
Machine Learning Applications

CS 4644-DL / 7643-A
ZSOLT KIRA

Topics:

• Linear Classification, Loss functions

• Gradient Descent

Administrivia

• Assignment 1 out!
• Due Feb 4th 11:59pm

• Start early, start early, start early!

• Start looking for teams:
https://piazza.com/class/mk600jc9ifi304/post/5

• Declare them at project proposal due 02/14

• Piazza: Please make sure to actively check and participate!

• Office hours schedule on webpage:
https://faculty.cc.gatech.edu/~zk15/teaching/AY2026_cs7643_spring/index.html

https://piazza.com/class/mk600jc9ifi304/post/5
https://piazza.com/class/mk600jc9ifi304/post/5
https://piazza.com/class/mk600jc9ifi304/post/5
https://piazza.com/class/mk600jc9ifi304/post/5
https://piazza.com/class/mk600jc9ifi304/post/5
https://piazza.com/class/mk600jc9ifi304/post/5
https://piazza.com/class/mk600jc9ifi304/post/5
https://piazza.com/class/mk600jc9ifi304/post/5
https://faculty.cc.gatech.edu/~zk15/teaching/AY2025_cs7643_spring/index.html
https://faculty.cc.gatech.edu/~zk15/teaching/AY2025_cs7643_spring/index.html
https://faculty.cc.gatech.edu/~zk15/teaching/AY2025_cs7643_spring/index.html
https://faculty.cc.gatech.edu/~zk15/teaching/AY2025_cs7643_spring/index.html
https://faculty.cc.gatech.edu/~zk15/teaching/AY2025_cs7643_spring/index.html
https://faculty.cc.gatech.edu/~zk15/teaching/AY2025_cs7643_spring/index.html
https://faculty.cc.gatech.edu/~zk15/teaching/AY2025_cs7643_spring/index.html

⬣ Input (and representation)

⬣ Functional form of the model

⬣ Including parameters

⬣ Performance measure to improve

⬣ Loss or objective function

⬣ Algorithm for finding best parameters

⬣ Optimization algorithm

Components of a Parametric Model

Data: Image

Model
𝒇 𝒙, 𝑾 = 𝑾𝒙 + 𝒃

Car

Class Scores

Coffee

Cup

Bird

Car

Class Scores

Coffee

Cup

Bird

Loss Function

Optimizer

⬣ Input: Continuous number or vector

⬣ Output: A continuous number

⬣ For classification typically a score

⬣ For regression what we want to regress to (house prices,

crime rate, etc.)

⬣ 𝒘 is a vector and weights to optimize to fit target function

Model: Discriminative Parameterized Function

𝒇 𝒙, 𝒘 = 𝒚

Classifier
Input

(vector)
Weights

Output

(scalar or vector)

Deep Learning as Legos

This image is CC0 1.0 public domain

Neural Network

Linear

classifiers

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

http://maxpixel.freegreatpicture.com/Play-Wooden-Blocks-Tower-Kindergarten-Child-Toys-1864718
https://creativecommons.org/publicdomain/zero/1.0/deed.en
https://creativecommons.org/publicdomain/zero/1.0/deed.en

Weights

𝑾

Model

𝒇 𝒙, 𝑾 = 𝑾𝒙 + 𝒃

𝑤11 𝑤12 ⋯ 𝑤1𝑚 𝑏1

𝑤21 𝑤22 ⋯ 𝑤2𝑚 𝑏2
𝑤31 𝑤32 ⋯ 𝑤3𝑚 𝑏3

𝑥1

𝑥2

⋮
𝑥𝑚

1

𝒙

⬣ We can move

the bias term

into the weight

matrix, and a “1”

at the end of the

input

⬣ Results in one

matrix-vector

multiplication!

