InternVL Family

- InternVL (CVPR 2024)
- InternVL3 (2025)

Pauline Legendre

- MSCS grad student
- Interests: Computer Vision, Object Detection, VLM
- International student from France

Outline

- Problem Statement
- Related Works
- Approach
- Experiments & Results
- Limitations, Societal Implications
- Summary of Strengths, Weaknesses, Relationship to Other Papers

Problem Statement

Visual encoders in VLLM much less parameters than LLM (~1B vs ~1000B)

VLLM	Visual Encoder (params)	LLM (params)
BLIP-2 (2023)	ViT-L/14 (~0.4B)	Flan-T5-XXL (11B) or OPT (6.7B)
LLaVA-1.0 (2023)	CLIP ViT-L/14 (0.4B)	LLaMA (13B)
MiniGPT-4 (2023)	CLIP ViT-L/14 (0.4B)	Vicuna-13B (LLaMA 13B base)

Problem Statement

Train visual encoder and language model separately

Visual encoder produces tokens that don't naturally align with LLM

Problem Statement

"Glue Layer": module connecting

Too simple (linear projection)

lose information, poor alignment

Too heavy (transformers)

adds computational overhead

InternVL

Approach

Training Data for stage 1 and 2

dataset	characte	eristics	stag	ge 1	stage 2			
uataset	language	original	cleaned	remain	cleaned	remain		
LAION-en [120]	2.3B		1.94B	84.3%	91M	4.0%		
LAION-COCO [121]		663M	550M	83.0%	550M	83.0%		
COYO [14]	English	747M	535M	71.6%	200M	26.8%		
CC12M [20]	English	12.4M	11.1M	89.5%	11.1M	89.5%		
CC3M [124]		3.0M	2.6M	86.7%	2.6M	86.7%		
SBU [112]		1.0 M	1.0M	100%	1.0M	100%		
Wukong [55]	Chinese	100M	69.4M	69.4%	69.4M	69.4%		
LAION-multi [120]	Multi	2.2B	1.87B	85.0%	100M	4.5%		
Total	Multi	6.03B	4.98B	82.6%	1.03B	17.0%		

Publicly available

Multilingual content

 Combination of datasets and filter out low quality data

Stage 1: constrastive pretraining

- InternViT-6B and LLaMA-7B trained with contrastive loss
- Match image embeddings and textual embeddings
- Align visual and textual feature spaces

Stage 2: Generative pretraining

- InternViT-6B and QLLaMA frozen
- QLLaMA inherits LLaMA-7B weights from stage 1, InternViT-6B inherits weights as well
- Cross-attention to connect vision feature into LLM
- image-text contrastive (ITC) loss
- image-text matching (ITM) loss
- image-grounded text generation (ITG) loss
- Extract powerful visual representations (further alignment with LLM)

QLLaMA (Query LLaMA)

 Bridges gap between vision encoder and LLM (makes visual features into "acceptable" tokens for LLM)

Inherited weights from LLaMA

already "speaks" LLM

Cross-attention

query tokens attend to vision features

Training Data for stage 3

task	#samples	dataset
Captioning	588K	COCO Caption [22], TextCaps [126]
VOA	1.1M	VQAv2 [54], OKVQA [104], A-OKVQA [122],
VQA	1.11V1	IconQA [99], AI2D [71], GQA [64]
		OCR-VQA [107], ChartQA [105], DocVQA [29],
OCR	294K	ST-VQA [12], EST-VQA [150], InfoVQA [106],
		LLaVAR [182]
Grounding	323K	RefCOCO/+/g [103, 170], Toloka [140]
Grounded Cap.	284K	RefCOCO/+/g [103, 170]
Conversation	1.4M	LLaVA-150K [92], SVIT [183], VisDial [36],
Conversation	1.41V1	LRV-Instruction [90], LLaVA-Mix-665K [91]

High quality instruction data

Stage 3: Supervised Fine-Tuning

- InternViT-6B and QLLaMA frozen
- Vicuna-13B: instruction-tuned LLaMA, partially trainable via MLP adapters
- Train with supervised fine-tuning

