
Machine Learning Applications

CS 4644-DL / 7643-A
ZSOLT KIRA

Topics:

• Gradient Descent

• Neural Networks

Administrivia

• Assignment 1 out!
• Due Feb 4th

• Start now, start now, start now!

• Start now, start now, start now!

• Start now, start now, start now!

• Piazza
• Be active!!!

• Office hours
• Upcoming special topics TBA

• My OH Thursday 2pm ET

• Note: Course will start to get math heavy!

• Matrix calculus for deep learning

https://explained.ai/matrix-calculus/index.html
https://explained.ai/matrix-calculus/index.html
https://explained.ai/matrix-calculus/index.html

⬣ Input (and representation)

⬣ Functional form of the model

⬣ Including parameters

⬣ Performance measure to improve

⬣ Loss or objective function

⬣ Algorithm for finding best parameters

⬣ Optimization algorithm

Components of a Parametric Model

Data: Image

Car

Class Scores

Coffee

Cup

Bird

Model
𝒇 𝒙, 𝑾 = 𝑾𝒙 + 𝒃

Features: Histogram
Car

Class Scores

Coffee

Cup

Bird

Loss Function

Optimizer

Model: Linear + Softmax

Several issues with scores:

⬣ Not very interpretable (no

bounded value)

We often want probabilities

⬣ More interpretable

⬣ Can relate to probabilistic

view of machine learning

We use the softmax function to

convert scores to probabilities

Equations from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, from CS 231n

Scores𝒔 = 𝒇(𝒙, 𝑾)

Softmax

Function
𝑷 𝒀 = 𝒌 𝑿 = 𝒙 =

𝒆𝒔𝒌

σ𝒋 𝒆𝒔𝒋

= 𝑾𝒙

Performance Measure: Cross-Entropy

⬣ If we use the softmax function to

convert scores to probabilities,

the right loss function to use is

cross-entropy

⬣ Can be derived by looking at the

distance between two probability

distributions (output of model and

ground truth)

⬣ Can also be derived from a

maximum likelihood estimation

perspective

Equations from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, from CS 231n

Maximize log-prob of correct class =

 Maximize the log likelihood

= Minimize the negative log likelihood

𝑳𝒊 = −𝐥𝐨𝐠 𝑷(𝒀 = 𝒚𝒊|𝑿 = 𝒙𝒊)

Scores𝒔 = 𝒇(𝒙, 𝑾)

Softmax

Function
𝑷 𝒀 = 𝒌 𝑿 = 𝒙 =

𝒆𝒔𝒌

σ𝒋 𝒆𝒔𝒋

Optimization: Gradient Descent

⬣ We can find the steepest descent direction by

computing the derivative (gradient):

⬣ Steepest descent direction is the negative

gradient

⬣ Intuitively: Measures how the function

changes as the argument a changes by a small

step size

⬣ As step size goes to zero

⬣ In Machine Learning: Want to know how the

loss function changes as weights are varied

⬣ Can consider each parameter separately

by taking partial derivative of loss

function with respect to that parameter

𝒇′ 𝒂 = lim
𝒉→𝟎

𝒇 𝒂 + 𝒉 − 𝒇(𝒂)

𝒉

Image and equation from:

https://en.wikipedia.org/wiki/Derivative#/media/

File:Tangent_animation.gif

∆𝒙

⬣ Input: Vector

⬣ Functional form of the model: Softmax(Wx)

⬣ Performance measure to improve: Cross-Entropy

⬣ Algorithm for finding best parameters: Gradient Descent

⬣ Compute
𝝏𝑳

𝝏𝒘𝒊

⬣ Update Weights 𝒘𝒊 = 𝒘𝒊 − 𝜶
𝝏𝑳

𝝏𝒘𝒊

So far

Computing Gradients

We know how to compute the

model output and loss

function

Several ways to compute
𝝏𝑳

𝝏𝒘𝒊

⬣ Manual differentiation

⬣ Symbolic differentiation

⬣ Numerical differentiation

⬣ Automatic differentiation

current W:

[0.34,

-1.11,

0.78,

0.12,

0.55,

2.81,

-3.1,

-1.5,

0.33,…]

loss 1.25347

gradient dW:

[?,

?,

?,

?,

?,

?,

?,

?,

?,…]

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

current W:

[0.34,

-1.11,

0.78,

0.12,

0.55,

2.81,

-3.1,

-1.5,

0.33,…]

loss 1.25347

gradient dW:

[?,

?,

?,

?,

?,

?,

?,

?,

?,…]

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

W + h (first dim):

[0.34 + 0.0001,

-1.11,

0.78,

0.12,

0.55,

2.81,

-3.1,

-1.5,

0.33,…]

loss 1.25322

gradient dW:

[-2.5,

?,

?,

?,

?,

?,

?,

?,

?,…]

(1.25322 - 1.25347)/0.0001

= -2.5

current W:

[0.34,

-1.11,

0.78,

0.12,

0.55,

2.81,

-3.1,

-1.5,

0.33,…]

loss 1.25347

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

W + h (first dim):

[0.34 + 0.0001,

-1.11,

0.78,

0.12,

0.55,

2.81,

-3.1,

-1.5,

0.33,…]

loss 1.25322

gradient dW:

[-2.5,

?,

?,

?,

?,

?,

?,

?,

?,…]

current W:

[0.34,

-1.11,

0.78,

0.12,

0.55,

2.81,

-3.1,

-1.5,

0.33,…]

loss 1.25347

W + h (second dim):

[0.34,

-1.11 + 0.0001,

0.78,

0.12,

0.55,

2.81,

-3.1,

-1.5,

0.33,…]

loss 1.25353

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

gradient dW:

[-2.5,

0.6,

?,

?,

?,

?,

?,

?,

?,…]

current W:

[0.34,

-1.11,

0.78,

0.12,

0.55,

2.81,

-3.1,

-1.5,

0.33,…]

loss 1.25347

W + h (second dim):

[0.34,

-1.11 + 0.0001,

0.78,

0.12,

0.55,

2.81,

-3.1,

-1.5,

0.33,…]

loss 1.25353

(1.25353 - 1.25347)/0.0001

= 0.6

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

gradient dW:

[-2.5,

0.6,

?,

?,

?,

?,

?,

?,

?,…]

current W:

[0.34,

-1.11,

0.78,

0.12,

0.55,

2.81,

-3.1,

-1.5,

0.33,…]

loss 1.25347

W + h (third dim):

[0.34,

-1.11,

0.78 + 0.0001,

0.12,

0.55,

2.81,

-3.1,

-1.5,

0.33,…]

loss 1.25347

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

gradient dW:

[-2.5,

0.6,

0,

?,

?,

?,

?,

?,

?,…]

current W:

[0.34,

-1.11,

0.78,

0.12,

0.55,

2.81,

-3.1,

-1.5,

0.33,…]

loss 1.25347

W + h (third dim):

[0.34,

-1.11,

0.78 + 0.0001,

0.12,

0.55,

2.81,

-3.1,

-1.5,

0.33,…]

loss 1.25347

(1.25347 - 1.25347)/0.0001

= 0

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Numerical gradient: slow :(, approximate :(, easy to write :)

Analytic gradient: fast :), exact :), error-prone :(

In practice: Derive analytic gradient, check your

implementation with numerical gradient.

This is called a gradient check.

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Numerical vs Analytic Gradients

Manual Differentiation

For some functions, we can analytically derive the partial derivative

Example:

Function Loss

Update Rule

𝒇 𝒘, 𝒙𝒊 = 𝒘𝑻𝒙𝒊
෍

𝒊=𝟏

𝑵

(𝒚𝒊 − 𝒘𝑻𝒙𝒊)
𝟐

𝒘𝒋 ← 𝒘𝒋 + 𝟐𝜶 ෍

𝒊=𝟏

𝑵

𝜹𝒊𝒙𝒊𝒋

Derivation of Update Rule

Gradient descent tells us

we should update 𝒘 as

follows to minimize 𝐿:

So what’s
𝝏𝑳

𝝏𝒘𝒋
?

