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Problem Statement

Problems: 
1. Traditional VLMs: language only describes images, limited interactivity.
2. Lack of vision-language instruction-following data and benchmarks.

Goal: Build a general-purpose visual assistant with instruction-following.

Key Idea: Visual Instruction Tuning (LLaVA-Main).

Open Source!

https://github.com/LLaVA-Annonymous/LLaVA/tree/master
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Problem Statement

Caption-based 

supervision 

(traditional)

A boy rides a red 

bicycle in a field.

Instruction-

following 

supervision (LLaVA)

User: “What color is the 

bicycle?”

Model: “The bicycle is red.”

User: “Write a short story 

about this picture.”

Model: “A young boy speeds 

through the field on his shiny 

red bike, enjoying the sunny 

weather…”
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Related Works

Multimodal Instruction-following 
Agents

Multimodal Instruction-Tuning

• No explicit tuning on vision-
language instruction data

• Image-Text Pair Training: 
Flamingo, BLIP-2

Task-Specific 

E2E models 

(Habitat)

System 

Coordination 

(ViperGPT)

LLaVA: unified

MM assistant
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Instruction-Tuning Data Generation

Problem:
● Most public multimodal data is in 

the form of image-text pairs 
● Lack of multimodal instruction-

following data

Solution: Use text-only GPT-4 for to 
generate instruction-following data 
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COCO

Instruction-Tuning Data Generation
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“Symbolic Representation” 

of images: 

1. Captions

2. Bounding Boxes 

Instruction-Tuning Data Generation
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“Symbolic Representation” 

of images: 

1. Captions 

2. Bounding Boxes 

Instruction-Tuning Data Generation
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Instruction-Tuning Data Generation

1

2

3
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Instruction-Tuning Data Generation

System Prompt

Detailed Description Questions
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Instruction-Tuning Data Generation

LLaVA-Instruct-158K Dataset

Type Length

Conversation 58K

Detailed Description 23K

Complex Reasoning 77K

Total 158K
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Architecture

Vicuna V0

CLIP ViT-L/14

Encoder Visual Features: 

Language Embedding 
Tokens:
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Training - Image to Conversation Tokens

Each Input Image is converted into multi-turn conversation data with 
question-answer pairings

Perform instruction-tuning for sequence of length L, computing probability of 
target answer X_a:
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Training - Stage 1: Pretraining

Dataset: CC3M
Images distilled for coverage: 3.3 million to 
595K image-text pairs

- Noun-Phrases are extracted and 
unique frequencies recorded

- Lowest frequencies with less than 3 
instances are removed
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Training - Stage 2: Fine tune End-to-End

Multimodal Chatbot

158K language-image instruction-
following data

Science QA

Trains predominantly on detailed 
multimodal science lectures 
(X_instruce)

Model selects answer to multiple 
choice questions (X_a)
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Results - Multimodal Chatbot
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Results - Multimodal Chatbot

Unseen Identification

- Elon is able to be identified 
between image contexts

- CLIP encoder may have seen 
Musk beforehand

- Musk does NOT appear in training 
data for either visual feature 
alignment or visual instruction 
tuning

- LLaVA’s Vicuna LM generalizes to 
unseen encoded visual concepts

22



Results - LLM “as a judge”

LLM as a Judge
- A separate text-only GPT-4 is then given the question, the same 

textual visual info, and both answers side-by-side. 
- It evaluates helpfulness, relevance, accuracy, and level of detail 

and assigns an overall score from 1–10
- This is a pairwise comparison between the candidate and the 

reference answer

Question:

How many dogs in 

this image have red 

leashes?

Caption: “4 small dogs in a row 

running directly at view…”

Bounding boxes:

Black Dog:(40, 35, 122, 167), 

Terrier…

Triplet Evaluation:

Image Question Textual Visual Info
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Results - Ablation

LLaVA Bench (COCO)
- Data. 30 COCO-Val-2014 images × 3 question types (Conversation, 

Detailed description, Complex reasoning) = 90 total prompts.
- The ablation shows instruction tuning is crucial ( ≈ +50 pts), and adding 

a bit of detail + complex reasoning data lifts overall ability by ~7 pts
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Results - Quantitative Evaluation

LLaVA-Bench (In the Wild) Results
- Models assessed on 24 images with 60 questions total
- Instruction tuning on LLaVA achieves more significant performance
- Numbers are relative scores (%) with mean ± std over multiple 

inference runs. They also re-run the judge three times on the same 
LLaVA outputs (LLaVA†) to check judge stability—scores barely move, 
indicating consistent judging.
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Results - Quantitative Evaluation

Accuracy % on Science QA
- Tested on NATural,  SOCial, LANguage sciences, with context 

given in text, image, or none at all in grades 1-6 or 7-12
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Discussion Points
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Haotian Liu, Chunyuan Li, Qingyang Wu, Yong Jae Lee
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Some Weaknesses of LLaVA

Question: Is there strawberry-flavored 

yogurt in the fridge?

LLaVA: Yes.

Question: What’s the name of the restaurant?

