Topics:
e Backpropagation
e Matrix/Linear Algebra view

CS 4644-DL / 7643-A
ZSOLT KIRA

Assignment 1 out!

* Due Feb 4t

. Start now, start now, start now!
. Start now, start now, start now!
. Start now, start now, start now!

Resources:
. These lectures
. Matrix calculus for deep learning

. Gradients notes and MLP/RelLU Jacobian notes.

* Topic OH: Assignment 1

In-class Quiz (30 mins) — Feb 11

Piazza: Project teaming thread
* Project Proposal: Feb. 14t Project Check-in: Mar. 14th,
* Project proposal overview during my OH (Thursday 2pm ET, recorded)

https://explained.ai/matrix-calculus/index.html
https://explained.ai/matrix-calculus/index.html
https://www.cc.gatech.edu/classes/AY2022/cs7643_spring/assets/L5_gradients_notes.pdf
https://www.cc.gatech.edu/classes/AY2022/cs7643_spring/assets/L5_gradients_notes.pdf
https://www.cc.gatech.edu/classes/AY2022/cs7643_spring/assets/L6_jacobian_notes.pdf
https://www.cc.gatech.edu/classes/AY2022/cs7643_spring/assets/L6_jacobian_notes.pdf
https://www.cc.gatech.edu/classes/AY2022/cs7643_spring/assets/L6_jacobian_notes.pdf

Example with an image with 4 pixels, and 3 classes (cat/dog/)

Stretch pixels into column

56
0.2 | -05]| 0.1 | 2.0 1.1 -96.8 | Cat score
231
15 | 1.3 | 21 | 0.0 -+| 3.2 | = | 437.9 | Dog score
24
Input image 0 |]025| 0.2 | -0.3 -1.2 61.95 | Ship score
2
W b

Adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, from CS 231n

) Exam ple Ge?l';gciﬂ&

, s = f(x,W) Scores
If we use the softmax function to

convert scores to probabilities,
the right loss function to use is
cross-entropy

Sk
Softmax

P(Y =k|X = =
(X=x 2je”’ Function

Can be derived by looking at the

distance between two probability
distributions (output of model and
ground truth)

L; = —-log P(Y = y;|X = x;)

Maximize log-prob of correct class =
Maximize the log likelihood
= Minimize the negative log likelihood

Can also be derived from a
maximum likelihood estimation
perspective

) Performance Measure for Probabilities Gegrgia |

=

We can find the steepest descent direction by
computing the derivative (gradient):

fla+h)—f(a)
h

Steepest descent direction is the negative
gradient

f'(a) = lim

Intuitively: Measures how the function
changes as the argument a changes by a small
step size

As step size goes to zero

Ax

In Machine Learning: Want to know how the

loss function changes as weights are varied

C id h t tel Image and equation from:
an consider each parameier separaiely https://en.wikipedia.org/wiki/Derivative#/media/

by taking partial derivative of loss File:Tangent_animation.gif
function with respect to that parameter ¢

) Derivatives Gegroia)

=

We can find the steepest descent direction by
computing the derivative (gradient):

@) = /@S @

In Deep Learning, gradient descent on Loss
with respect to parameters/weights,

LeR ,weR™
oL [aL aL
ow |ow, " ow,,

Update rule is for each weight w; = w; —

(but of course we can vectorize operations)

JL
aWi

Ax

Image and equation from:
https://en.wikipedia.org/wiki/Derivative#/media/
File:Tangent _animation.qgif

The same two-layered neural network
corresponds to adding another
weight matrix

We will prefer the linear algebra
view, but use some terminology
from neural networks (& biology)

input layer

hidden layer
X Wl Wz

fx, W,W3) = oc(W0(Wqx))

Figure adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

) The Linear Algebra View Geg;sg,ﬂi%

Large (deep) networks can be built by
adding more and more layers

Three-layered neural networks can
represent any function

\

)
<
N

The number of nodes could grow

5
\

unreasonably (exponential or worse) e N &7
VAl

4
\/
X
15¢/
)

N
A

2

with respect to the complexity of the
function

(
\
(0
q

We will show them without edges:

input
layer hidden hidden
layer 1 layer 2
output
input hidden hidd layer f(xr Wl) WZ) W3) — O.(WZO.(Wlx))
idden
layer layer 1 layer 2

Figure adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

) Adding More Layers!