…where…

L= σ𝒊=𝟏
𝑵 (𝒚𝒊 − 𝒘𝑻𝒙𝒊)

𝟐

𝒘𝒋 ← 𝒘𝒋 − 𝜶
𝝏𝑳

𝝏𝒘𝒋

𝝏𝑳

𝝏𝒘𝒋
= ෍

𝒊=𝟏

𝑵
𝝏

𝝏𝒘𝒋
(𝒚𝒊 − 𝒘𝑻𝒙𝒊)

𝟐

= ෍

𝒊=𝟏

𝑵

𝟐 𝒚𝒊 − 𝒘𝑻𝒙𝒊

𝝏

𝝏𝒘𝒋
(𝒚𝒊 − 𝒘𝑻𝒙𝒊)

= −𝟐 ෍

𝒊=𝟏

𝑵

𝜹𝒊

𝝏

𝝏𝒘𝒋
𝒘𝑻𝒙𝒊

= −𝟐 ෍

𝒊=𝟏

𝑵

𝜹𝒊

𝝏

𝝏𝒘𝒋
෍

𝒌=𝟏

𝒘𝒌𝒙𝒊𝒌

= −𝟐 ෍

𝒊=𝟏

𝑵

𝜹𝒊𝒙𝒊𝒋

𝜹𝒊 = 𝒚𝒊 − 𝒘𝑻𝒙𝒊

(Assume 𝒘 and 𝐱𝐢 are column vectors, so same as 𝒘 ⋅ 𝒙𝒊)

Dataset: N examples (indexed by 𝑖)

𝝈 𝒙 =
𝟏

𝟏 + 𝒆−𝒙

𝝈′ 𝒙 = 𝝈(𝒙)(𝟏 − 𝝈 𝒙)First, one can derive that:

Adding a Non-Linear Function

If we add a non-linearity (sigmoid), derivation is more complex

𝐟 𝐱 = 𝝈 ෍

𝒌

𝒘𝒌𝒙𝒌

L = ෍

𝒊

𝒚𝒊 − 𝝈 ෍

𝒌

𝒘𝒌𝒙𝒊𝒌

𝟐

𝝏𝑳

𝝏𝒘𝒋
= ෍

𝒊

𝟐 𝒚𝒊 − 𝝈 ෍

𝒌

𝒘𝒌𝒙𝒊𝒌 −
𝝏

𝝏𝒘𝒋
𝝈 ෍

𝒌

𝒘𝒌𝒙𝒊𝒌

= ෍

𝒊

−𝟐 𝒚𝒊 − 𝝈 ෍

𝒌

𝒘𝒌𝒙𝒊𝒌 𝝈′ ෍

𝒌

𝒘𝒌𝒙𝒊𝒌

𝝏

𝝏𝒘𝒋
෍

𝒌

𝒘𝒌𝒙𝒊𝒌

= ෍

𝒊

−𝟐𝜹𝒊𝝈(𝐝𝒊)(𝟏 − 𝝈 𝐝𝒊)𝒙𝒊𝒋

𝜹𝒊 = 𝒚𝒊 − 𝐟(𝒙𝒊) 𝒅𝒊 = ෍ 𝒘𝒌𝒙𝒊𝒌where

The sigmoid perception update rule:

𝒘𝒋 ← 𝒘𝒋 + 𝟐𝜶 ෍

𝒌=𝟏

𝑵

𝜹𝒊𝝈𝒊(𝟏 − 𝝈𝒊)𝒙𝒊𝒋

𝝈𝒊 = 𝝈 ෍

𝒋=𝟏

𝒅

𝒘𝒋𝒙𝒊𝒋

𝜹𝒊 = 𝒚𝒊 − 𝝈𝒊

where

Neural

Network

View of a

Linear

Classifier

A simple neural network has similar structure as our linear classifier:

⬣ A neuron takes input (firings) from other neurons (-> input to linear classifier)

⬣ The inputs are summed in a weighted manner (-> weighted sum)

⬣ Learning is through a modification of the weights

⬣ If it receives enough input, it “fires” (threshold or if weighted sum plus bias is high

enough)