56 231

24 2

Example

Example with an image with 4 pixels, and 3 classes (cat/dog/ship)

Adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, from CS 231n

0.2 -0.5 0.1 2.0

1.5 1.3 2.1 0.0

0 0.25 0.2 -0.3
Input image

56

231

24

2

Stretch pixels into column

1.1

3.2

-1.2

+

-96.8

437.9

61.95

=

Cat score

Dog score

Ship score

𝑾 𝒃

Linear Classifier: Three Viewpoints

Adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, from CS 231n

Algebraic

Viewpoint

𝒇(𝒙, 𝑾) = 𝑾𝒙

Visual

Viewpoint

One template

per class

Geometric

Viewpoint

Hyperplanes

cutting up space

Performance

Measure for

a Classifier

⬣ Input (and representation)

⬣ Functional form of the model

⬣ Including parameters

⬣ Performance measure to improve

⬣ Loss or objective function

⬣ Algorithm for finding best parameters

⬣ Optimization algorithm

Components of a Parametric Model

Data: Image

Car

Class Scores

Coffee

Cup

Bird

Model
𝒇 𝒙, 𝑾 = 𝑾𝒙 + 𝒃

Features: Histogram
Car

Class Scores

Coffee

Cup

Bird

Loss Function

Optimizer

Classification using Scores

⬣ The output of a classifier can

be considered a score

⬣ For binary classifier, use rule:

⬣ Can be used for many

classes by considering

one class versus all the

rest (one versus all)

⬣ For multi-class classifier can

take the maximum

Car

Class Scores

Coffee

Cup

Bird

Model

𝑓 𝑥, 𝑊 = 𝑊𝑥 + 𝑏

𝐢𝐟 𝒇 𝒙, 𝒘 > = 𝟎
𝐨𝐭𝐡𝐞𝐫𝐰𝐢𝐬𝐞

𝒚 = ቊ
𝟏
𝟎

Performance Measure

We need a performance measure to

optimize

⬣ Penalizes model for being wrong

⬣ Allows us to modify the model to

reduce this penalty

⬣ Known as an objective or loss

function

In machine learning we use empirical

risk minimization

⬣ Reduce the loss over the training

dataset

⬣ We average the loss over the training

data

Equations from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, from CS 231n

Given a dataset of examples:

Where 𝒙𝒊 is image and

 𝒚𝒊 is (integer) label

Loss over the dataset is a sum

of loss over examples:

{ 𝒙𝒊, 𝒚𝒊 }𝒊=𝟏
𝑵

𝑳 =
𝟏

𝑵
෍ 𝑳(𝒇 𝒙𝒊, 𝑾 , 𝒚𝒊)

Performance Measure for Scores

Adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, from CS 231n

Multiclass SVM loss:

Given an example (𝒙𝒊,𝒚𝒊)

where 𝒙𝒊 is the image and

where 𝒚𝒊 is the (integer) label,

and using the shorthand for the

scores vector: 𝒔 = 𝒇(𝒙𝒊, 𝑾)

the SVM loss has the form:

𝑳𝒊 = ෍

𝒋≠𝒚𝒊

ቊ
𝟎
𝒔𝒋

= ෍

𝒋≠𝒚𝒊

𝒎𝒂𝒙(𝟎, 𝒔𝒋 − 𝒔𝒚𝒊
+ 𝟏)

− 𝒔𝒚𝒊
+ 𝟏

𝐢𝐟 𝒔𝒚𝒊
≥ 𝒔𝒋 + 𝟏

𝐨𝐭𝐡𝐞𝐫𝐰𝐢𝐬𝐞

scores for other classes

margin

score
score for correct class

𝒔𝒚𝒊

𝒔𝒋 𝟏

Example: “Hinge Loss”

SVM Loss Example

Adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, from CS 231n

cat

frog

car

3.2

5.1

-1.7

4.9

1.3

2.0 -3.1

2.5

2.2

Suppose: 3 training examples, 3 classes.

With some 𝑾 the scores 𝒇(𝒙,𝑾)=𝑾𝒙 are:

Losses: 2.9

Multiclass SVM loss:

Given an example (𝒙𝒊,𝒚𝒊)

where 𝒙𝒊 is the image and

where 𝒚𝒊 is the (integer) label,

and using the shorthand for the

scores vector: 𝒔 = 𝒇(𝒙𝒊, 𝑾)

the SVM loss has the form:

𝑳𝒊 = ෍
𝒋≠𝒚𝒊

𝒎𝒂𝒙(𝟎, 𝒔𝒋 − 𝒔𝒚𝒊
+ 𝟏)

= max(0, 5.1 - 3.2 + 1)

 +max(0, -1.7 - 3.2 + 1)

= max(0, 2.9) + max(0, -3.9)

= 2.9 + 0

= 2.9

SVM Loss Example

Adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, from CS 231n

cat

frog

car

3.2

5.1

-1.7

4.9

1.3

2.0 -3.1

2.5

2.2

Suppose: 3 training examples, 3 classes.