We are learning complex models with significant amount of
parameters (millions or billions)

How do we compute the gradients of the loss (at the end) with
respect to internal parameters?

Intuitively, want to understand how small changes in weight deep
inside are propagated to affect the loss function at the end

Loss
Function

Computing Gradients in Complex Function

To develop a general algorithm for
this, we will view the function as a
computation graph

Graph can be any directed acyclic
graph (DAG)

Modules must be differentiable to
support gradient computations
for gradient descent

A training algorithm will then
process this graph, one module at a
time

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

) » A General Framework

Step 1: Compute Loss on Mini-Batch: Forward Pass

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

Neural Network Training

Step 1: Compute Loss on Mini-Batch: Forward Pass

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

Neural Network Training

Step 1: Compute Loss on Mini-Batch: Forward Pass

Note that we must store the intermediate outputs of all layers!

This is because we will need them to compute the gradients (the gradient
equations will have terms with the output values in them)

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

Neural Network Training

Step 1: Compute Loss on Mini-Batch: Forward Pass
Step 2: Compute Gradients wrt parameters: Backward Pass

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

Neural Network Training

Step 1: Compute Loss on Mini-Batch: Forward Pass
Step 2: Compute Gradients wrt parameters: Backward Pass

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

Neural Network Training

Step 1: Compute Loss on Mini-Batch: Forward Pass
Step 2: Compute Gradients wrt parameters: Backward Pass

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

Neural Network Training

oL aL}
oht—1’ gw
Layer ¢

We want to compute: {

oL

adL dL
dh? ah{’ ll ah{) ahf’ dht-1
ah{)_l aw

! ?"_
oL oL ahf
We will use the chain rule to do this: Ont-1 ~ 9nt gnt-1
0z dz 0y
Chain Rule: — = y oL _ L an’
d0x 0dy O0x ow ~ ont ow

)‘ Computing the Gradients of Loss

Loss

Step 1: Compute Loss on Mini-Batch: Forward Pass
Step 2: Compute Gradients wrt parameters: Backward Pass
Step 3: Use gradient to update all parameters at the end

dlL Backpropagation is the application of
gradient descent to a computation
graph via the chain rule!

‘\'

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

Georgia A

Tech

Backpropagation: a simple example

flz,y,2) = (z +y)z
eg.x=-2,y=95,z=-4

_ 9
g=z+y o = 1, &y =1 \é?f
f— gz of _ _ of —5 Chain rule: Ay
—q aq %3 0z ﬂ i g dq
. Of oF of oy’ o0 o
Want: ox (9y ’ Oz Upstr/e'am Lgcal

gradient gradient

Figure adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Deep Learning = Differentiable Programming

 Computation = Graph
— Input = Data + Parameters
— Output = Loss
— Scheduling = Topological ordering

e What do we need to do?

— Generic code for representing the graph of modules
— Specify modules (both forward and backward function)
— Backpropagation implementation on the graph

)

Modularized implementation: forward / backward API

~ o3 TN 1
xp) {41 =
CFENG

W 0T
- m) -
TR 0

Graph (or Net) object (rough psuedo code)

class ComputationalGraph(object):
#...
def forward(inputs):
1. [pass inputs to input gates...]
2. forward the computational graph:
for gate in self.graph.nodes topologically sorted():
gate.forward()
return loss # the final gate in the graph outputs the loss
def backward():
for gate in reversed(self.graph.nodes topologically sorted()):

gate.backward() # little piece of backprop (chain rule applied)

return inputs _gradients

Modularized implementation: forward / backward API

class MultiplyGate(object):

