
Machine Learning Applications

CS 4644-DL / 7643-A
ZSOLT KIRA

Topics:

• Backpropagation

• Matrix/Linear Algebra view

Administrivia

• Assignment 1 out!
• Due Feb 4th

• Start now, start now, start now!

• Start now, start now, start now!

• Start now, start now, start now!

• Resources:
• These lectures

• Matrix calculus for deep learning

• Gradients notes and MLP/ReLU Jacobian notes.

• Topic OH: Assignment 1

• In-class Quiz (30 mins) – Feb 11

• Piazza: Project teaming thread
• Project Proposal: Feb. 14th, Project Check-in: Mar. 14th.

• Project proposal overview during my OH (Thursday 2pm ET, recorded)

https://explained.ai/matrix-calculus/index.html
https://explained.ai/matrix-calculus/index.html
https://www.cc.gatech.edu/classes/AY2022/cs7643_spring/assets/L5_gradients_notes.pdf
https://www.cc.gatech.edu/classes/AY2022/cs7643_spring/assets/L5_gradients_notes.pdf
https://www.cc.gatech.edu/classes/AY2022/cs7643_spring/assets/L6_jacobian_notes.pdf
https://www.cc.gatech.edu/classes/AY2022/cs7643_spring/assets/L6_jacobian_notes.pdf
https://www.cc.gatech.edu/classes/AY2022/cs7643_spring/assets/L6_jacobian_notes.pdf

56 231

24 2

Example

Example with an image with 4 pixels, and 3 classes (cat/dog/ship)

Adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, from CS 231n

0.2 -0.5 0.1 2.0

1.5 1.3 2.1 0.0

0 0.25 0.2 -0.3
Input image

56

231

24

2

Stretch pixels into column

1.1

3.2

-1.2

+

-96.8

437.9

61.95

=

Cat score

Dog score

Ship score

𝑾 𝒃

Performance Measure for Probabilities

⬣ If we use the softmax function to

convert scores to probabilities,

the right loss function to use is

cross-entropy

⬣ Can be derived by looking at the

distance between two probability

distributions (output of model and

ground truth)

⬣ Can also be derived from a

maximum likelihood estimation

perspective

Equations from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, from CS 231n

Maximize log-prob of correct class =

 Maximize the log likelihood

= Minimize the negative log likelihood

𝑳𝒊 = −𝐥𝐨𝐠 𝑷(𝒀 = 𝒚𝒊|𝑿 = 𝒙𝒊)

Scores𝒔 = 𝒇(𝒙, 𝑾)

Softmax

Function
𝑷 𝒀 = 𝒌 𝑿 = 𝒙 =

𝒆𝒔𝒌

σ𝒋 𝒆𝒔𝒋

Derivatives

⬣ We can find the steepest descent direction by

computing the derivative (gradient):

⬣ Steepest descent direction is the negative

gradient

⬣ Intuitively: Measures how the function

changes as the argument a changes by a small

step size

⬣ As step size goes to zero

⬣ In Machine Learning: Want to know how the

loss function changes as weights are varied

⬣ Can consider each parameter separately

by taking partial derivative of loss

function with respect to that parameter

𝒇′ 𝒂 = lim
𝒉→𝟎

𝒇 𝒂 + 𝒉 − 𝒇(𝒂)

𝒉

Image and equation from:

https://en.wikipedia.org/wiki/Derivative#/media/

File:Tangent_animation.gif

∆𝒙

Derivatives

⬣ We can find the steepest descent direction by

computing the derivative (gradient):

𝒇′ 𝒂 = lim
𝒉→𝟎

𝒇 𝒂 + 𝒉 − 𝒇(𝒂)

𝒉

Image and equation from:

https://en.wikipedia.org/wiki/Derivative#/media/

File:Tangent_animation.gif

∆𝒙
𝝏𝑳

𝝏𝒘
=

𝝏𝑳

𝝏𝒘𝟏
, … ,

𝝏𝑳

𝝏𝒘𝒎

⬣ In Deep Learning, gradient descent on Loss

with respect to parameters/weights,

𝐋 ∈ ℝ , w ∈ ℝ𝒎

⬣ Update rule is for each weight

⬣ (but of course we can vectorize operations)