With some 𝑾 the scores 𝒇(𝒙,𝑾)=𝑾𝒙 are:

Losses: 0.0

Multiclass SVM loss:

Given an example (𝒙𝒊,𝒚𝒊)

where 𝒙𝒊 is the image and

where 𝒚𝒊 is the (integer) label,

and using the shorthand for the

scores vector: 𝒔 = 𝒇(𝒙𝒊, 𝑾)

the SVM loss has the form:

𝑳𝒊 = ෍
𝒋≠𝒚𝒊

𝒎𝒂𝒙(𝟎, 𝒔𝒋 − 𝒔𝒚𝒊
+ 𝟏)

= max(0, 1.3 - 4.9 + 1)

+max(0, 2.0 - 4.9 + 1)

= max(0, -2.6) + max(0, -1.9)

= 0 + 0

= 0

SVM Loss Example

Adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, from CS 231n

cat

frog

car

3.2

5.1

-1.7

4.9

1.3

2.0 -3.1

2.5

2.2

Suppose: 3 training examples, 3 classes.

With some 𝑾 the scores 𝒇(𝒙,𝑾)=𝑾𝒙 are:
Multiclass SVM loss:

𝑳𝒊 = ෍
𝒋≠𝒚𝒊

𝒎𝒂𝒙(𝟎, 𝒔𝒋 − 𝒔𝒚𝒊
+ 𝟏)

Q: What happens to loss if

car image scores change a

bit?

No change for small values

SVM Loss Example

Adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, from CS 231n

cat

frog

car

3.2

5.1

-1.7

4.9

1.3

2.0 -3.1

2.5

2.2

Suppose: 3 training examples, 3 classes.

With some 𝑾 the scores 𝒇(𝒙,𝑾)=𝑾𝒙 are:
Multiclass SVM loss:

𝑳𝒊 = ෍
𝒋≠𝒚𝒊

𝒎𝒂𝒙(𝟎, 𝒔𝒋 − 𝒔𝒚𝒊
+ 𝟏)

Q: What is min/max of loss

value?

[0,inf]

SVM Loss Example

Adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, from CS 231n

cat

frog

car

3.2

5.1

-1.7

4.9

1.3

2.0 -3.1

2.5

2.2

Suppose: 3 training examples, 3 classes.

With some 𝑾 the scores 𝒇(𝒙,𝑾)=𝑾𝒙 are:
Multiclass SVM loss:

𝑳𝒊 = ෍
𝒋≠𝒚𝒊

𝒎𝒂𝒙(𝟎, 𝒔𝒋 − 𝒔𝒚𝒊
+ 𝟏)

Q: At initialization W is

small so all s ≈ 0.

What is the loss?

C-1

SVM Loss Example

Adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, from CS 231n

cat

frog

car

3.2

5.1

-1.7

4.9

1.3

2.0 -3.1

2.5

2.2

Suppose: 3 training examples, 3 classes.

With some 𝑾 the scores 𝒇(𝒙,𝑾)=𝑾𝒙 are:
Multiclass SVM loss:

𝑳𝒊 = ෍
𝒋≠𝒚𝒊

𝒎𝒂𝒙(𝟎, 𝒔𝒋 − 𝒔𝒚𝒊
+ 𝟏)

Q: What if the sum was

over all classes?

(including j = y_i)

No difference

(add constant 1)

SVM Loss Example

Adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, from CS 231n

cat

frog

car

3.2

5.1

-1.7

4.9

1.3

2.0 -3.1

2.5

2.2

Suppose: 3 training examples, 3 classes.

With some 𝑾 the scores 𝒇(𝒙,𝑾)=𝑾𝒙 are:
Multiclass SVM loss:

𝑳𝒊 = ෍
𝒋≠𝒚𝒊

𝒎𝒂𝒙(𝟎, 𝒔𝒋 − 𝒔𝒚𝒊
+ 𝟏)

Q: What if we used mean

instead of sum?

