End Training
	Slide 2: Presenters
	Slide 3: FLAVA:  A Foundational Language and Vision Alignment Model
	Slide 4: Timeline
	Slide 5: Drawbacks of these models
	Slide 6: Comparison of V&L models 
	Slide 7: Architecture - Vision encoder
	Slide 8: Architecture - Text encoder
	Slide 9: Architecture - Multimodal encoder
	Slide 10: Architecture
	Slide 11: Training
	Slide 12: DINO
	Slide 13: DINO
	Slide 14: DINO
	Slide 15: DINO
	Slide 16: Pretraining objectives
	Slide 17: Discrete variation autoencoders (dVAE)
	Slide 18: Pretraining objectives
	Slide 19: Pretraining objectives
	Slide 20: Multimodal dataset
	Slide 21
	Slide 22: Quantitative results
	Slide 23: UniT: Multimodal Multitask Learning with a Unified Transformer
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33: Align Before Fuse: Vision and Language Representation Learning with Momentum Distillation
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40