- (a) contrastive (stage 1): zero-shot classification, retrieval
- (b) generative (stage 2): captioning, retrieval, zero-shot image-text tasks
- (c) vision encoder outputs fed directly into Vicuna-13B
- (d) full system for multimodal dialogue (stage 3): InternVL-Chat

Linear evaluation for image classification

 Significant improvement over previous SOTA

method	#param	IN-1K	IN-ReaL	IN-V2	IN-A	IN-R	IN-Ske	avg.
OpenCLIP-H [67]	0.6B	84.4	88.4	75.5	_	_	_	_
OpenCLIP-G [67]	1.8B	86.2	89.4	77.2	63.8	87.8	66.4	78.5
DINOv2-g [111]	1.1B	86.5	89.6	78.4	75.9	78.8	62.5	78.6
EVA-01-CLIP-g [46]	1.1B	86.5	89.3	77.4	70.5	87.7	63.1	79.1
MAWS-ViT-6.5B [128]	6.5B	87.8	_	_	_	_	_	_
ViT-22B* [37]	21.7B	89.5	90.9	83.2	83.8	87.4	_	_
InternViT-6B (ours)	5.9B	88.2	90.4	79.9	77.5	89.8	69.1	82.5

Semantic segmentation on ADE20K

- Few-shot: fine-tuning backbone with linear head on limited dataset
- InternViT-6B consistently outperforms ViT-22B

method	#param	crop size	1/16	1/8	1/4	1/2	1
ViT-L [137]	0.3B	504 ²	36.1	41.3	45.6	48.4	51.9
ViT-G [173]	1.8B	504^2	42.4	47.0	50.2	52.4	55.6
ViT-22B [37]	21.7B	504^2	44.7	47.2	50.6	52.5	54.9
InternViT-6B (ours)	5.9B	504^2	46.5	50.0	53.3	55.8	57.2

(a) Few-shot semantic segmentation with limited training data. Following ViT-22B [37], we fine-tune the InternViT-6B with a linear classifier.

method	decoder	#param (train/total)	crop size	mIoU
OpenCLIP-G _{frozen} [67]	Linear	0.3M / 1.8B	512^{2}	39.3
ViT-22B _{frozen} [37]	Linear	0.9M / 21.7B	504^{2}	34.6
InternViT-6B _{frozen} (ours)	Linear	0.5M / 5.9B	504^2	47.2
ViT-22B _{frozen} [37]	UperNet	0.8B / 22.5B	504^{2}	52.7
InternViT-6B _{frozen} (ours)	UperNet	0.4B / 6.3B	504^2	54.9
ViT-22B [37]	UperNet	22.5B / 22.5B	504^2	55.3
InternViT-6B (ours)	UperNet	6.3B / 6.3B	504^2	58.9

(b) Semantic segmentation performance in three different settings, from top to bottom: linear probing, head tuning, and full-parameter tuning.

Zero-shot image classification

method	IN-1K	IN-A	IN-R	IN-V2	IN-Sketch	ObjectNet	$\Delta\downarrow$	avg.	method	EN	ZH	JP	AR	IT	avg.
OpenCLIP-H [67]	78.0	59.3	89.3	70.9	66.6	69.7	5.7	72.3	M-CLIP [16]	_	_	_	_	20.2	_
OpenCLIP-g [67]	78.5	60.8	90.2	71.7	67.5	69.2	5.5	73.0	CLIP-Italian [11]	–	_	_	_	22.1	-
OpenAI CLIP-L+ [117]	76.6	77.5	89.0	70.9	61.0	72.0	2.1	74.5	Japanese-CLIP-ViT-B [102]	–	_	54.6	_	_	-
EVA-01-CLIP-g [130]	78.5	73.6	92.5	71.5	67.3	72.3	2.5	76.0	Taiyi-CLIP-ViT-H [176]	_	54.4	_	_	_	-
OpenCLIP-G [67]	80.1	69.3	92.1	73.6	68.9	73.0	3.9	76.2	WuKong-ViT-L-G [55]	_	57.5	_	_	_	-
EVA-01-CLIP-g+ [130]	79.3	74.1	92.5	72.1	68.1	75.3	2.4	76.9	CN-CLIP-ViT-H [162]	_	59.6	_	_	_	-
MAWS-ViT-2B [128]	81.9	_	_	_	_	_	_	_	AltCLIP-ViT-L [26]	74.5	59.6	_	_	_	-
EVA-02-CLIP-E+ [130]	82.0	82.1	94.5	75.7	71.6	79.6	1.1	80.9	EVA-02-CLIP-E+ [130]	82.0	3.6	5.0	0.2	41.2	_
CoCa* [169]	86.3	90.2	96.5	80.7	77.6	82.7	0.6	85.7	OpenCLIP-XLM-R-B [67]	62.3	42.7	37.9	26.5	43.7	42.6
LiT-22B* [37, 174]	85.9	90.1	96.0	80.9	_	87.6	_	_	OpenCLIP-XLM-R-H [67]	77.0	55.7	53.1	37.0	56.8	55.9
InternVL-C (ours)	83.2	83.8	95.5	77.3	73.9	80.6	0.8	82.4	InternVL-C (ours)	83.2	64.5	61.5	44.9	65.7	64.0