No difference

Scaling by constant

SVM Loss Example

Adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, from CS 231n

cat

frog

car

3.2

5.1

-1.7

4.9

1.3

2.0 -3.1

2.5

2.2

Suppose: 3 training examples, 3 classes.

With some 𝑾 the scores 𝒇(𝒙,𝑾)=𝑾𝒙 are:
Multiclass SVM loss:

Given an example (𝒙𝒊,𝒚𝒊)

where 𝒙𝒊 is the image and

where 𝒚𝒊 is the (integer) label,

and using the shorthand for the

scores vector: 𝒔 = 𝒇(𝒙𝒊, 𝑾)

the SVM loss has the form:

𝑳𝒊 = ෍
𝒋≠𝒚𝒊

𝒎𝒂𝒙(𝟎, 𝒔𝒋 − 𝒔𝒚𝒊
+ 𝟏)

Losses: 12.92.9 0L = (2.9 + 0 + 12.9)/3

 = 5.27

Converting Scores to Probabilities

Several issues with scores:

⬣ Not very interpretable (no

bounded value)

We often want probabilities

⬣ More interpretable

⬣ Can relate to probabilistic

view of machine learning

We use the softmax function to

convert scores to probabilities

Equations from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, from CS 231n

Scores𝒔 = 𝒇(𝒙, 𝑾)

Softmax

Function
𝑷 𝒀 = 𝒌 𝑿 = 𝒙 =

𝒆𝒔𝒌

σ𝒋 𝒆𝒔𝒋

Performance Measure for Probabilities

⬣ If we use the softmax function to

convert scores to probabilities,

the right loss function to use is

cross-entropy

⬣ Can be derived by looking at the

distance between two probability

distributions (output of model and

ground truth)

⬣ Can also be derived from a

maximum likelihood estimation

perspective

Equations from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, from CS 231n

Maximize log-prob of correct class =

 Maximize the log likelihood

= Minimize the negative log likelihood

𝑳𝒊 = −𝐥𝐨𝐠 𝑷(𝒀 = 𝒚𝒊|𝑿 = 𝒙𝒊)

Scores𝒔 = 𝒇(𝒙, 𝑾)

Softmax

Function
𝑷 𝒀 = 𝒌 𝑿 = 𝒙 =

𝒆𝒔𝒌

σ𝒋 𝒆𝒔𝒋

Performance Measure for Probabilities

⬣ If we use the softmax function to convert scores to probabilities, the right

loss function to use is cross-entropy

⬣ Goal: Minimize KL-divergence (distance measure b/w probability

distributions)

Equations from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, from CS 231n

min
𝑤

𝐾𝐿(𝑝∗|| Ƹ𝑝) = ෍

𝑦

𝑝∗ 𝑦 𝑙𝑜𝑔
𝑝∗(𝑦)

Ƹ𝑝(𝑦)

𝑝∗ =

0
0
0
1
0
0
0
0

Ƹ𝑝 =

𝑃(𝑌 = 1|𝑥, 𝑤)
𝑃(𝑌 = 2|𝑥, 𝑤)
𝑃(𝑌 = 3|𝑥, 𝑤)
𝑃(𝑌 = 4|𝑥, 𝑤)
𝑃(𝑌 = 5|𝑥, 𝑤)
𝑃(𝑌 = 6|𝑥, 𝑤)
𝑃(𝑌 = 7|𝑥, 𝑤)
𝑃(𝑌 = 8|𝑥, 𝑤)

=

0.5
0.01
0.01
0.01
0.01
0.01
0.15
0.3

Ground Truth Prediction

= ෍

𝑦

𝑝∗ 𝑦 log(𝑝∗ 𝑦) − ෍

𝑦

𝑝∗ 𝑦 log(Ƹ𝑝(𝑦))

−𝐻(𝑝∗)
(negative entropy, term goes away

because not a function of model, W,

parameters we are minimizing over)

𝐻(𝑝∗, ො𝑝)
(Cross-Entropy)

Since 𝑝∗ is one-hot (0 for non-ground truth classes), all we need to

minimize is (where 𝑖 is ground truth class): min
𝑤

 (−𝑙𝑜𝑔 ො𝑝(𝑦𝑖))

