Topics:
e Linear Classification, Loss functions
 Gradient Descent

CS 4644-DL / 7643-A
ZSOLT KIRA



Assignment 1 out!
* Due Feb 4t 11:59pm
e Start early, start early, start early!

Start looking for teams:
https://piazza.com/class/mk600jc9ifi304/post/5
* Declare them at project proposal due 02/14

Piazza: Please make sure to actively check and participate!

Office hours schedule on webpage:
https://faculty.cc.gatech.edu/~zk15/teaching /AY2026 cs7643 spring/index.html
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Class Scores

Input (and representation)
Functional form of the model ] I

Including parameters Car Coffee Bird

Performance measure to improve Cup
Loss or objective function

Algorithm for finding best parameters
Optimization algorithm

%@

Class Scores

Model |:>
fx,W)=Wx+b

Car Coffee Bird
Cup

Data: Image

Georgla A

Components of a Parametric Model




fx,w) =y

Classifier Output

Input Weights  (scalar or vector)
(vector)

Input: Continuous number or vector
Output: A continuous number
For classification typically a score

For regression what we want to regress to (house prices,
crime rate, etc.)

w is a vector and weights to optimize to fit target function

) Model: Discriminative Parameterized Function Ge‘%&%ﬁ{h
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Neural Network

.

i

Linear
classifiers

This image is CCO 1.0 public domain

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

) Deep Learning as Legos Gograta)

=


http://maxpixel.freegreatpicture.com/Play-Wooden-Blocks-Tower-Kindergarten-Child-Toys-1864718
https://creativecommons.org/publicdomain/zero/1.0/deed.en
https://creativecommons.org/publicdomain/zero/1.0/deed.en

We can move
the bias term
iInto the weight
matrix, and a “1”
at the end of the
iInput

Results in one
matrix-vector
multiplication!

) Weights

Georgia
Tech
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Example with an image with 4 pixels, and 3 classes (cat/dog/ )

Stretch pixels into column

56
0.2 | -05]| 0.1 | 2.0 1.1 -96.8 | Cat score
231
15 | 1.3 | 21 | 0.0 -+| 3.2 | = | 437.9 | Dog score
24
Input image 0 |]025| 0.2 | -0.3 -1.2 61.95 | Ship score
2
W b

Adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, from CS 231n

) Exam ple Ge?l';gciﬂ&
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| per class . cutting up space
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Adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, from CS 231n

Linear Classifier: Three Viewpoints Ge‘%z%ﬁ@



Performance

Measure for
a Classifier

Georgia
groia |



Class Scores

Input (and representation)
Functional form of the model I

Including parameters Car Coffee Bird
. Cup
Performance measure to improve
Loss or objective function

Algorithm for finding best parameters
Optimization algorithm
Class Scores

|j‘> Model |:>
fxW)=W,+b

Data: Image  Features: Histogram < 3 Car Coffee Bird

%@

) Components of a Parametric Model Georg-aﬁ



The output of a classifier can
be considered a score

For binary classifier, use rule: Class Scores
y = 1 iff(x,w)>=0
0 otherwise Model |:>
f,W)=Wx+b

Can be used for many
classes by considering
one class versus all the
rest (one versus all)

Car Coffee Bird
Cup

For multi-class classifier can
take the maximum

) Classification using Scores Gegroia)
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We need a performance measure to

optimize Given a dataset of examples:

{(xs, ¥}

Where x; is image and

Penalizes model for being wrong

Allows us to modify the model to

reduce this penalty
Known as an objective or loss y; is (integer) label

function

In machine learning we use empirical
risk minimization

Loss over the dataset is a sum
of loss over examples:

1
L=2 LG W),y

Reduce the loss over the training
dataset

We average the loss over the training
data

) Performance Measure Gegrgia |
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Multiclass SVM loss:

Given an example (x; y;)
where x; is the image and score for correct class
where y; is the (integer) label,

margin
n I_q g + >
score

and using the shorthand for the f s i )
scores vector: s = f(x;, W) Example: “Hinge Loss
the SVM loss has the form:
Lizz{o 1fsyl.2_s]-+1 Sy,
. Sj— Sy, +1 otherwise L
J#Yi S]' 1
= Z max(0,s; — s, +1) - /

Adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, from CS 231n

Performance Measure for Scores Ge‘%é%ﬁ!&
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Multiclass SVM loss: Suppose: 3 training examples, 3 classes.
Given an example (x; y;) With some W the sores f(x,W)=Wx are:

where x; is the image and -
where y; is the (integer) label, i

and using the shorthand for the
scores vector: s = f(x;, W)

the SVM loss has the form: cat 3_2 1 ] 3 2 2

L; =Zj¢yimax(olsj_syi +D| car 5.1 4.9 2.5

= max(0, 5.1 - 3.2 + 1) frog -1.7 2.0 3.1

+max(0, -1.7 - 3.2 + 1)

= max(0, 2.9) + max(0, -3.9) Losses: 2_9
=29+0
=29 Adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, from CS 231n

=

) SVM Loss Example Gegrala |



Multiclass SVM loss: Suppose: 3 training examples, 3 classes.
Given an example (x; y;) With some W the sores f(x,W)=Wx are:

where x; is the image and -
where y; is the (integer) label,

and using the shorthand for the
scores vector: s = f(x;, W)

the SVM loss has the form: cat 3_2 1 ] 3 2 2

L; =Zj¢yimax(olsj_syi +D| car 5.1 4.9 2.5

= max(0, 1.3 - 4.9 + 1) frog -1.7 2.0 | -3.1

+max(0, 2.0 - 4.9 + 1)

= max(0, -2.6) + max(0, -1.9) Losses: 0.0
=0+0
=0 Adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, from CS 231n

=

) SVM Loss Example Gegrala |



Multiclass SVM loss: Suppose: 3 training examples, 3 classes.
With some W the scores f(x,W)=Wx are:

L; = z max(0,s; — s, + 1)
J#Yi

Q: What happens to loss if
car image scores change a

b

1.3 2.2

bit? cat
No change for small values ar 4.9 25
frog 2.0 -3.1

Adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, from CS 231n

Georgia @

) SVM Loss Example Tech|



Suppose: 3 training examples, 3 classes.

Multiclass SVM loss:
With some W the scores f(x,W)=Wx are:

L;= zjiyi max(0,s; — s, + 1) \’” ‘
Q: What is min/max of loss :
value? S
cat 1.3 2.2
[0,in] car 4.9 2.5
frog 2.0 =31

Adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, from CS 231n

Georgia @
Tech

) SVM Loss Example !



Suppose: 3 training examples, 3 classes.
With some W the scores f(x,W)=Wx are:

f%

Multiclass SVM loss:

L; = z max(0,s; — s, + 1)
J#Yi

Q: At initialization W is
small so all s = 0.

b

1.3 2.2

What is the loss? cat
- car 49 25
frog 20 '3-1

Adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, from CS 231n

Georgia @

) SVM Loss Example Tech|



Multiclass SVM loss: Suppose: 3 training examples, 3 classes.
With some W the scores f(x,W)=Wx are:

L; = z max(0,s; — s, + 1)
J#Yi

Q: What if the sum was
over all classes?

(including j =y_i) cat 3.2 1.3 2.2

No difference car 5.1 4.9 2.5
(aad constant 1) frog -1.7 20 -3.1

Adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, from CS 231n

Georgia @

) SVM Loss Example Tech|



Multiclass SVM loss: Suppose: 3 training examples, 3 classes.
With some W the scores f(x,W)=Wx are:

f%

L; = z max(0,s; — s, + 1)
J#Yi

Q: What if we used mean
instead of sum?

b

1.3 2.2

cat
No difference car 4.9 2.5
Scaling by constant frog 20 -3.1

Adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, from CS 231n

Georgia @

) SVM Loss Example Tech|



Multiclass SVM loss: Suppose: 3 training examples, 3 classes.
Given an example (x; y;) With some W the sores f(x,W)=Wx are:

where x; is the image and Dl
where y; is the (integer) label, ;o

and using the shorthand for the
scores vector: s = f(x;, W)

b

1.3 2.2

the SVM loss has the form: cat
L;, = z]_iyi max(0,s; —s,, + 1) car 4_9 2 5
frog 20 '3.1
L=(29+0+129)3 | . 2g 0 12 9
= 5,27 ' ' '

Adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, from CS 231n

=

) SVM Loss Example Gegrala |



Several issues with scores:

Not very interpretable (no

bounded value) s =f(x,W) Scores

We often want probabilities Sk

Softmax

More interpretable P(Y = k|X =x) =

Z]. e®i Function

Can relate to probabilistic
view of machine learning

We use the softmax function to
convert scores to probabilities

) Converting Scores to Probabilities Gegrata |

=



, s = f(x,W) Scores
If we use the softmax function to

convert scores to probabilities,
the right loss function to use is
cross-entropy

Sk
Softmax

P(Y =k|X = =
( X=x 2je”’  Function

Can be derived by looking at the

distance between two probability
distributions (output of model and
ground truth)