X def forward(x,y):
z = xX*y
return z
def backward(dz):
#AR = e #toz\
y #dy = ... #todo g—L
return [dx, dy] 4
(x,y,z are scalars) \
OL
Ox

)

Modularized implementation: forward / backward API

class MultiplyGate(object):

X def forward(x,y):
Z = x*y
self.x = x # must keep these around!
self.y = y
return z

)/ def backward(dz):

(x,y,z are scalars)

dx = self.y * dz # [dz/dx * dL/dz]
dy = self.x * dz # [dz/dy * dL/dz]

return [dx, dy]

Example: Caffe layers

Branch: master~ caffe [src | caffe / layers / Create new file

E shelhamer committed on GitHub Merge pull request #4630 from BlGene/load_hdf5_fix

[£] absval_layer.cpp

[£] absval_layer.cu

[accuracy_layer.cpp

) argmax_layer.cpp

E) base_conv_layer.cpp

[E) base_data_layer.cpp

[E) base_data_layer.cu

[l batch_norm_layer.cpp
[E) bateh_norm_layer.cu

[E) batch_reindex_layer.cpp
[E batch_reindex_layer.cu
[Z] bias_layer.cpp

[£] bias_layer.cu

[E] bnll_layer.cpp

[bnll_layer.cu

[£] concat_layer.cpp

[£] concat_layer.cu

[Z] contrastive_loss_layer.cpp
[£] contrastive_loss_layer.cu
[] conv_layer.cpp

E) conv_layer.cu

[E crop_layer.cpp

[E) crop_layer.cu

[l cudnn_conv_layer.cpp

[l cudnn_conv_layer.cu

dismantle layer headers

dismantle layer headers

dismantle layer headers

dismantle layer headers

enable dilated deconvolution

Using default from proto for prefetch

Switched multi-GPU to NCCL

Add missing spaces besides equal signs in batch_norm_layer.cop
dismantle layer headers

dismantle layer headers

dismantle layer headers

Remove incorrect cast of gemm int arg to Dtype in BiasLayer
Separation and generalization of ChannelwiseAffineLayer into BiasLayer
dismantle layer headers

dismantle layer headers

dismantle layer headers

dismantle layer headers

dismantle layer headers

dismantle layer headers

add support for 2D dilated convelution
disma““%[;%k’f%@ﬂ?&a under BSD 2-Clause

remove redundant operations in Crop layer (#5138)

remove redundant operations in Crop layer (#5138)
dismantle layer headers

Add cuDNN v5 support, drop cuDNN v3 support

Find file = History

Latest commit e687a71 21 days ago

ayear ago
ayear ago
ayear ago
ayear ago
a year ago
3 months ago
3 months ago
4 months ago
a year ago
a year ago
a year ago
a year ago
a year ago
a year ago
ayear ago
ayear ago
ayear ago
ayear ago
ayear ago
ayear ago
a year ago
2 months ago
2 months ago

a year ago

11 months ago

[E) cudnn_len_layer.cpp

E) cudnn_len_layer.cu

E) cudnn_Irn_layer.copp

E) cudnn_irn_layer.cu

[E) cudnn_pooling_layer.cop
B cudnn_poocling_layer.cu
El cudnn_relu_layer.cpp

El cudnn_relu_layer.cu

E) cudnn_sigmoid_layer.cpp
E) cudnn_sigmoid_layer.cu
[E) cudnn_softmax_layer.cpp
[E) cudnn_softmax_layer.cu
[E) cudnn_tanh_layer.cpp