Cross-Entropy Loss Example

Adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, from CS 231n

Softmax Classifier (Multinomial Logistic Regression)
Want to interpret raw classifier scores as probabilities

Softmax

Function

Probabilities

must be >= 0
Probabilities

must sum to 1

𝒔 = 𝒇(𝒙𝒊; 𝑾) 𝑷 𝒀 = 𝒌 𝑿 = 𝒙𝒊 =
𝒆𝒔𝒌

σ𝒋 𝒆𝒔𝒋

𝑳𝒊 = −𝐥𝐨𝐠𝑷(𝒀 = 𝒚𝒊|𝑿 = 𝒙𝒊)

3.2 24.5 0.13cat

frog

car 5.1

-1.7

164.0

0.18

0.87

0.00

exp normalize

Unnormalized

probabilities
ProbabilitiesUnnormalized log-

probabilities / logits

𝑳𝒊 = −𝐥𝐨𝐠(𝟎. 𝟏𝟑)

Q: How is it

possible that non-

GT probabilities

aren’t in loss?

Cross-Entropy Loss Example

Adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, from CS 231n

Softmax Classifier (Multinomial Logistic Regression)
Want to interpret raw classifier scores as probabilities

Softmax

Function

Probabilities

must be >= 0
Probabilities

must sum to 1

𝒔 = 𝒇(𝒙𝒊; 𝑾) 𝑷 𝒀 = 𝒌 𝑿 = 𝒙𝒊 =
𝒆𝒔𝒌

σ𝒋 𝒆𝒔𝒋

𝑳𝒊 = −𝐥𝐨𝐠𝑷(𝒀 = 𝒚𝒊|𝑿 = 𝒙𝒊)

𝑳𝒊 = −𝐥𝐨𝐠(𝟎. 𝟏𝟑)

Q: What is the min/max of

possible loss L_i?

Infimum is 0, max is unbounded (inf)

Cross-Entropy Loss Example

Adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, from CS 231n

Softmax Classifier (Multinomial Logistic Regression)
Want to interpret raw classifier scores as probabilities

Softmax

Function

Probabilities

must be >= 0
Probabilities

must sum to 1

𝒔 = 𝒇(𝒙𝒊; 𝑾) 𝑷 𝒀 = 𝒌 𝑿 = 𝒙𝒊 =
𝒆𝒔𝒌

σ𝒋 𝒆𝒔𝒋

𝑳𝒊 = −𝐥𝐨𝐠𝑷(𝒀 = 𝒚𝒊|𝑿 = 𝒙𝒊)

𝑳𝒊 = −𝐥𝐨𝐠(𝟎. 𝟏𝟑)

Q: At initialization all s will be

approximately equal; what is

the loss?

Log(C), e.g. log(10) ≈ 2

Regularization

Often, we add a regularization term to the loss function

Example regularizations:

⬣ L1/L2 on weights (encourage small values)

L1 Regularization

𝑳𝒊 = |𝒚 − 𝑾𝒙𝒊|
𝟐 + |𝑾|

Gradient

Descent

⬣ Input (and representation)

⬣ Functional form of the model

⬣ Including parameters

⬣ Performance measure to improve

⬣ Loss or objective function

⬣ Algorithm for finding best parameters

⬣ Optimization algorithm

Components of a Parametric Model

Data: Image

Car

Class Scores

Coffee

Cup

Bird

Model
𝒇 𝒙, 𝑾 = 𝑾𝒙 + 𝒃

Features: Histogram
Car

Class Scores

Coffee

Cup

Bird

Loss Function

Optimizer

Optimization

Given a model and loss function, finding the

best set of weights is a search problem

⬣ Find the best combination of weights

that minimizes our loss function

Several classes of methods:

⬣ Random search

⬣ Genetic algorithms (population-based

search)

⬣ Gradient-based optimization

In deep learning, gradient-based methods

are dominant although not the only

approach possible

Loss

𝒘𝟏𝟏 𝒘𝟏𝟐 ⋯ 𝒘𝟏𝒎 𝒃𝟏
𝒘𝟐𝟏 𝒘𝟐𝟐 ⋯ 𝒘𝟐𝒎 𝒃𝟐
𝒘𝟐𝟏 𝒘𝟐𝟐 ⋯ 𝒘𝟑𝒎 𝒃𝟑

Loss Surfaces

As weights change, the loss

changes as well

⬣ This is often somewhat-

smooth locally, so small

changes in weights produce

small changes in the loss

We can therefore think about

iterative algorithms that take

current values of weights and

modify them a bit

Strategy: Follow the Slope!