𝒘𝒊 = 𝒘𝒊 −
𝝏𝑳

𝝏𝒘𝒊

The same two-layered neural network

corresponds to adding another

weight matrix

⬣ We will prefer the linear algebra

view, but use some terminology

from neural networks (& biology)

The Linear Algebra View

Figure adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

input layer
hidden layer

output layer

𝒙 𝑾𝟏 𝑾𝟐

=

𝒇 𝒙, 𝑾𝟏, 𝑾𝟐 = 𝝈(𝑾𝟐𝝈 𝑾𝟏𝒙)

Large (deep) networks can be built by

adding more and more layers

Three-layered neural networks can

represent any function

⬣ The number of nodes could grow

unreasonably (exponential or worse)

with respect to the complexity of the

function

We will show them without edges:

Adding More Layers!

Figure adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

input
layer hidden

layer 1
hidden
layer 2

output
layer

input

layer
hidden

layer 1
hidden

layer 2

output

layer 𝒇 𝒙, 𝑾𝟏, 𝑾𝟐, 𝑾𝟑 = 𝝈(𝑾𝟐𝝈 𝑾𝟏𝒙)

⬣ We are learning complex models with significant amount of

parameters (millions or billions)

⬣ How do we compute the gradients of the loss (at the end) with

respect to internal parameters?

⬣ Intuitively, want to understand how small changes in weight deep

inside are propagated to affect the loss function at the end

Computing Gradients in Complex Function

Loss

Function

𝝏𝑳

𝝏𝒘𝒊
?

To develop a general algorithm for

this, we will view the function as a

computation graph

Graph can be any directed acyclic

graph (DAG)

⬣ Modules must be differentiable to

support gradient computations

for gradient descent

A training algorithm will then

process this graph, one module at a

time

A General Framework

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

Neural Network Training

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

Step 1: Compute Loss on Mini-Batch: Forward Pass

Layer 1 Layer 2 Layer 3

Neural Network Training

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

Step 1: Compute Loss on Mini-Batch: Forward Pass

Layer 1 Layer 2 Layer 3

Note that we must store the intermediate outputs of all layers!

⬣ This is because we will need them to compute the gradients (the gradient

equations will have terms with the output values in them)

Neural Network Training

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

Step 1: Compute Loss on Mini-Batch: Forward Pass

Layer 1 Layer 2 Layer 3

Neural Network Training

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

Step 1: Compute Loss on Mini-Batch: Forward Pass

Step 2: Compute Gradients wrt parameters: Backward Pass

Layer 1 Layer 2 Layer 3

Neural Network Training

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

Step 1: Compute Loss on Mini-Batch: Forward Pass

Step 2: Compute Gradients wrt parameters: Backward Pass

Layer 1 Layer 2 Layer 3

Neural Network Training

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

Step 1: Compute Loss on Mini-Batch: Forward Pass

Step 2: Compute Gradients wrt parameters: Backward Pass

Layer 1 Layer 2 Layer 3

⬣ We want to compute: {
𝝏𝑳

𝝏𝒉ℓ−𝟏 ,
𝝏𝑳

𝝏𝑾
}

⬣ We will use the chain rule to do this:

 Chain Rule:
𝝏𝒛

𝝏𝒙
=

𝝏𝒛

𝝏𝒚
∙

𝝏𝒚

𝝏𝒙

Computing the Gradients of Loss

𝝏𝑳

𝝏𝒉ℓ−𝟏

𝝏𝑳

𝝏𝒉ℓ

𝝏𝑳

𝝏𝑾

𝝏𝑳

𝝏𝒉ℓ−𝟏

𝝏𝑳

𝝏𝒉ℓ
Loss⬣ {

𝝏𝒉ℓ

𝝏𝒉ℓ−𝟏 ,
𝝏𝒉ℓ

𝝏𝑾
}

𝝏𝑳

𝝏𝒉ℓ−𝟏
=

𝝏𝑳

𝝏𝒉ℓ

𝝏𝒉ℓ

𝝏𝒉ℓ−𝟏

𝝏𝑳

𝝏𝑾
=

𝝏𝑳

𝝏𝒉ℓ
𝝏𝒉ℓ

𝝏𝑾

Layer ℓ

Neural Network Training
Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

Step 1: Compute Loss on Mini-Batch: Forward Pass

Step 2: Compute Gradients wrt parameters: Backward Pass

Step 3: Use gradient to update all parameters at the end

Layer 1 Layer 2 Layer 3

𝒘𝒊 = 𝒘𝒊 − 𝜶
𝝏𝑳

𝝏𝒘𝒊

Backpropagation is the application of

gradient descent to a computation

graph via the chain rule!

19

e.g. x = -2, y = 5, z = -4

Want:

Chain rule:

Upstream

gradient

Local

gradient

Backpropagation: a simple example

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Figure adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Deep Learning = Differentiable Programming

• Computation = Graph
– Input = Data + Parameters

– Output = Loss

– Scheduling = Topological ordering

• What do we need to do?
– Generic code for representing the graph of modules

– Specify modules (both forward and backward function)

– Backpropagation implementation on the graph

(C) Dhruv Batra 20

21

Graph (or Net) object (rough psuedo code)

Modularized implementation: forward / backward API

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

22

(x,y,z are scalars)

x

y

z
*

Modularized implementation: forward / backward API

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

23

(x,y,z are scalars)

x

y

z
*

Modularized implementation: forward / backward API

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

24

Example: Caffe layers

Caffe is licensed under BSD 2-Clause

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

https://github.com/BVLC/caffe
https://github.com/BVLC/caffe/blob/master/LICENSE
https://github.com/BVLC/caffe/blob/master/LICENSE
https://github.com/BVLC/caffe/blob/master/LICENSE

25

* top_diff (chain rule)

Caffe is licensed under BSD 2-Clause

Caffe Sigmoid Layer

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

https://github.com/BVLC/caffe
https://github.com/BVLC/caffe/blob/master/LICENSE
https://github.com/BVLC/caffe/blob/master/LICENSE
https://github.com/BVLC/caffe/blob/master/LICENSE

Summary

• Neural networks involves composing simple functions into a

computation graph

• Optimization (updating weights) of this graph is through backpropagation

• Recursive algorithm: Gradient descent (partial derivatives) plus chain

rule

• Remaining questions:

• How does this work with vectors, matrices, tensors?

• Across a composed function?

• How can we implement this algorithmically to make these

calculations automatic? Automatic Differentiation

Linear

Algebra

View:

Vector and

Matrix Sizes

Closer Look at a Linear Classifier

Sizes: 𝒄 × 𝒎 + 𝟏 𝒎 + 𝟏 × 𝟏

Where c is number of classes

 m is dimensionality of input

𝑾

𝒘𝟏𝟏 𝒘𝟏𝟐 ⋯ 𝒘𝟏𝒎 𝒃𝟏
𝒘𝟐𝟏 𝒘𝟐𝟐 ⋯ 𝒘𝟐𝒎 𝒃𝟐
𝒘𝟑𝟏 𝒘𝟑𝟐 ⋯ 𝒘𝟑𝒎 𝒃𝟑

𝒙𝟏

𝒙𝟐

⋮
𝒙𝒎

𝟏

𝒙

Dimensionality of Derivatives

Conventions:
⬣ Size of derivatives for scalars, vectors, and matrices:

Assume we have scalar 𝒔 ∈ ℝ𝟏, vector 𝒗 ∈ ℝ𝒎, i.e. 𝒗 = 𝒗𝟏, 𝒗𝟐, … , 𝒗𝒎
𝑻

and matrix 𝑴 ∈ ℝ𝒎𝟏×𝒎𝟐

𝑺

𝑽

M

𝑺 𝑽 M

𝝏𝒔𝟏

𝝏𝒔𝟐

𝝏𝒗

𝝏𝒔

𝝏𝑴

𝝏𝒔

𝝏𝒔

𝝏𝒗

𝝏𝒔

𝝏𝑴
𝝏𝒗𝟏

𝝏𝒗𝟐

Tensors

Dimensionality of Derivatives

Conventions:

⬣ Size of derivatives for scalars, vectors, and matrices:

Assume we have scalar 𝒔 ∈ ℝ𝟏, vector 𝒗 ∈ ℝ𝒎, i.e. 𝒗 = 𝒗𝟏, 𝒗𝟐, … , 𝒗𝒎
𝑻

and matrix 𝑴 ∈ ℝ𝒎𝟏×𝒎𝟐

⬣ What is the size of
𝝏𝒗

𝝏𝒔
 ? ℝ𝒎×𝟏 (column vector of size m)

⬣ What is the size of
𝝏𝒔

𝝏𝒗
 ? ℝ𝟏×𝒎 (row vector of size m)

𝝏𝒗𝟏

𝝏𝒔
𝝏𝒗𝟐

𝝏𝒔
⋮

𝝏𝒗𝒎

𝝏𝒔
𝝏𝒔

𝝏𝒗𝟏

𝝏𝒔

𝝏𝒗𝟏
 ⋯

𝝏𝒔

𝝏𝒗𝒎

Conventions:

⬣ What is the size of
𝝏𝒗𝟏

𝝏𝒗𝟐 ?

⬣ This matrix of partial derivatives is called a Jacobian

Dimensionality of Derivatives

Row i

Col j
𝝏𝒗𝟏

𝟏

𝝏𝒗𝟏
𝟐

⋯ ⋯ ⋯ ⋯

⋯ ⋯ ⋯ ⋯ ⋯
𝝏𝒗𝒊

𝟏

𝝏𝒗𝟏
𝟐

⋯
𝝏𝒗𝒊

𝟏

𝝏𝒗𝒋
𝟐

⋯
𝝏𝒗𝒊

𝟏

𝝏𝒗𝒎𝟐
𝟐

⋯ ⋯ ⋯ ⋯ ⋯
⋯ ⋯ ⋯ ⋯ ⋯

A matrix:

(Note this is slightly different convention than on Wikipedia). Also, computationally other conventions are used.

𝑚1 × 𝑚2

https://en.wikipedia.org/wiki/Matrix_calculus#Derivatives_with_matrices

Dimensionality of Derivatives

Conventions:

⬣ What is the size of
𝝏𝒔

𝝏𝑴
 ?

𝝏𝒔

𝝏𝒎[𝟏,𝟏]
⋯ ⋯ ⋯ ⋯

⋯ ⋯ ⋯ ⋯ ⋯

⋯ ⋯
𝝏𝒔

𝝏𝒎[𝒊,𝒋]
⋯ ⋯

⋯ ⋯ ⋯ ⋯ ⋯
⋯ ⋯ ⋯ ⋯ ⋯

A matrix:

(Note this is slightly different convention than on Wikipedia). Also, computationally other conventions are used.

https://en.wikipedia.org/wiki/Matrix_calculus#Derivatives_with_matrices

Examples

𝒚 =
𝒚𝟏

𝒚𝟐
=

𝒙
𝒙𝟐

𝒚 = 𝒘𝑻𝒙 = ෍

𝒌

𝒘𝒌𝒙𝒌

𝝏𝒚

𝝏𝒙
=

Example 1:

Example 2:

𝝏𝒚

𝝏𝒙
=

𝝏𝒚

𝝏𝒙𝟏
, … ,

𝝏𝒚

𝝏𝒙𝒎

= 𝒘𝟏, … , 𝒘𝒎 because
𝝏(σ𝒌 𝒘𝒌𝒙𝒌)

𝝏𝒙𝒊
= 𝒘𝒊

= 𝒘𝑻

𝟏
𝟐𝒙

Examples

𝒚 = 𝑾𝒙

𝝏(𝒘𝑨𝒘)