[E) cudnn_tanh_layer.cu

[E) data_layer.cpp

[E] deconv_layer.cpp

[E) deconv_layer.cu

[E) dropout_layer.cpp

[E) dropout_layer.cu

[E) dummy_data_layer.cpp
[E) eltwise_layer.cpp

[E) eltwise_layer.cu

[E) elu_layer.cpp

[E) elu_layer.cu

[E] embed_layer.cpp

[E)] embed_layer.cu

[E) euclidean_loss_layer.cpp
[E] euclidean_loss_layer.cu
[E) exp_layer.cpp

[E] exp_layer.cu

dismantle layer headers

dismantle layer headers

dismantle layer headers

dismantle layer headers

dismantle layer headers

dismantle layer headers

Add cuDNN v5 support, drop cuDNN v3 support
Add cuDNN v5 support, drop cuDNN v3 support
Add cuDNN v5 support, drop cuDNN v3 support
Add cuDNN v5 support, drop cuDNN v3 support
dismantle layer headers

dismantle layer headers

Add cuDNN v5 support, drop cuDNN v3 support
Add cuDNN v5 support, drop cuDNN v3 support
Switched multi-GPU to NCCL

enable dilated deconvolution

dismantle layer headers

supporting N-D Blobs in Dropout layer Reshape
dismantle layer headers

dismantle layer headers

dismantle layer headers

dismantle layer headers

ELU layer with basic tests

ELU layer with basic tests

dismantle layer headers

dismantle layer headers

dismantle layer headers

dismantle layer headers

Solving issue with exp layer with base e

dismantle layer headers

a year ago
a year ago
a year ago
a year ago
a year ago
a year ago
11 months ago
11 months ago
11 months ago
11 months ago
a year ago
a year ago
11 months ago
11 months ago
3 months ago
a year ago
a year ago
a year ago
a year ago
a year ago
a year ago
a year ago
a year ago
a year ago
a year ago
a year ago
a year ago
a year ago
a year ago

a year ago

https://github.com/BVLC/caffe
https://github.com/BVLC/caffe/blob/master/LICENSE
https://github.com/BVLC/caffe/blob/master/LICENSE
https://github.com/BVLC/caffe/blob/master/LICENSE

#include <cmath>
#include <vector>

. .
Caffe Sigmoid Layer

template <typename Dtype>
inline Dtype sigmoid(Dtype x) {
return 1. / (1. + exp(-x));

}

template <typename Dtype>
void Sigmoidlayer<Dtype>::Forward_cpu(const vector<Blob<Dtype>*>& bottom,
const vector<Blob<Dtype>*>& top) {
const Dtype* bottom_data = bottom[0]->cpu_data(); 1
Dtype* top_data = top[0]->mutable_cpu_data();
const int count = bottom[0]-

for (int 1 = 0; 1 < count; ++i / () 1 —_r
top_data[1] = signoid(bottom_data[i]); €
}
H
—_— 1
—
Template <typename Dtypes

void SigmoidLayer<Dtype>: :Backward_cpu(const vector<Blob<Dtype>*>& top,
const vector<bool>& propagate_down,
const vector<Blob<Dtype>*>& bottom) {
if (propagate_down[0]) {
const Dtype* top_data = top[0]->cpu_data();
const Dtype* top_diff = top[6]->cpu_diff();
Dtype* bottom diff = bottom[6]->mutable_cpu_diff();
const int count = bottom[0]->count();
for (int i =0; i < count; ++i) {
const Dtype sigmoid x = top_data[i];

S eb———(1 —a(z))e(z) | * top_diff (chain rule

fdef CPU_ONLY
STUB_GPU(SigmoidLayer);
#endif

INSTANTIATE_CLAS

SigmoidLayer);

}

Caffe is licensed under BSD 2-Clause

https://github.com/BVLC/caffe
https://github.com/BVLC/caffe/blob/master/LICENSE
https://github.com/BVLC/caffe/blob/master/LICENSE
https://github.com/BVLC/caffe/blob/master/LICENSE

Neural networks involves composing simple functions into a
computation graph

Optimization (updating weights) of this graph is through backpropagation
Recursive algorithm: Gradient descent (partial derivatives) plus chain
rule

Remaining questions:
How does this work with vectors, matrices, tensors?
Across a composed function?