Derivatives

⬣ We can find the steepest descent direction by

computing the derivative (gradient):

⬣ Steepest descent direction is the negative

gradient

⬣ Intuitively: Measures how the function

changes as the argument a changes by a small

step size

⬣ As step size goes to zero

⬣ In Machine Learning: Want to know how the

loss function changes as weights are varied

⬣ Can consider each parameter separately

by taking partial derivative of loss

function with respect to that parameter

𝒇′ 𝒂 = lim
𝒉→𝟎

𝒇 𝒂 + 𝒉 − 𝒇(𝒂)

𝒉

Image and equation from:

https://en.wikipedia.org/wiki/Derivative#/media/

File:Tangent_animation.gif

∆𝒙

Derivatives in d-dimensions

𝒇′ 𝒂 = lim
𝒉→𝟎

𝒇 𝒂 + 𝒉 − 𝒇(𝒂)

𝒉

Image and equation from:

https://en.wikipedia.org/wiki/Derivative#/media/

File:Tangent_animation.gif

∆𝒙

Gradient Descent

This idea can be turned into an algorithm (gradient descent)

1. Choose a model: 𝒇 𝒙, 𝑾 = Wx

2. Choose loss function: 𝑳𝒊 = (𝒚 − 𝑾𝒙𝒊)𝟐

3. Calculate partial derivative for each parameter:
𝝏𝑳

𝝏𝒘𝒊

4. Update the parameters: 𝒘𝒊 = 𝒘𝒊 −
𝝏𝑳

𝝏𝒘𝒊

Instead: Add learning rate to prevent too big of a step: 𝒘𝒊 = 𝒘𝒊 − 𝜶
𝝏𝑳

𝝏𝒘𝒊

5. Repeat (from Step 3)

Gradient Descent

original W

negative gradient direction
w1

w2

http://demonstrations.wolfram.com/VisualizingTheGradientVector/

http://demonstrations.wolfram.com/VisualizingTheGradientVector/

Gradient Descent
w1

Mini-Batch Gradient Descent

Often, we only compute the gradients across a small subset of

data

⬣ Full Batch Gradient Descent

⬣ Mini-Batch Gradient Descent

⬣ Where M is a subset of data

⬣ We iterate over mini-batches:

⬣ Get mini-batch, compute loss, compute derivatives, and

take a set

𝑳 =
𝟏

𝑵
෍ 𝑳 (𝒇 𝒙𝒊, 𝑾 , 𝒚𝒊)

𝑳 =
𝟏

𝑴
෍ 𝑳 (𝒇 𝒙𝒊, 𝑾 , 𝒚𝒊)

Gradient Descent Properties

Gradient descent is guaranteed to converge under some

conditions

⬣ For example, learning rate has to be appropriately reduced

throughout training

⬣ It will converge to a local minima

⬣ Small changes in weights would not decrease the loss

⬣ It turns out that some of the local minima that it finds in

practice (if trained well) are still pretty good!

Computing Gradients

We know how to compute the

model output and loss

function

Several ways to compute
𝝏𝑳

𝝏𝒘𝒊

⬣ Manual differentiation

⬣ Symbolic differentiation

⬣ Numerical differentiation

⬣ Automatic differentiation

current W:

[0.34,

-1.11,

0.78,

0.12,

0.55,

2.81,

-3.1,

-1.5,

0.33,…]

loss 1.25347

gradient dW:

[?,

?,

?,

?,

?,

?,

?,

?,

?,…]

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

current W:

[0.34,

-1.11,

0.78,

0.12,

0.55,

2.81,

-3.1,

-1.5,

0.33,…]

loss 1.25347

gradient dW:

[?,

?,

?,

?,

?,

?,

?,

?,

?,…]