𝝏𝒘
= 𝟐𝒘𝑻𝑨 (assuming A is symmetric)

Example 3:

Example 4:

𝝏𝒚

𝝏𝒙
= 𝑾

Row i

Col j
𝝏𝒚𝟏

𝝏𝒙𝟏
⋯ ⋯ ⋯ ⋯

⋯ ⋯ ⋯ ⋯ ⋯

⋯ ⋯
𝝏𝒚𝒊

𝝏𝒙𝒋
⋯ ⋯

⋯ ⋯ ⋯ ⋯ ⋯
⋯ ⋯ ⋯ ⋯ ⋯

=

… ⋯ ⋯ ⋯ ⋯
⋯ ⋯ ⋯ ⋯ ⋯
⋯ ⋯ 𝒘𝒊𝒋 ⋯ ⋯
⋯ ⋯ ⋯ ⋯ ⋯
⋯ ⋯ ⋯ ⋯ ⋯

𝒚𝒊 = ෍

𝒋

𝒘𝒊𝒋𝒙𝒋

Dimensionality of Derivatives in ML

⬣ What is the size of
𝝏𝑳

𝝏𝑾
 ?

⬣ Remember that loss is a scalar and W is a matrix:

𝒘𝟏𝟏 𝒘𝟏𝟐 ⋯ 𝒘𝟏𝒎 𝒃𝟏
𝒘𝟐𝟏 𝒘𝟐𝟐 ⋯ 𝒘𝟐𝒎 𝒃𝟐
𝒘𝟑𝟏 𝒘𝟑𝟐 ⋯ 𝒘𝟑𝒎 𝒃𝟑

𝝏𝑳

𝝏𝒘𝟏𝟏

𝝏𝑳

𝝏𝒘𝟏𝟐
⋯

𝝏𝑳

𝝏𝒘𝟏𝒎

𝝏𝑳

𝝏𝒃𝟏

𝝏𝑳

𝝏𝒘𝟐𝟏
⋯ ⋯

𝝏𝑳

𝝏𝒘𝟐𝒎

𝝏𝑳

𝝏𝒃𝟐

⋯ ⋯ ⋯
𝝏𝑳

𝝏𝒘𝟑𝒎

𝝏𝑳

𝝏𝒃𝟑

WJacobian is also a matrix:

Jacobians of Batches

Batches of data are matrices or tensors (multi-

dimensional matrices)

Examples:

⬣ Each instance is a vector of size m, our batch is of

size [𝑩 × 𝒎]

⬣ Each instance is a matrix (e.g. grayscale image) of

size 𝑾 × 𝑯, our batch is [𝑩 × 𝑾 × 𝑯]

⬣ Each instance is a multi-channel matrix (e.g. color

image with R,B,G channels) of size 𝑪 × 𝑾 × 𝑯, our

batch is [𝑩 × 𝑪 × 𝑾 × 𝑯]

Jacobians become tensors which is complicated

⬣ Instead, flatten input to a vector and get a vector of

derivatives!

⬣ This can also be done for partial derivatives

between two vectors, two matrices, or two tensors

Flatten

𝒙𝟏𝟏

𝒙𝟏𝟐

⋮
𝒙𝟐𝟏

𝒙𝟐𝟐

⋮
𝒙𝒏𝟏

⋮
𝒙𝒏𝒏

𝒙𝟏𝟏 𝒙𝟏𝟐 ⋯ 𝒙𝟏𝒏

𝒙𝟐𝟏 𝒙𝟐𝟐 ⋯ 𝒙𝟐𝒏

⋮ ⋮ ⋱ ⋮
𝒙𝒏𝟏 𝒙𝒏𝟐 ⋯ 𝒙𝒏𝒏

Fully Connected (FC) Layer: Forward Function

𝒉ℓ−𝟏 𝒉ℓ

𝑾

FunctionInput Output

Parameters

𝒉ℓ = 𝑾𝒉ℓ−𝟏

𝒘𝒊
𝑻

|𝒉ℓ| × 𝟏 |𝒉ℓ−𝟏| × 𝟏|𝒉ℓ| × |𝒉ℓ−𝟏 |

Define:

𝒉𝒊
ℓ = 𝒘𝒊

𝑻𝒉ℓ−𝟏

Fully Connected (FC) Layer

𝝏𝑳

𝝏𝒉ℓ−𝟏

𝝏𝑳

𝝏𝒉ℓ

𝝏𝑳

𝝏𝑾𝝏𝒉ℓ

𝝏𝒉ℓ−𝟏 = 𝑾

𝝏𝑳

𝝏𝒉ℓ−𝟏
=

𝝏𝑳

𝝏𝒉ℓ

𝝏𝒉ℓ

𝝏𝒉ℓ−𝟏

𝟏 × |𝒉ℓ−𝟏| |𝒉ℓ| × |𝒉ℓ−𝟏|𝟏 × |𝒉ℓ|

𝒉ℓ = 𝑾𝒉ℓ−𝟏

Define:

𝒉𝒊
ℓ = 𝒘𝒊

𝑻𝒉ℓ−𝟏

Fully Connected (FC) Layer

𝝏𝑳

𝝏𝒉ℓ−𝟏

𝝏𝑳

𝝏𝒉ℓ

𝝏𝑳

𝝏𝑾

Note doing this on full W
matrix would result in

Jacobian tensor!

But it is sparse – each

output only affected by

corresponding weight row
𝝏𝒉ℓ

𝝏𝒉ℓ−𝟏 = 𝑾

𝝏𝑳

𝝏𝑾
=

𝝏𝑳

𝝏𝒉ℓ

𝝏𝒉ℓ

𝝏𝑾

𝒉ℓ = 𝑾𝒉ℓ−𝟏

Define:

𝒉𝒊
ℓ = 𝒘𝒊

𝑻𝒉ℓ−𝟏

Fully Connected (FC) Layer

𝝏𝑳

𝝏𝒉ℓ−𝟏

𝝏𝑳

𝝏𝒉ℓ

𝝏𝑳

𝝏𝑾

Note doing this on full W
matrix would result in

Jacobian tensor!

But it is sparse – each

output only affected by

corresponding weight row
𝝏𝒉ℓ

𝝏𝒉ℓ−𝟏 = 𝑾

𝝏𝑳

𝝏𝑾
=

𝝏𝑳

𝝏𝒉ℓ

𝝏𝒉ℓ

𝝏𝑾

𝒉ℓ = 𝑾 𝒉ℓ−𝟏

Define:

𝒉𝒊
ℓ = 𝒘𝒊

𝑻𝒉ℓ−𝟏

Find
𝝏𝒉ℓ

𝝏𝒘𝒊
𝑻

𝒘𝒊
𝑻=

Fully Connected (FC) Layer

𝝏𝑳

𝝏𝒉ℓ−𝟏

𝝏𝑳

𝝏𝒉ℓ

𝝏𝑳

𝝏𝑾

Note doing this on full W
matrix would result in

Jacobian tensor!

But it is sparse – each

output only affected by

corresponding weight row𝝏𝒉ℓ

𝝏𝒉ℓ−𝟏 = 𝑾

𝝏𝑳

𝝏𝒘𝒊
𝑻 =

𝝏𝑳

𝝏𝒉ℓ

𝝏𝒉ℓ

𝝏𝒘𝒊
𝑻

𝝏𝒉𝒊
ℓ

𝝏𝒘𝒊
𝑻

𝟎

𝟎

𝟏 × |𝒉ℓ−𝟏| |𝒉ℓ| × |𝒉ℓ−𝟏|𝟏 × |𝒉ℓ|

𝒉ℓ = 𝑾𝒉ℓ−𝟏

𝝏𝒉𝒊
ℓ

𝝏𝒘𝒊
𝑻 = 𝒉 ℓ−𝟏 ,𝑻

Define:

𝒉𝒊
ℓ = 𝒘𝒊

𝑻𝒉ℓ−𝟏

𝝏𝑳

𝝏𝑾

Iterate and populate

Note can simplify/vectorize!