How can we implement this algorithmically to make these
calculations automatic? Automatic Differentiation

) Summary Gegr;gciﬁ&

Linear
Algebra

View:
Vector and
Matrix Sizes

Georgia
graia |

Wi Wiz - Wy, b1 X
Wa1 Wz - Wz b2| | .
W31 Waz - Wi B3] |,
N
w X

Sizes: [cx(m+1)] [(m+1)x1]
Where ¢ is number of classes

m is dimensionality of input

) Closer Look at a Linear Classifier Ge‘%&%ﬁ{h

=

Conventions:
Size of derivatives for scalars, vectors, and matrices:
T

Assume we have scalar s € R!, vector v € R™, i.e. v = [v, V3, ..., U]
and matrix M € R™1*™2

s [] VH M
s %107 9 1 9

ds- ov : oM

v | v,
V' %] v, ‘
Mool Tensors

Georgia @

Tech

Dimensionality of Derivatives I

Conventions:

Size of derivatives for scalars, vectors, and matrices:
Assume we have scalar s € R!, vector v € R™, i.e. v = [v1, V3, ..., U]

and matrix M € R™M1*Mz])
61}1

ds
What is the size of% ? R™*1 (column vector of size m) | av,

5
What is the size of% ? R™*™ (row vector of size m) a;)m
L Js -

[65 ds as]

dv, 0vq v,

) Dimensionality of Derivatives Gegraia |

=

Conventions:

1)
What is the size Ofa—v2 ? A matrix: Colj
v - 1 .
0vq
ov7
i 1 1 1
ROW l avi K avi) avi
Vs v} 0vs,,

my X m,
This matrix of partial derivatives is called a Jacobian

(Note this is slightly different convention than on Wikipedia). Also, computationally other conventions are used.

ecC

=

) Dimensionality of Derivatives Gograta)

https://en.wikipedia.org/wiki/Matrix_calculus#Derivatives_with_matrices

Conventions:

What is the size of;—:q ? A matrix:

P _
ds

(Note this is slightly different convention than on Wikipedia). Also, computationally other conventions are used.

) Dimensionality of Derivatives Gograta)

=

https://en.wikipedia.org/wiki/Matrix_calculus#Derivatives_with_matrices

Example 1:

_P_rx ady 1
Y= yz] B [x2] T [2x]
Example 2:
y=wlx=) wgx,
2.
ay lay dy
ax |9x, " ox
o " (X WiXy)
= [wq, ...Wm] because I, = w;
l

) ENTEE Gograta |

=

Example 3:
y=Wx —=W

T
0xq
Row/ |.. .. 2% . . |= [~ = wyg = = J’i=ZWiixi
axj ces ces cos cos cos]

Example 4:

Jd(wAw)
ow

) ENTEE Gograta |

=

= 2w! A (assuming A is symmetric)

What is the size of 2= 2
ow

Remember that loss is a scalar and W is a matrix:

Wi1 Wiz 0 Wy b1
Wz1 Wiz * Wy b2
W31 W3z - Wgy, b3
Jacobian is also a matrix: W
- JdL oL oL OL
dwy, 0wy, 0wy, 0by
oL oL oL
w7 Fwe 3b)
oL oL
aW3m abg_

Dimensionality of Derivatives in ML Gegrata |

=

Batches of data are matrices or tensors (multi- (X11 X12 ° X1n]
dimensional matrices) Xp1 Xo3 - Xop
Examples: : : :
Each instance is a vector of size m, our batch is of [Xn1 Xn2 " Xand
size [B X m]
Each instance is a matrix (e.g. grayscale image) of Flatten @
size W x H, our batch is [B X W X H] X
11
Each instance is a multi-channel matrix (e.g. color X1o
image with R,B,G channels) of size C x W X H, our .
batch is [B x C x W x H] x.
21
Jacobians become tensors which is complicated X2o
Instead, flatten input to a vector and get a vector of :
derivatives! Xn1
This can also be done for partial derivatives :
between two vectors, two matrices, or two tensors | Xnn-

) Jacobians of Batches Gegrala |

=

Input Function Output
h{’—l

W
Parameters
Define:
f __ £—1
0 _ o Typ—1 h* = Wh
hi i Wi h == ;_ T_; -
Wi

IR x1 |k x |hf~1| |Rf1|x 1

) Fully Connected (FC) Layer: Forward Function

h* = Wh*1

ah?