Origins of the Term Neural Network

Figures adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Impulses carried toward cell body

Impulses carried away

from cell body

dendrite

cell body

axon

presynaptic

terminal

𝒙𝟎 𝒘𝟎

𝒘𝟎𝒙𝟎

𝒘𝟏𝒙𝟏

𝒘𝟐𝒙𝟐

෍

𝒊

𝒘𝒊𝒙𝒊 + 𝒃

𝒇 ෍

𝒊

𝒘𝒊𝒙𝒊 + 𝒃

𝒇

axon from a neuron
synapse

dendrite

cell body

activation

function

output axon

Adding Non-Linearities

Figures adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Impulses carried toward cell body

Impulses carried away

from cell body

dendrite

cell body

axon

presynaptic

terminal

𝒙𝟎 𝒘𝟎

𝒘𝟎𝒙𝟎

𝒘𝟏𝒙𝟏

𝒘𝟐𝒙𝟐

෍

𝒊

𝒘𝒊𝒙𝒊 + 𝒃

𝒇 ෍

𝒊

𝒘𝒊𝒙𝒊 + 𝒃

𝒇

axon from a neuron
synapse

dendrite

cell body

activation

function

output axon

As we did before, the output of a

neuron can be modulated by a

non-linear function (e.g. sigmoid)

Sigmoid

Activation

Function
𝟏

𝟏 + 𝒆−𝒙

1.0

0.8

0.6

0.4

0.2

0.0
-10 -5 0 5 10

We can have multiple neurons

connected to the same input

Corresponds to a multi-class classifier

⬣ Each output node outputs the score

for a class

⬣ Often called fully connected layers

⬣ Also called a linear projection

layer

Connecting Many Neurons

Figure adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

𝒘𝟏𝟏 𝒘𝟏𝟐 ⋯ 𝒘𝟏𝒎 𝒃𝟏
𝒘𝟐𝟏 𝒘𝟐𝟐 ⋯ 𝒘𝟐𝒎 𝒃𝟐
𝒘𝟐𝟏 𝒘𝟐𝟐 ⋯ 𝒘𝟑𝒎 𝒃𝟑

𝒇 𝒙, 𝑾 = 𝝈(𝑾𝒙 + 𝒃)

input layer

output layer

⬣ Each input/output is a neuron

(node)

⬣ A linear classifier (+ optional non-

linearity) is called a fully

connected layer

⬣ Connections are represented as

edges

⬣ Output of a particular neuron is

referred to as activation

⬣ This will be expanded as we view

computation in a neural network as

a graph

Neural Network Terminology

Figure adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

input layer

output layer

We can stack multiple layers together

⬣ Input to second layer is output of first

layer

Called a 2-layered neural network (input is

not counted)

Because the middle layer is neither input or

output, and we don’t know what their values

represent, we call them hidden layers

⬣ We will see that they end up learning

effective features

This increases the representational power

of the function!

⬣ Two layered networks can represent

any continuous function

Connecting Many Layers

Figure adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

input layer
hidden layer

output layer

The same two-layered neural network

corresponds to adding another

weight matrix

⬣ We will prefer the linear algebra

view, but use some terminology

from neural networks (& biology)

The Linear Algebra View

Figure adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

input layer
hidden layer

output layer

𝒙 𝑾𝟏 𝑾𝟐

=

𝒇 𝒙, 𝑾𝟏, 𝑾𝟐 = 𝝈(𝑾𝟐𝝈 𝑾𝟏𝒙)

A classifier can be broken down into:

⬣ Input

⬣ A function of the input

⬣ A loss function

It’s all just one function that can be decomposed into building blocks

What Does a Linear Classifier Consist of?

𝒘 ⋅ 𝒙
𝟏

𝟏 + 𝒆−𝒖
−𝐥𝐨𝐠 𝒑

𝒖 𝒑 𝑳
𝑿

Input Model Loss Function

Large (deep) networks can be built by

adding more and more layers

Three-layered neural networks can

represent any function

⬣ The number of nodes could grow

unreasonably (exponential or worse)

with respect to the complexity of the

function

We will show them without edges:

Adding More Layers!