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

W + h (first dim):

[0.34 + 0.0001,

-1.11,

0.78,

0.12,

0.55,

2.81,

-3.1,

-1.5,

0.33,…]

loss 1.25322

gradient dW:

[-2.5,

?,

?,

?,

?,

?,

?,

?,

?,…]

(1.25322 - 1.25347)/0.0001

= -2.5

current W:

[0.34,

-1.11,

0.78,

0.12,

0.55,

2.81,

-3.1,

-1.5,

0.33,…]

loss 1.25347

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

W + h (first dim):

[0.34 + 0.0001,

-1.11,

0.78,

0.12,

0.55,

2.81,

-3.1,

-1.5,

0.33,…]

loss 1.25322

gradient dW:

[-2.5,

?,

?,

?,

?,

?,

?,

?,

?,…]

current W:

[0.34,

-1.11,

0.78,

0.12,

0.55,

2.81,

-3.1,

-1.5,

0.33,…]

loss 1.25347

W + h (second dim):

[0.34,

-1.11 + 0.0001,

0.78,

0.12,

0.55,

2.81,

-3.1,

-1.5,

0.33,…]

loss 1.25353

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

gradient dW:

[-2.5,

0.6,

?,

?,

?,

?,

?,

?,

?,…]

current W:

[0.34,

-1.11,

0.78,

0.12,

0.55,

2.81,

-3.1,

-1.5,

0.33,…]

loss 1.25347

W + h (second dim):

[0.34,

-1.11 + 0.0001,

0.78,

0.12,

0.55,

2.81,

-3.1,

-1.5,

0.33,…]

loss 1.25353

(1.25353 - 1.25347)/0.0001

= 0.6

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

gradient dW:

[-2.5,

0.6,

?,

?,

?,

?,

?,

?,

?,…]

current W:

[0.34,

-1.11,

0.78,

0.12,

0.55,

2.81,

-3.1,

-1.5,

0.33,…]

loss 1.25347

W + h (third dim):

[0.34,

-1.11,

0.78 + 0.0001,

0.12,

0.55,

2.81,

-3.1,

-1.5,

0.33,…]

loss 1.25347

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

gradient dW:

[-2.5,

0.6,

0,

?,

?,

?,

?,

?,

?,…]

current W:

[0.34,

-1.11,

0.78,

0.12,

0.55,

2.81,

-3.1,

-1.5,

0.33,…]

loss 1.25347

W + h (third dim):

[0.34,

-1.11,

0.78 + 0.0001,

0.12,

0.55,

2.81,

-3.1,

-1.5,

0.33,…]

loss 1.25347

(1.25347 - 1.25347)/0.0001

= 0

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Numerical gradient: slow :(, approximate :(, easy to write :)

Analytic gradient: fast :), exact :), error-prone :(

In practice: Derive analytic gradient, check your

implementation with numerical gradient.

This is called a gradient check.

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Numerical vs Analytic Gradients

Manual Differentiation

For some functions, we can analytically derive the partial derivative

Example:

Function Loss

Update Rule

𝒇 𝒘, 𝒙𝒊 = 𝒘𝑻𝒙𝒊
෍

𝒊=𝟏

𝑵

(𝒚𝒊 − 𝒘𝑻𝒙𝒊)
𝟐

𝒘𝒋 ← 𝒘𝒋 + 𝟐𝜶 ෍

𝒊=𝟏

𝑵

𝜹𝒊𝒙𝒊𝒋

Derivation of Update Rule

Gradient descent tells us

we should update 𝒘 as

follows to minimize 𝐿:

So what’s
𝝏𝑳

𝝏𝒘𝒋
?