ahf—l — W

oL L oht

Define: She-1 3nf JRi-1

hi = wih [JC]

1x |ht~1| 1 x|h?| |h?| xR

) Fully Connected (FC) Layer

Note doing this on full W
matrix would result in

ht = Wht 1 Jacobian tensor!
But it is sparse — each
dh? . output only affected by
dnt-1 w corresponding weight row
Define:

¢ _ o Thi-1
h; =w;h

) Fully Connected (FC) Layer

Note doing this on full W
matrix would result in
Jacobian tensor!

" But it is sparse — each
ah? | dW output only affected by

oht—1 =W corresponding weight row

Define:
¢ _ o Tpi—1
h; =w;h

) Fully Connected (FC) Layer

Note doing this on full W
matrix would result in
Jacobian tensor!

But it is sparse — each

h* = Wh1
an? : AW output only_affecte_d by
=W corresponding weight row
£—1
oh [)
Define: aLT L oL ahT aL
h{ _ Wz‘h{)_l ow: oh’ ?Wi)] ow i
L I R R
1 oh! R
Ohi _ iy -2 :
ow; - T terate and populate
/-1 ’ P ¢—1, Iterate and populate
1X|R"77 1% [h7] |h7] x |R*7 Note can simplify/vectorize!

) - Fully Connected (FC) Layer

We can employ any differentiable
(or piecewise differentiable)
function

N

ANy r"o "o
T T T T

A common choice is the Rectified
Linear Unit

Provides non-linearity but better
gradient flow than sigmoid

oNCPr PP e
!
T T T T

Performed element-wise | e . inaX(O he 1)

. 0,
How many parameters for this layer? E — a

) Rectified Linear Unit (RelLU)

Full Jacobian of ReLU layer is large
(output dim x input dim)

But again it is sparse

Only diagonal values non-zero
because it is element-wise

An output value affected only by
corresponding input value

Max function funnels gradients
through selected max

Gradient will be zero if input
<=0

) Jacobian of RelLU

Input Function Output

w

W
Parameters

Forward: h* = max(0, h‘™1)

aL dL ohnf
Backward: =
For diagonal

dht-1 ~ gn’ @ht-1
[\ on’ _{1 if R=1> 0

ihtx nt-1] Ohf~1 |0 otherwise

Geo 1

Tech

Figure adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

4D input x: 4D output z:
R — [1
21 f(x)=max(0,x) | L U
- 31-_ — | (elementwise) | T | g :
. 4D dL/dz:
What doesalooklike? [4] +——
[-1]+—— Upstream
[5]+ gradient
[9]+

Georgia ﬂ
Tech|)

Figure adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

4D input x: 4D output z:
1] — — 1
2 1 f(x) =max(0,x) | L V|
; 31: | (elementwise) Tl 8 :
4D dL/dx: [dz/dx] [dL/dZ] 4D dL/dz:
4] [4] ~—[4]—
[0] (00][-1] <+ [-1]*+—— Upstream
(5] < 10][5] < (5]+ gradient
0] < [0000][9] <+~ [9]-

For element-wise ops, jacobian is sparse: off-diagonal entries always zero!
Never explicitly form Jacobian -- instead use elementwise multiplication

Georgia ﬂ
Tech ||

Neural networks involves composing simple functions into a
computation graph

Optimization (updating weights) of this graph is through backpropagation
Recursive algorithm: Gradient descent (partial derivatives) plus chain
rule

Remaining questions:
How does this work with vectors, matrices, tensors?
Across a composed function? Next!

How can we implement this algorithmically to make these
calculations automatic? Automatic Differentiation

) Summary Gegr;gciﬁ&

Composition of Functions: f(g®) = (f° 9)(x)

A complex function (e.g. defined by a neural network):
fx) =g (ge-1(--91(x)))
fX)=9r°9¢-1--°91(%)

(Many of these will be parameterized)

(Note you might find the opposite notation as well!)