L; = —-log P(Y = y;|X = x;)

Maximize log-prob of correct class =
Maximize the log likelihood
= Minimize the negative log likelihood

Can also be derived from a
maximum likelihood estimation
perspective

) Performance Measure for Probabilities Gegrgia |
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If we use the softmax function to convert scores to probabilities, the right
loss function to use is cross-entropy

Goal: Minimize KL-divergence (distance measure b/w probability

distributions) ‘)
p\y
46)

minKL(p'[Ip) = ) p*(7) log
P(Y =1[x,w)] 051 y

0" .
P(Y = 2|x, X « « A
0 ('=2Pw)l - 10.01 = ZP ) log(p* () —ZP ) log(Bp(»))
0 P(Y =3lx,w)| [o0.01
y y
. 1 ~ _|PY =4[x,w)|_ [0.01 . o
~ o P =1py =5|x,w)| " |0.01 —H{®") H(p*,p)
’ . (negative entropy, term goes away (Cross-Entropy)
0 P(Y = 6[x,w) 0.01 because not a function of model, W,
0 P(Y =7|x,w) 0.15 parameters we are minimizing over)
L0 |P(Y =8|x,w)] L0.31
Ground Truth Prediction Since p* is one-hot (0 for non-ground truth classes), all we need to

minimize is (where i is ground truth class): min (—log p(y;))
w

) Performance Measure for Probabilities Ge‘%gﬁ@
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Softmax Classifier (Multinomial Logistic Regression)
' mm \Want to interpret raw classifier scores as probabilities

Sk

e

s=f(x; W P(Y = k|X = x:) = Softmax
flxs W) (¥ = kX =x) = o | 2o

Probabilities Probabilities

must be >= 0 must sum to 1 L. 0gP(Y = yil i)

cat 3.2 24.5 0.13 — Li=-log(0.13)
car | 5.1 |=*|164.0]—= 0.87 O How is i
frog -17 0.18 0.00 possible that non-

) ) GT probabilities
Unnormalized log- Unnormalized £ loss?
probabilities / logits  probabilities arentin loss:

Adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, from CS 231n

) Cross-Entropy Loss Example Gegrgia |

ech
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Softmax Classifier (Multinomial Logistic Regression)

Want to interpret raw classifier scores as probabilities
Sk

e
s = f(xu W) PY = kIX = x) =55 | ponmax
j

Probabilities Probabilities
must be >=0 must sum to 1

L; = —logP(Y = y;|X = x;)

L; = —log(0.13)
Q: What is the min/max of
possible loss L_i?

Infimum is 0, max is unbounded (inf)

Adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, from CS 231n

) Cross-Entropy Loss Example Gograta)

=



Softmax Classifier (Multinomial Logistic Regression)

Want to interpret raw classifier scores as probabilities
Sk

s=f(xiy; W P(Y = k|X = x:) = Softmax
flxs W) (¥ = kX =x) = o | 2o
Probabilities Probabilities
L; = —logP(Y = y;|X = x;
must be >=0 must sum to 1 L. ogP(¥ = yi Xi)

L; = —log(0.13)
Q: At initialization all s will be
approximately equal; what is
the loss?

Log(C), e.g. log(10) = 2

Adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, from CS 231n

) Cross-Entropy Loss Example Ge%;sggﬁ



Often, we add a regularization term to the loss function

L1 Regularization

L; = |y — Wx;|* + |W|

Example regularizations:

L1/L2 on weights (encourage small values)

) Regularization Gegrata |

=



Gradient

Descent

Georgia
graia |



Input (and representation) Class Scores
Functional form of the model I
Including parameters Car Coffee Bird

. Cup
Performance measure to improve
Loss or objective function

Algorithm for finding best parameters ] %

Optimization algorithm
Class Scores

|j‘> Model |:>
fxW)=W,+b

Data: Image  Features: Histogram < 3 Car Coffee Bird

) Components of a Parametric Model Georg-aﬁ



Given a model and loss function, finding the
best set of weights is a search problem

Find the best combination of weights

that minimizes our loss function
Several classes of methods:

Random search

Genetic algorithms (population-based
search)

Gradient-based optimization

In deep learning, gradient-based methods
are dominant although not the only
approach possible

) Optimization

W11

W21

W21

W12
W22
W22

Loss

Wim
Wam
W3m

b1

b2

b3

Georgia

Tech

J&
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As weights change, the loss
changes as well