⁽a) ImageNet variants [38, 60, 61, 119, 141] and ObjectNet [8].

(b) Multilingual ImageNet-1K [38, 76].

- Leading performance on various ImageNet variants
- Robust multilingual capabilities

Zero-shot image-text retrieval

			Flickr30K (English, 1K test set) [116]						COCO (English, 5K test set) [22]					
method	multi-	l Iı	$mage \rightarrow T$	ext	T	$\operatorname{ext} \to \operatorname{Im}$	age	l Ir	$nage \rightarrow T$	'ext	T-	$ext \rightarrow Ima$	age	ove
method	lingual	R@1	R@5	R@10	R@1	R@5	R@10	R@1	R@5	R@10	R@1	R@5	R@10	avg.
Florence [171]	×	90.9	99.1	_	76.7	93.6	_	64.7	85.9	_	47.2	71.4	_	_
ONE-PEACE [143]	×	90.9	98.8	99.8	77.2	93.5	96.2	64.7	86.0	91.9	48.0	71.5	79.6	83.2
OpenCLIP-H [67]	×	90.8	99.3	99.7	77.8	94.1	96.6	66.0	86.1	91.9	49.5	73.4	81.5	83.9
OpenCLIP-g [67]	×	91.4	99.2	99.6	77.7	94.1	96.9	66.4	86.0	91.8	48.8	73.3	81.5	83.9
OpenCLIP-XLM-R-H [67]	✓	91.8	99.4	99.8	77.8	94.1	96.5	65.9	86.2	92.2	49.3	73.2	81.5	84.0
EVA-01-CLIP-g+ [130]	×	91.6	99.3	99.8	78.9	94.5	96.9	68.2	87.5	92.5	50.3	74.0	82.1	84.6
CoCa [169]	×	92.5	99.5	99.9	80.4	95.7	97.7	66.3	86.2	91.8	51.2	74.2	82.0	84.8
OpenCLIP-G [67]	×	92.9	99.3	99.8	79.5	95.0	97.1	67.3	86.9	92.6	51.4	74.9	83.0	85.0
EVA-02-CLIP-E+ [130]	×	93.9	99.4	99.8	78.8	94.2	96.8	68.8	87.8	92.8	51.1	75.0	82.7	85.1
BLIP-2 [†] [81]	×	97.6	100.0	100.0	89.7	98.1	98.9	_	_	_	_	_	_	_
InternVL-C (ours)	√	94.7	99.6	99.9	81.7	96.0	98.2	70.6	89.0	93.5	54.1	77.3	84.6	86.6
InternVL-G (ours)	✓	95.7	99.7	99.9	85.0	97.0	98.6	74.9	91.3	95.2	58.6	81.3	88.0	88.8
method				K-CN (Chin			_			CN (Chine				avg.
WuKong-ViT-L [55]	×	76.1	94.8	97.5	51.7	78.9	86.3	55.2	81.0	90.6	53.4	80.2	90.1	78.0
R2D2-ViT-L [159]	×	77.6	96.7	98.9	60.9	86.8	92.7	63.3	89.3	95.7	56.4	85.0	93.1	83.0
Taiyi-CLIP-ViT-H [176]	×	–	_	_	_	_	_	–	_	_	60.0	84.0	93.3	_
AltCLIP-ViT-H [26]	✓	88.9	98.5	99.5	74.5	92.0	95.5	_	_	_	_	_	_	_
CN-CLIP-ViT-H [162]	×	81.6	97.5	98.8	71.2	91.4	95.5	63.0	86.6	92.9	69.2	89.9	96.1	86.1
OpenCLIP-XLM-R-H [67]	✓	86.1	97.5	99.2	71.0	90.5	94.9	70.0	91.5	97.0	66.1	90.8	96.0	87.6
InternVL-C (ours)	✓	90.3	98.8	99.7	75.1	92.9	96.4	68.8	92.0	96.7	68.9	91.9	96.5	89.0
InternVL-G (ours)	✓	92.9	99.4	99.8	77.7	94.8	97.3	71.4	93.9	97.7	73.8	94.4	98.1	90.9