LLaVA: ???
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LLaVA-1.5: Problem Statement

Original LLaVA: 

- Excelled at conversation-style visual reasoning

- Fell short in traditional visual-QA scenarios

- Like other LMMs developed around this time, it only performed

well on a specific type of task

Goal: Build a stronger general-purpose visual assistant that is 

designed with a larger variety of baselines and robust benchmarks
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LLaVA’s Shortcomings on LMM Benchmarks

Model GQA MME MM-Vet

BLIP-2 41 1293.8 22.4

LLaVA - 809.6 25.5

InstructBLIP 49.5 1212.8 25.6

Qwen-VL-Chat 57.5 1487.5 45.7

} Main comparison in 

original paper

After original 

LLaVA paper
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Improvements on Three Fronts

Fine-tuning datasets:

- Incorporated academic-task-oriented data

- Adjusted prompt formats to prevent

over-rambling

- Included multilingual data

Model Capabilities:

- MLP instead of linear layer

- LLM size scaled up to 13B from 7B

Image Resolution:

- CLIP vision encoder upgraded to highest

resolution (336 x 336)
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New Fine-tuning Datasets

- VQA-v2 and GQA

- General academic tasks (Open ended short 

answer, true/false, etc.)

- Prompt +  “Answer the question using a single 

word or phrase”

- OKVQA

- Academic tasks (multiple choice)

- Prompt + “Answer with the option’s letter from 

the given choices directly”

- OCRVQA

- Images contain text vital to the academic task 

- Region-level VQA (Visual Genome, RefCOCO)

- Requires localization of fine-grained details

- ShareGPT

- Allows for multilingual abilities (Spanish, 

Japanese, Korean, Chinese, etc.)

VQA-v2 Example

GQA Example
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Scaling Beyond the CLIP Limit (336 x 366)

33
→ No need for additional fine-tuning on larger image-text 

pairs



LLaVA-1.5 Results

Model GQA MME MM-Vet

BLIP-2 41 1293.8 22.4

LLaVA - 809.6 25.5

InstructBLIP 49.5 1212.8 25.6

Qwen-VL-Chat 57.5 1487.5 45.7

LLaVA-1.5-13B 63.3 1531.3 36.1

LLaVA-1.5-13B-HD 64.7 1500.1 39.4

High training efficiency 

relative to comparable 

models
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Recap: Weaknesses of LLaVA

Question: Is there strawberry-flavored 

yogurt in the fridge?

LLaVA: Yes.

Question: What’s the name of the restaurant?

LLaVA: ???

35

Who thinks LLaVA-1.5 will do better than LLaVA 

on these examples of weaknesses they 

identified?



Our Experiments with LLaVA-1.5  

Question: Is there strawberry-flavored 

yogurt in the fridge?

LLaVA: Yes.

LLaVA-1.5: Yes.

Still wrong!

Question: What’s the name of the restaurant?

LLaVA: ???

LLaVA-1.5: The name of the 

restaurant is "Sushi Rice."

Wrong! It’s “ICHI-RAN”
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Interesting Ablations

Vicuna-1.5 is strongest 

base LLM

Dropping training data to 50% capacity

maintains 98% of the performance
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Discussion Points

LLaVA One 
Vision

Bo Li, Yuanhan Zhang, Dong Guo, Renrui Zhang,Feng Li, Hao 

Zhang, Kaichen Zhang ,Peiyuan Zhang, Yanwei Li, Ziwei Liu ,Chunyuan Li
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Architecture
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Innovations
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Innovations
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Innovations
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Innovations
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Results
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Emerging Capabilities
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S1: Joint understanding of diagram and chart (Transfer from single-image to multi-

image)

S2: GUI for multi-modal agent (Transfer from single-image and multi-image).

S3: Set-of-mark Prompting (Transfer from single-image task composition).

S4: Image-to-Video Editing Instruction (Transfer from single-image and video).

S5: Video-to-Video Difference (Transfer from multi-image and video)

S6: Multi-camera Video Understanding in Self-driving (Transfer from single-image 

and multi-image to video).

S7: Composed Sub-video Understanding (Transfer from multi-image to video). 

S8: Visual prompting in video (Task transfer from single-image to video).

S9: Visual Referring in Image in Video Understanding.



Emerging Capabilities
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S2: GUI for multi-modal agent 

(Transfer from single-image 

and multi-image).



Emerging Capabilities
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S5: Video-to-Video 

Difference (Transfer 

from multi-image and 

video).



Recap

Timelines from: https://github.com/LLaVA-VL/LLaVA-NeXT

Visual Instruction 

Tuning.

CLIP vision encoder 

+ Vicuna LLM (linear 

connector)

Pioneered the idea 

of a multimodal 

assistant

Improves 

robustness and 

accuracy.

2-layer MLP 

connector, AnyRes 

scaling, academic 

datasets. 

Achieves stronger 

results on standard 

benchmarks, but still 

single-image only.

Unification and 

transfer learning 

across modalities.

Qwen-2 + SigLIP 

backbones, Higher 

AnyRes, larger VIT 

dataset

One model for 

single-image, multi-

image and video.

LLaVA Main LLaVA-1.5 / 1.5-HD LLaVA-OV

Sep 2023 Oct 2023 Aug 2024Jan 2024

LLaVA-Next

Expanded 

capabilities across 

vision tasks.

Boosts in reasoning, 

OCR, and world 

knowledge, higher 

resolutions and 

varied aspect ratios, 

interleaved image–

text inputs and video 

understanding
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Discussion Points

Thank you!
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