Figure adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

input
layer hidden

layer 1
hidden
layer 2

output
layer

input

layer
hidden

layer 1
hidden

layer 2

output

layer

Computation

Graphs

Functions can be made arbitrarily complex (subject to memory and

computational limits), e.g.:

𝒇 𝒙, 𝑾 = 𝝈(𝑾𝟓𝝈(𝑾𝟒𝝈(𝑾𝟑𝝈(𝑾𝟐𝝈 𝑾𝟏𝒙)

We can use any type of differentiable function (layer) we want!

⬣ At the end, add the loss function

Composition can have some structure

Adding Even More Layers

Loss

Function

The world is compositional!

We want our model to reflect this

Empirical and theoretical

evidence that it makes learning

complex functions easier

Note that prior state of art

engineered features often had

this compositionality as well

Compositionality

⬣ Pixels -> edges -> object parts -> objects

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

pixels edge texton motif part object

sample spectral

band
formant motif phone word

character NP/VP/.. clause sentence storyword

VISION

SPEECH

NLP

⬣ We are learning complex models with significant amount of

parameters (millions or billions)

⬣ How do we compute the gradients of the loss (at the end) with

respect to internal parameters?

⬣ Intuitively, want to understand how small changes in weight deep

inside are propagated to affect the loss function at the end

Computing Gradients in Complex Function

Loss

Function

𝝏𝑳

𝝏𝒘𝒊
?

To develop a general algorithm for

this, we will view the function as a

computation graph

Graph can be any directed acyclic

graph (DAG)

⬣ Modules must be differentiable to

support gradient computations

for gradient descent

A training algorithm will then

process this graph, one module at a

time

A General Framework

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

Directed Acyclic Graphs (DAGs)

• Exactly what the name suggests

– Directed edges

– No (directed) cycles

– Underlying undirected cycles okay

(C) Dhruv Batra 33

Directed Acyclic Graphs (DAGs)

• Concept

– Topological Ordering

(C) Dhruv Batra 34

Directed Acyclic Graphs (DAGs)

(C) Dhruv Batra 35

Backpropagation

Given this computation graph, the training

algorithm will:

⬣ Calculate the current model’s outputs

(called the forward pass)

⬣ Calculate the gradients for each

module (called the backward pass)

Backward pass is a recursive algorithm that:

⬣ Starts at loss function where we know

how to calculate the gradients

⬣ Progresses back through the modules

⬣ Ends in the input layer where we do

not need gradients (no parameters)

This algorithm is called backpropagation

Overview of Training

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

𝒉ℓ−𝟏 𝒉ℓ

𝑾

FunctionInput Output

Parameters

Neural Network Training

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

Step 1: Compute Loss on Mini-Batch: Forward Pass

Layer 1 Layer 2 Layer 3

Neural Network Training

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

Step 1: Compute Loss on Mini-Batch: Forward Pass

Layer 1 Layer 2 Layer 3

Note that we must store the intermediate outputs of all layers!

⬣ This is because we will need them to compute the gradients (the gradient

equations will have terms with the output values in them)

Neural Network Training

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

Step 1: Compute Loss on Mini-Batch: Forward Pass

Layer 1 Layer 2 Layer 3

In the backward pass, we seek to

calculate the gradients of the loss with

respect to the module’s parameters

⬣ Assume that we have the

gradient of the loss with respect

to the module’s outputs (given

to us by upstream module)

⬣ We will also pass the gradient of

the loss with respect to the

module’s inputs

⬣ This is not required for

update the module’s weights,

but passes the gradients

back to the previous module

Backward Pass Computations

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

Problem:

⬣ We are given:
𝝏𝑳

𝝏𝒉ℓ

⬣ We can compute local gradients:

{
𝝏𝒉ℓ

𝝏𝒉ℓ−𝟏 ,
𝝏𝒉ℓ

𝝏𝑾
}

⬣ Compute: {
𝝏𝑳

𝝏𝒉ℓ−𝟏,

𝝏𝑳

𝝏𝑾
}

𝝏𝑳

𝝏𝒉ℓ−𝟏

𝝏𝑳

𝝏𝒉ℓ

𝝏𝑳

𝝏𝑾

⬣ We want to compute: {
𝝏𝑳

𝝏𝒉ℓ−𝟏 ,
𝝏𝑳

𝝏𝑾
}

⬣ We will use the chain rule to do this:

 Chain Rule:
𝝏𝒛

𝝏𝒙
=

𝝏𝒛

𝝏𝒚
∙

𝝏𝒚

𝝏𝒙

Computing the Gradients of Loss

𝝏𝑳

𝝏𝒉ℓ−𝟏

𝝏𝑳

𝝏𝒉ℓ

𝝏𝑳

𝝏𝑾

𝝏𝑳

𝝏𝒉ℓ−𝟏

𝝏𝑳

𝝏𝒉ℓ
Loss⬣ {

𝝏𝒉ℓ

𝝏𝒉ℓ−𝟏 ,
𝝏𝒉ℓ

𝝏𝑾
}

⬣ We can compute local gradients: {
𝝏𝒉ℓ

𝝏𝒉ℓ−𝟏 ,
𝝏𝒉ℓ

𝝏𝑾
}

⬣ This is just the derivative of our function with respect to its

parameters and inputs!

Example: If 𝒉ℓ = 𝑾𝒉ℓ−𝟏

 then
𝝏𝒉ℓ

𝝏𝒉ℓ−𝟏 = 𝑾

 and
𝝏𝒉𝒊

ℓ

𝝏𝒘𝒊
= 𝒉ℓ−𝟏,𝑻

Computing the Local Gradients: Example

⬣ We will use the chain rule to compute: {
𝝏𝑳

𝝏𝒉ℓ−𝟏 ,
𝝏𝑳

𝝏𝑾
}

⬣ Gradient of loss w.r.t. inputs:
𝝏𝑳

𝝏𝒉ℓ−𝟏 =
𝝏𝑳

𝝏𝒉ℓ
𝝏𝒉ℓ

𝝏𝒉ℓ−𝟏

⬣ Gradient of loss w.r.t. weights:
𝝏𝑳

𝝏𝑾
=

𝝏𝑳

𝝏𝒉ℓ
𝝏𝒉ℓ

𝝏𝑾

Computing the Gradients of Loss

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

𝝏𝑳

𝝏𝒉ℓ−𝟏

𝝏𝑳

𝝏𝒉ℓ

𝝏𝑳

𝝏𝑾

Given by upstream

module (upstream

gradient)

Neural Network Training

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

Step 1: Compute Loss on Mini-Batch: Forward Pass

Step 2: Compute Gradients wrt parameters: Backward Pass

Layer 1 Layer 2 Layer 3

Neural Network Training

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

Step 1: Compute Loss on Mini-Batch: Forward Pass

Step 2: Compute Gradients wrt parameters: Backward Pass

Layer 1 Layer 2 Layer 3

Neural Network Training

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

Step 1: Compute Loss on Mini-Batch: Forward Pass

Step 2: Compute Gradients wrt parameters: Backward Pass

Layer 1 Layer 2 Layer 3

Neural Network Training
Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

Step 1: Compute Loss on Mini-Batch: Forward Pass

Step 2: Compute Gradients wrt parameters: Backward Pass

Step 3: Use gradient to update all parameters at the end

Layer 1 Layer 2 Layer 3

𝒘𝒊 = 𝒘𝒊 − 𝜶
𝝏𝑳

𝝏𝒘𝒊

Backpropagation is the application of

gradient descent to a computation

graph via the chain rule!