- Powerful multilingual image-text retrieval capabilities
- InternVL-G better results InternVL-C (thanks to language middleware QLLaMA)

Multi-Modal Dialogue

	visual	glue	1114	D	DT	CET	train.	imag	ge captio	ning	visua	al questi	on answe	ring	dialo	gue
method	encoder	layer	LLM	Res.	PT	SFT	param	COCO	Flickr	NoCaps	VQA^{v2}	GQA	VizWiz	VQA^{T}	MME	POPE
InstructBLIP [34]	EVA-g	QFormer	Vicuna-7B	224	129M	1.2M	188M	_	82.4	123.1	_	49.2	34.5	50.1	_	
BLIP-2 [81]	EVA-g	QFormer	Vicuna-13B	224	129M	_	188M	_	71.6	103.9	41.0	41.0	19.6	42.5	1293.8	85.3
InstructBLIP [34]	EVA-g	QFormer	Vicuna-13B	224	129M	1.2M	188M	_	82.8	121.9	_	49.5	33.4	50.7	1212.8	78.9
InternVL-Chat (ours)	IViT-6B	QLLaMA	Vicuna-7B	224	1.0B	4.0M	64M	141.4*	89.7	120.5	72.3*	57.7*	44.5	42.1	1298.5	85.2
InternVL-Chat (ours)	IViT-6B	QLLaMA	Vicuna-13B	224	1.0B	4.0M	90M	142.4*	89.9	123.1	71.7*	59.5*	54.0	49.1	1317.2	85.4
Shikra [21]	CLIP-L	Linear	Vicuna-13B	224	600K	5.5M	7B	117.5*	73.9	_	77.4*	_	_	_	_	
IDEFICS-80B [66]	CLIP-H	Cross-Attn	LLaMA-65B	224	1.6B	_	15B	91.8*	53.7	65.0	60.0	45.2	36.0	30.9	_	_
IDEFICS-80B-I [66]	CLIP-H	Cross-Attn	LLaMA-65B	224	353M	6.7M	15B	117.2*	65.3	104.5	37.4	_	26.0	_	_	_
Qwen-VL [5]	CLIP-G	VL-Adapter	Qwen-7B	448	$1.4B^{\dagger}$	$50M^{\dagger}$	9.6B	_	85.8	121.4	78.8*	59.3*	35.2	63.8	_	_
Qwen-VL-Chat [5]	CLIP-G	VL-Adapter	Qwen-7B	448	1.4B [†]	$50M^{\dagger}$	9.6B	_	81.0	120.2	78.2*	57.5*	38.9	61.5	1487.5	_
LLaVA-1.5 [91]	CLIP-L ₃₃₆	MLP	Vicuna-7B	336	558K	665K	7B	_	_	_	78.5*	62.0*	50.0	58.2	1510.7	85.9
LLaVA-1.5 [91]	CLIP-L ₃₃₆	MLP	Vicuna-13B	336	558K	665K	13B	_	_	_	80.0^{*}	63.3*	53.6	61.3	1531.3	85.9
InternVL-Chat (ours)	IViT-6B	MLP	Vicuna-7B	336	558K	665K	7B	_	_	-	79.3*	62.9*	52.5	57.0	1525.1	86.4
InternVL-Chat (ours)	IViT-6B	MLP	Vicuna-13B	336	558K	665K	13B	_	_	-	80.2*	63.9*	54.6	58.7	1546.9	87.1
InternVL-Chat (ours)	IViT-6B	QLLaMA	Vicuna-13B	336	1.0B	4.0M	13B	146.2*	92.2	126.2	81.2*	66.6*	58.5	61.5	1586.4	87.6