This is often somewhat-
smooth locally, so small
changes in weights produce
small changes in the loss

CE

We can therefore think about
iterative algorithms that take
current values of weights and
modify them a bit

) Loss Surfaces Gegroia)

=
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We can find the steepest descent direction by
computing the derivative (gradient):

fla+h)—f(a)
h

Steepest descent direction is the negative
gradient

f'(a) = lim

Intuitively: Measures how the function
changes as the argument a changes by a small
step size

As step size goes to zero

In Machine Learning: Want to know how the Ax

loss function changes as weights are varied

C id h t tel Image and equation from:
an consider each parameier separaiely https://en.wikipedia.org/wiki/Derivative#/media/

by taking partial derivative of loss File:Tangent_animation.gif
function with respect to that parameter ¢

) Derivatives Gegroia)

=




fla+h)—f(a)
h

f'(a) = lim

Ax

Image and equation from:
https://en.wikipedia.org/wiki/Derivative#/media/
File:Tangent _animation.qgif

Derivatives in d-dimensions Gegrgia |

=




This idea can be turned into an algorithm (gradient descent)
Choose a model: f(x, W) = Wx

Choose loss function: L; = (y — Wx;)?

Calculate partial derivative for each parameter: -

aWi

oL

Update the parameters: w; = w; — ——

Instead: Add learning rate to prevent too big of a step: w; = w; — a oL

aWi

Repeat (from Step 3)

) Gradient Descent Gegrala |

=




http://demonstrations.wolfram.com/VisualizingTheGradientVector/

w, A

— original W
>

negative gradient direction

Gradient Descent Gegrgia |


http://demonstrations.wolfram.com/VisualizingTheGradientVector/

Gradient Descent Gegrgia |



Often, we only compute the gradients across a small subset of
data

1
Full Batch Gradient Descent L = NE L (f(xi, W), yi)

1
Mini-Batch Gradient Descent L = MZ: L(f(x;W),y;)
Where M is a subset of data
We iterate over mini-batches:

Get mini-batch, compute loss, compute derivatives, and
take a set

) Mini-Batch Gradient Descent

Georgia

Tec

Al
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Gradient descent is guaranteed to converge under some
conditions

For example, learning rate has to be appropriately reduced
throughout training

It will converge to a local minima
Small changes in weights would not decrease the loss

It turns out that some of the local minima that it finds in
practice (if trained well) are still pretty good!

) Gradient Descent Properties Geqet

J&
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We know how to compute the
model output and loss 4 o R e

fix) = lg = 64x(1 — 1){1 - 22)*(1 — Bz + Br?)? Differentiation 2r)(1 — 8r + 8r7)?

function

dL

I (x):
128x(1 -x)(-B+16x) (1 -2

Several Ways tO compute BB 02 (1-8x+8x°2) + 64 (1
a » -x)(1-2x)"2(1-8x+8

l N N ") -64x{(1-2x)"2({1-8

Symbaolic x+81x"2)"2 - 256x(1 - x)(1 -

or, in closed-form, Differentiation 2x)(1-8x+8x"2)"2

£l of the Closed-form e

Manual differentiation o4 -0 (202 (- D)2

Automatic Numerical

Symbolic differentiation
Numerical differentiation e T Cooo
Automatic differentiation

Computing Gradients Gograta)

=




current W: gradient dW:

[0.34,

-1.11,

0.78,

0.12,

0.55,

2.81,

-3.1,

-1.5,

0.33,...]

loss 1.25347

"9

N N N N N N N )

-
.
.
—_

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



current W: W + h (first dim): gradient dW:
[0.34, [0.34 + 0.0001, [?,
-1.11, -1.11, ?,
0.78, 0.78, ?,
0.12, 0.12, ?,
0.55, 0.55, ?,
2.81, 2.81, ?,
-3.1, -3.1, ?,
-1.5, -1.5, ?,
0.33,...] 0.33,...] ?,...]
loss 1.25347 | loss 1.25322

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



current W:

[0.34,

-1.11,

0.78,

0.12,

0.55,

2.81,

-3.1,

-1.5,

0.33,...]

loss 1.25347

W + h (first dim):

[0.34 + 0.0001,
-1.11,

0.78,

0.12,

0.55,

2.81,

-3.1,

-1.5,

0.33,...]

loss 1.25322

gradient dW:

[-2.5,

?

?