49

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Backpropagation: a simple example

50

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Backpropagation: a simple example

51

e.g. x = -2, y = 5, z = -4

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Backpropagation: a simple example

52

e.g. x = -2, y = 5, z = -4

Want:

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Backpropagation: a simple example

53

e.g. x = -2, y = 5, z = -4

Want:

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Backpropagation: a simple example

54

e.g. x = -2, y = 5, z = -4

Want:

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Backpropagation: a simple example

55

e.g. x = -2, y = 5, z = -4

Want:

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Backpropagation: a simple example

56

e.g. x = -2, y = 5, z = -4

Want:

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Backpropagation: a simple example

57

e.g. x = -2, y = 5, z = -4

Want:

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Backpropagation: a simple example

58

e.g. x = -2, y = 5, z = -4

Want:

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Backpropagation: a simple example

59

e.g. x = -2, y = 5, z = -4

Want:

Backpropagation: a simple example

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

60

e.g. x = -2, y = 5, z = -4

Want:

Backpropagation: a simple example

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

61

e.g. x = -2, y = 5, z = -4

Want:

Chain rule:

Upstream

gradient

Local

gradient

Backpropagation: a simple example

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

62

Chain rule:

e.g. x = -2, y = 5, z = -4

Want:
Upstream

gradient

Local

gradient

Backpropagation: a simple example

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

63

e.g. x = -2, y = 5, z = -4

Want:

Chain rule:

Upstream

gradient

Local

gradient

Backpropagation: a simple example

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

64

Chain rule:

e.g. x = -2, y = 5, z = -4

Want:
Upstream

gradient

Local

gradient

Backpropagation: a simple example

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Backpropagation: a simple example

Backpropagation: a simple example

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Patterns in backward flow

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Patterns in backward flow

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Q: What is an add gate?

Patterns in backward flow

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

add gate: gradient distributor

add gate: gradient distributor

Q: What is a max gate?

Patterns in backward flow

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

add gate: gradient distributor

max gate: gradient router

Patterns in backward flow

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

add gate: gradient distributor

max gate: gradient router

Q: What is a mul gate?

Patterns in backward flow

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

add gate: gradient distributor

max gate: gradient router

mul gate: gradient switcher

Patterns in backward flow

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

+

Gradients add at branches

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Duality in Fprop and Bprop

(C) Dhruv Batra 75

+

+

FPROP BPROP

SU
M

C
O

P
Y

Deep Learning = Differentiable Programming

• Computation = Graph
– Input = Data + Parameters

– Output = Loss

– Scheduling = Topological ordering

• What do we need to do?
– Generic code for representing the graph of modules

– Specify modules (both forward and backward function)

– Backpropagation implementation on the graph

(C) Dhruv Batra 76

77

Graph (or Net) object (rough psuedo code)

Modularized implementation: forward / backward API

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

78

(x,y,z are scalars)

x

y

z
*

Modularized implementation: forward / backward API

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

79

(x,y,z are scalars)

x

y

z
*

Modularized implementation: forward / backward API

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

80

Example: Caffe layers

Caffe is licensed under BSD 2-Clause

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

https://github.com/BVLC/caffe
https://github.com/BVLC/caffe/blob/master/LICENSE
https://github.com/BVLC/caffe/blob/master/LICENSE
https://github.com/BVLC/caffe/blob/master/LICENSE

81

* top_diff (chain rule)

Caffe is licensed under BSD 2-Clause

Caffe Sigmoid Layer

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

https://github.com/BVLC/caffe
https://github.com/BVLC/caffe/blob/master/LICENSE
https://github.com/BVLC/caffe/blob/master/LICENSE
https://github.com/BVLC/caffe/blob/master/LICENSE

	Slide 1: CS 4644-DL / 7643-A Zsolt Kira
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16: Numerical vs Analytic Gradients
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33: Directed Acyclic Graphs (DAGs)
	Slide 34: Directed Acyclic Graphs (DAGs)
	Slide 35: Directed Acyclic Graphs (DAGs)
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65: Backpropagation: a simple example
	Slide 66: Backpropagation: a simple example
	Slide 67: Patterns in backward flow
	Slide 68: Patterns in backward flow
	Slide 69: Patterns in backward flow
	Slide 70: Patterns in backward flow
	Slide 71: Patterns in backward flow
	Slide 72: Patterns in backward flow
	Slide 73: Patterns in backward flow
	Slide 74: Gradients add at branches
	Slide 75: Duality in Fprop and Bprop
	Slide 76: Deep Learning = Differentiable Programming
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81