…where…

L= σ𝒊=𝟏
𝑵 (𝒚𝒊 − 𝒘𝑻𝒙𝒊)

𝟐

𝒘𝒋 ← 𝒘𝒋 − 𝜶
𝝏𝑳

𝝏𝒘𝒋

𝝏𝑳

𝝏𝒘𝒋
= ෍

𝒊=𝟏

𝑵
𝝏

𝝏𝒘𝒋
(𝒚𝒊 − 𝒘𝑻𝒙𝒊)

𝟐

= ෍

𝒊=𝟏

𝑵

𝟐 𝒚𝒊 − 𝒘𝑻𝒙𝒊

𝝏

𝝏𝒘𝒋
(𝒚𝒊 − 𝒘𝑻𝒙𝒊)

= −𝟐 ෍

𝒊=𝟏

𝑵

𝜹𝒊

𝝏

𝝏𝒘𝒋
𝒘𝑻𝒙𝒊

= −𝟐 ෍

𝒊=𝟏

𝑵

𝜹𝒊

𝝏

𝝏𝒘𝒋
෍

𝒌=𝟏

𝒘𝒌𝒙𝒊𝒌

= −𝟐 ෍

𝒊=𝟏

𝑵

𝜹𝒊𝒙𝒊𝒋

𝜹𝒊 = 𝒚𝒊 − 𝒘𝑻𝒙𝒊

(Assume 𝒘 and 𝐱𝐢 are column vectors, so same as 𝒘 ⋅ 𝒙𝒊)

Dataset: N examples (indexed by 𝑖)

𝝈 𝒙 =
𝟏

𝟏 + 𝒆−𝒙

𝝈′ 𝒙 = 𝝈(𝒙)(𝟏 − 𝝈 𝒙)First, one can derive that:

Adding a Non-Linear Function

If we add a non-linearity (sigmoid), derivation is more complex

𝐟 𝐱 = 𝝈 ෍

𝒌

𝒘𝒌𝒙𝒌

L = ෍

𝒊

𝒚𝒊 − 𝝈 ෍

𝒌

𝒘𝒌𝒙𝒊𝒌

𝟐

𝝏𝑳

𝝏𝒘𝒋
= ෍

𝒊

𝟐 𝒚𝒊 − 𝝈 ෍

𝒌

𝒘𝒌𝒙𝒊𝒌 −
𝝏

𝝏𝒘𝒋
𝝈 ෍

𝒌

𝒘𝒌𝒙𝒊𝒌

= ෍

𝒊

−𝟐 𝒚𝒊 − 𝝈 ෍

𝒌

𝒘𝒌𝒙𝒊𝒌 𝝈′ ෍

𝒌

𝒘𝒌𝒙𝒊𝒌

𝝏

𝝏𝒘𝒋
෍

𝒌

𝒘𝒌𝒙𝒊𝒌

= ෍

𝒊

−𝟐𝜹𝒊𝝈(𝐝𝒊)(𝟏 − 𝝈 𝐝𝒊)𝒙𝒊𝒋

𝜹𝒊 = 𝒚𝒊 − 𝐟(𝒙𝒊) 𝒅𝒊 = ෍ 𝒘𝒌𝒙𝒊𝒌where

The sigmoid perception update rule:

𝒘𝒋 ← 𝒘𝒋 + 𝟐𝜶 ෍

𝒌=𝟏

𝑵

𝜹𝒊𝝈𝒊(𝟏 − 𝝈𝒊)𝒙𝒊𝒋

𝝈𝒊 = 𝝈 ෍

𝒋=𝟏

𝒅

𝒘𝒋𝒙𝒊𝒋

𝜹𝒊 = 𝒚𝒊 − 𝝈𝒊

where

Next time: Compose more complex function, generic algorithm to compute

gradients for all layers

Functions can be made arbitrarily complex (subject to memory and

computational limits), e.g.:

𝒇 𝒙, 𝑾 = 𝝈(𝑾𝟓𝝈(𝑾𝟒𝝈(𝑾𝟑𝝈(𝑾𝟐𝝈 𝑾𝟏𝒙)

We can use any type of differentiable function (layer) we want!

⬣ At the end, add the loss function

Adding Even More Layers

Loss

Function

Summary

⬣ Components of parametric classifiers:

⬣ Input/Output: Image/Label

⬣ Model (function): Linear Classifier + Softmax

⬣ Loss function: Cross-Entropy

⬣ Optimizer: Gradient Descent

⬣ Ways to compute gradients

⬣ Numerical

⬣ Next: Backpropagation, automatic differentiation

	Slide 1: CS 4644-DL / 7643-A Zsolt Kira
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49: Numerical vs Analytic Gradients
	Slide 50
	Slide 51
	Slide 52
	Slide 53