- MME 14 subtasks focused on perception and cognition abilities
- POPE evaluates object hallucination

Limitations

- Some feature misalignment
- Relied on noisy web data
- Can only handle limited resolution
- Weaknesses with abstract reasoning tasks

InternVL Family

InternVL2.5 (late 2024):

- Transition between InternVL2 and InternVL3
- Data quality filtering
- Optimize visual token compression

InternVL InternVL2 InternVL2.5 InternVL3

InternVL2 (07/2024):

- Bigger model family (1B 108B)
- Dynamic resolution tiling
- Compression

Limitations:

- Not fully unified
- Still computationally heavy

InternVL3

Background

- InternVL2.5 still has not unified multimodal pretraining
- Reasoning strategies can still be improved

Variable Visual Position Encoding (V2PE)

- position encodings that can vary
- Better understanding of long multimodal without losing spatial coherence

Native Multimodal Pretraining (NMP)

- Interleave multimodal data with large scale textual corpora
- Model learns linguistic and vision-language alignment together, reducing mismatch between modalities

Post-Training

Supervised Fine-Tuning: higher-quality and more diverse data than prior versions

 Mixed Preference Optimization (MPO): preference-based learning (positive vs negative samples) to align model outputs closer to what humans prefer

Test-Time Scaling

- "best-of-N": multiple responses are generated
- Critic model (VisualPRM-8B) picks the best
- Improves reasoning/math domain evaluations

Results on various generic visual-linguistic tasks

Best performance in all those tasks

Multimodal reasoning and mathematical performance

Model	MMMU	MathVista	MathVision	MathVerse	DynaMath	WeMath	LogicVista	Overall
GPT-4o-20241120 [97]	70.7	60.0	31.2	40.6	34.5	45.8	52.8	47.9
Claude-3.7-Sonnet [3]	75.0	66.8	41.9	46.7	39.7	49.3	58.2	53.9
Gemini-2.0-Flash [30]	72.6	70.4	43.6	47.8	42.1	47.4	52.3	53.7
Gemini-2.0-Pro [29]	69.9	71.3	48.1	67.3	43.3	56.5	53.2	58.5
LLaVA-OV-72B [60]	55.7	67.1	25.3	27.2	15.6	32.0	40.9	37.7
QvQ-72B-Preview [115]	70.3	70.3	34.9	48.2	30.7	39.0	58.2	50.2
Qwen2.5-VL-72B [7]	68.2	74.2	39.3	47.3	35.9	49.1	55.7	52.8
InternVL2.5-78B [18]	70.0	72.3	32.2	39.2	19.2	39.8	49.0	46.0
InternVL3-78B	72.2	79.0	43.1	51.0	35.1	46.1	55.9	54.6
w/ VisualPRM-Bo8 [125]	72.2	80.5	40.8	54.2	37.3	52.4	57.9	56.5