AN

(1.25322

=-2.5

- 1.25347)/0.0001

df(z)

dx

= lim
h —0

flz+h) — f(=)
h

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n




current W: W + h (second dim): gradient dW:
[0.34, [0.34, [-2.5,
-1.11, -1.11 + 0.0001, ?,
0.78, 0.78, ?,
0.12, 0.12, ?,
0.55, 0.55, ?,
2.81, 2.81, ?,
-3.1, -3.1, ?,
-1.5, -1.5, ?,
0.33,...] 0.33,...] ?,...]
loss 1.25347 | loss 1.25353

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



current W: W + h (second dim): gradient dW:
[0.34, [0.34, [-2.5,

-1.11, -1.11 + 0.0001, 0.6,

0.78, 0.78, ?, \

0.12, 0.12, 2.

0.55, 0.55, (1.25353 - 1.25347)/0.0001
2.81, 2.81, =06

-3.1, -3.1, df(z) _ . fl@+h) - f(z)
-1.5, -1.5, e —
0.33,...] 0.33,...] ?,...]

loss 1.25347 | loss 1.25353

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



current W:

[0.34,

-1.11,

0.78,

0.12,

0.55,

2.81,

-3.1,

-1.5,

0.33,...]

loss 1.25347

W + h (third dim):

[0.34,

-1.11,

0.78 + 0.0001,
0.12,

0.55,

2.81,

-3.1,

-1.5,

0.33,...]

loss 1.25347

gradient dW:

o N
oo

NN N ) NI YN O

-
=
[}
e

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



current W:

[0.34,

-1.11,

0.78,

0.12,

0.55,

2.81,

-3.1,

-1.5,

0.33,...]

loss 1.25347

W + h (third dim):

[0.34,

-1.11,

0.78 + 0.0001,
0.12,

0.55,

2.81,

-3.1,

-1.5,

0.33,...]

loss 1.25347

gradient dW:

[-2.5,
0.6,

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n




Numerical vs Analytic Gradients

df(z) _ . flz+h) - f()

dx h —0 h

Numerical gradient: slow :(, approximate :(, easy to write :)
Analytic gradient: fast :), exact :), error-prone :(

In practice: Derive analytic gradient, check your

implementation with numerical gradient.
This is called a gradient check.

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



For some functions, we can analytically derive the partial derivative

Example:

Function ) Loss
Fonx) = wiz, Son-wia
i=1

(Assume w and x; are column vectors, so same as w - x;)

Dataset: N examples (indexed by i)

Update Rule

N
w; < w;+ Zaz 0ixjj
i=1

).

Derivation of Update Rule

N oL d T <2
L= Y1 (yi — wlx)? a_w] = Z a_w] >i—wxy)
i=

1
N
Gradient descent tells us = 2(}’: — wai) FI (yi —wlx))
we should update w as = J
follows to minimize L: N
-2 Z 8; T
oL Z, ,aij X;
Wi« Wj—a— = where o
ow; ;i =yi—wx;
N
aL =-2)>)6 9
So what’'s —? - Z P, £, Vi ik
ow;j i=1 J =1

Manual Differentiation

Georgia
Tech



If we add a non-linearity (sigmoid), derivation is more complex

— 1 1
o(x) = 1+e>
First, one can derive that: o'(x) = a(x)(1 — a(x))
f(X) = 0'( kak) l
2. | J

L = Z yi— O (Z kaik> -6 -4 -2 UO 2 4 6
i k

aL The sigmoid perception update rule:
_=ZZ yi—O'(Zwkx,-k) ——a(Zwkxlk> N

ow; ow;
W] &~ W] + Zaz 5i0'i(1 — O'i)xi]'

]
= Z —2 <)’i -0 (Z kaik>> o' (Z kaik> WZ WiXik k=1 d
- j
‘ ) * where o;=0 Z WjXij
= Z —268;0(d;)(1 — a(dy))x;; j=1

where (Si =Y — f(xl-) di = Z WiXik 6i = yi —0

) Adding a Non-Linear Function Geg;sgg&




Next time: Compose more complex function, generic algorithm to compute
gradients for all layers

Functions can be made arbitrarily complex (subject to memory and

computational limits), e.g.:
f(x, W) =0c(Wsoa(Wso(W30(W,0(W1x))

We can use any type of differentiable function (layer) we want!

At the end, add the loss function

Loss
Function

 Adding Even More Layers



Components of parametric classifiers:
Input/Output: Image/Label
Model (function): Linear Classifier + Softmax
Loss function: Cross-Entropy
Optimizer: Gradient Descent

Ways to compute gradients
Numerical
Next: Backpropagation, automatic differentiation

) Summary Gegrgia |
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