) Composition of Functions & Chain Rule Gegrata |

=

xER! ——— ze Rl =—— yeR!
91 92

y =92(91(x))

dy 0y 0z

= *k
dx 0z O0Ox

|

Scalar Multiplication

) Scalar Case Gegrgia |

=

x{€ R4 —— Z{e R™ y{€ R€

g1 g2
R4 - R™ R™ — R¢
3y _ 97 07
0x 0z 0x
]g1°92]g1 ‘]92

Matrix Multiplication

=

) Vector Case Gegrgia |

dy;

) Jacobian View of Chain Rule

dy;

aX] B

dy;
aZk
ayi aZk
X
- 0z, 0x;

aZk

Georgia
Tech

J&

=

=
[y

N
=y

Y1

) O o

[O [

o o o
X (R 0 BO Vi

) o o

o O o

) 0 o
Xd © Zm. Ve e

Graphical View of Chain Rule Gegrata |

=

ho € R hfe RE{— .. —— hle R4
ont oh! ghl-1 dh?
ont ~— 9nl-1 ohi-2 " 9ht

) Chain Rule: Cascaded Gegrala |

=

ho € R4 heRl—— .. —— hleR4——[cRl
oL 0L 9rt gnl Oh?
dhl~ 9h! gpi-t ont-2 " ant

B R O O B

Which directions is more efficient to multiply?

) Chain Rule: Cascaded Gegrala |

=

w

1+e™

—log(p)

t~I
I

a~1|
Il
QJ|Q.>P-‘
=~
[y

1

where p = o(w'x) and o(x) =

1+e™*
— _ 0L oL ap
= 1-
u u ap du O'(O')
_ OL 0L du _ _ T
w = =ux

o Bw 6u 6w

We can do this in a combined way to see all terms
together:

__ 0L ap au_

s

ap ou ow a(wa) o(w'x)(1—a (whx))x"

= —(1 — O'(W x))

This effectively shows gradient flow along path from
Ltow

Example Gradient Computations

The chain rule can be
computed as a series of
scalar, vector, and matrix
linear algebra operations

Extremely efficient in
graphics processing units
(GPUs)

)

u p L
wix p—> L —> —log(p) pP—>
1+e™™
C I [] (]
1xd 1x1 1x1
“dx1
W= s o(wlx)(1— o (wlx))x

] L] ()] []

1x1 1x1 1x1 1xd

Vectorized Computations

1 1
Ty = — }—]-1 L wlx o : » —lo —
whx og() — £®)
CII § 3

L=1

_ a1 1xd 1x1 1x1
P*a— _1_7

“dx1

where p = o(w'x) and o(x) = Hl?

_ L _aL ap

u=g= a—pa(l) w=— a(wa) o(wl x)(l a(w x))a”
oo oy (3 c1 01 C 3
B 1x1 1x1 1x1 1xd
We can do this in a combined way to see all terms :
together:
Wt o(wx)(1 - a (W) Computational / Tensor View Graph View
=- (1 —o(w' x))
This effectively shows gradient flow along path from aL aL
Ltow We want to to compute: { aht-1’ OW}

Computation Graph /

oL oL oL oL
Global View of Chain Rule i IO ‘—»3"" ah—-— Loss

: | o :
1 | OW 1

Backpropagation View
(Recursive Algorithm)

Different Views of Equivalent Ideas

Backpropagation: Recursive, modular algorithm for chain rule + gradient descent

When we move to vectors and matrices:
Composition of functions (scalar)
Composition of functions (vectors/matrices)
Jacobian view of chain rule

Can view entire set of calculations as linear algebra operations (matrix-vector or
matrix-matrix multiplication)

Automatic differentiation:
Reduction of modules to simple operations we know (simple multiplication, etc.)
Automatically build computation graph in background as write code
Automatically compute gradients via backward pass

) Summary Ge?l';gciﬁ@

=

	Slide 1: CS 4644-DL / 7643-A Zsolt Kira
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20: Deep Learning = Differentiable Programming
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57