• Strong performance on all tested benchmarks

OCR, chart, and document understanding performance

Model Name	AI2D	ChartQA	TextVQA	DocVQA	InfoVQA	OCR	SEED-2	CharXiv	VCR-EN-Easy	Overall
Model Name	(w / wo M)	(test avg)	(val)	(test)	(test)	Bench	Plus	(RO/DO)	(EM / Jaccard)	Overall
GPT-4V [97]	78.2 / 89.4	78.5	78.0	88.4	75.1	645	53.8	37.1 / 79.9	52.0 / 65.4	70.0
GPT-4o-20240513 [97]	84.6 / 94.2	85.7	77.4	92.8	79.2	736	72.0	47.1 / 84.5	91.6 / 96.4	81.6
Claude-3-Opus [3]	70.6 / 88.1	80.8	67.5	89.3	55.6	694	44.2	30.2 / 71.6	62.0 / 77.7	67.3
Claude-3.5-Sonnet [3]	81.2 / 94.7	90.8	74.1	95.2	74.3	788	71.7	60.2 / 84.3	63.9 / 74.7	78.7
Gemini-1.5-Pro [102]	79.1 / 94.4	87.2	78.8	93.1	81.0	754	_	43.3 / 72.0	62.7 / 77.7	_
LLaVA-OneVision-72B [60]	85.6 / -	83.7	80.5	91.3	74.9	741	_	_	_	_
NVLM-D-72B [28]	85.2 / 94.2	86.0	82.1	92.6	_	853	_	_	_	_
Molmo-72B [31]	-/96.3	87.3	83.1	93.5	81.9	_	_	_	_	_
Qwen2-VL-72B [121]	88.1 / -	88.3	85.5	96.5	84.5	877	_	_	91.3 / 94.6	_
Qwen2.5-VL-72B [7]	88.7 / –	89.5	83.5	96.4	87.3	885	73.0	49.7 / 87.4	_	_
InternVL2-Llama3-76B [19]	87.6 / 94.8	88.4	84.4	94.1	82.0	839	69.7	38.9 / 75.2	83.2 / 91.3	81.1
InternVL2.5-78B [18]	89.1 / 95.7	88.3	83.4	95.1	84.1	854	71.3	42.4 / 82.3	95.7 / 94.5	83.9
InternVL3-78B	89.7 / 96.0	89.7	84.3	95.4	86.5	906	71.9	46.0 / 85.1	96.0 / 98.6	85.8

- "w/ VisualPRM-Bo8": the model is evaluated with Best-of-8 settings
- Competitive performance

Multi-image and real-world understanding performance

Model Name	BLINK	Mantis	MMIII	Muir	MMT	MIRB	Overall	RealWorld	MME-RW	WildVision	R-Bench	Overell
Model Name	(val)	Eval	MMIU	Bench	(val)	(avg)	Overan	QA	(EN)	(win rate)	(dis)	Overall
GPT-4V [97]	54.6	62.7	_	62.3	64.3	53.1	_	61.4	_	71.8	65.6	_
GPT-40-20240513 [97]	68.0	_	55.7	68.0	65.4	_	_	75.4	45.2	80.6	77.7	69.7
Claude-3.5-Sonnet [3]	_	_	53.4	_	_	_	_	60.1	51.6	_	_	_
Gemini-1.5-Pro [102]	_	_	53.4	_	64.5	_	_	67.5	38.2	_	_	_
LLaVA-OneVision-72B [60]	55.4	77.6	_	54.8	_	_	_	71.9	_	_	_	_
Qwen2-VL-72B [121]	_	_	_	_	71.8	_	_	77.8	_	_	_	_
Qwen2.5-VL-72B [6]	64.4	_	_	70.7	_	_	_	75.7	63.2	_	_	_
InternVL2-Llama3-76B [19]	56.8	73.7	44.2	51.2	67.4	58.2	58.6	72.2	63.0	65.8	74.1	68.8
InternVL2.5-78B [18]	63.8	77.0	55.8	63.5	70.8	61.1	65.3	78.7	62.9	71.4	77.2	72.6
InternVL3-78B	66.3	79.3	60.4	64.5	73.2	64.3	68.0	78.0	65.4	73.6	77.4	73.6

- Multi-image: competitive results approximating GPT-4o
- Real-world comprehension:

Performance of various MLLMs

OpenCompass multimodal academic leaderboard: evaluates models across many tasks (math, OCR, reasoning, VQA, chart understanding...)

Limitations

Huge compute cost

Substantial memory cost

Latency in inference ("best of N")

InternVL3.5 (2025)

- Further results in reasoning abilities
- Better inference efficiency