We can employ any differentiable

(or piecewise differentiable)

function

A common choice is the Rectified

Linear Unit

⬣ Provides non-linearity but better

gradient flow than sigmoid

⬣ Performed element-wise

How many parameters for this layer?

Rectified Linear Unit (ReLU)

ReLU

Logisti

c

2

1.

8
1.

6
1.

4
1.

2
1

0.

8
0.

6
0.

4
0.

2
0

-2 -

1.

5

-1 -

0.

5

0 0.

5

1 1.

5

2

𝒉ℓ = 𝐦𝐚𝐱 𝟎, 𝒉ℓ−𝟏

max(0,_)

Full Jacobian of ReLU layer is large

(output dim x input dim)

⬣ But again it is sparse

⬣ Only diagonal values non-zero

because it is element-wise

⬣ An output value affected only by

corresponding input value

Max function funnels gradients

through selected max

⬣ Gradient will be zero if input

<= 0

Jacobian of ReLU

𝒉ℓ−𝟏 𝒉ℓ

𝑾

FunctionInput Output

Parameters

Forward: 𝒉ℓ = 𝐦𝐚𝐱(𝟎, 𝒉ℓ−𝟏)

Backward:
𝝏𝑳

𝝏𝒉ℓ−𝟏 =
𝝏𝑳

𝝏𝒉ℓ
𝝏𝒉ℓ

𝝏𝒉ℓ−𝟏

|𝒉ℓ × 𝒉ℓ−𝟏|

𝝏𝒉ℓ

𝝏𝒉ℓ−𝟏
= ቊ

𝟏
𝟎

𝒊𝒇 𝒉ℓ−𝟏 > 𝟎
𝒐𝒕𝒉𝒆𝒓𝒘𝒊𝒔𝒆

For diagonal

Figure adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

For element-wise ops, jacobian is sparse: off-diagonal entries always zero!

Never explicitly form Jacobian -- instead use elementwise multiplication

Figure adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Summary

• Neural networks involves composing simple functions into a

computation graph

• Optimization (updating weights) of this graph is through backpropagation

• Recursive algorithm: Gradient descent (partial derivatives) plus chain

rule

• Remaining questions:

• How does this work with vectors, matrices, tensors?

• Across a composed function? Next!

• How can we implement this algorithmically to make these

calculations automatic? Automatic Differentiation

Composition of Functions & Chain Rule

𝒇 𝒙 = 𝒈ℓ (𝒈ℓ−𝟏 … 𝒈𝟏 𝒙)

Composition of Functions:

A complex function (e.g. defined by a neural network):

𝒇 𝒈 𝒙 = (𝒇 ∘ 𝒈)(𝒙)

(Note you might find the opposite notation as well!)

(Many of these will be parameterized)

𝒇 𝒙 = 𝒈ℓ ∘ 𝒈ℓ−𝟏 … ∘ 𝒈𝟏(𝒙)

Scalar Case

𝐱 ∈ ℝ𝟏 z ∈ ℝ𝟏 y ∈ ℝ𝟏

𝒈𝟏

𝒚 = 𝒈𝟐 𝒈𝟏 𝒙

𝒈𝟐

𝜕𝑦

𝜕𝑥
=

𝜕𝑦

𝜕𝑧
∗

𝜕𝑧

𝜕𝑥

Scalar Multiplication

Vector Case

𝒙{∈ ℝ𝒅 𝒛{∈ ℝ𝒎 𝒚{∈ ℝ𝒄

𝒈𝟏

ℝ𝒅 → ℝ𝒎

𝒈𝟐

ℝ𝒎 → ℝ𝒄

𝜕 Ԧ𝑦

𝜕 Ԧ𝑥

= 𝜕 Ԧ𝑦

𝜕 Ԧ𝑧

𝜕 Ԧ𝑧

𝜕 Ԧ𝑥

Matrix Multiplication

𝐽𝒈𝟏∘𝒈𝟐 𝐽𝒈𝟏 𝐽𝒈𝟐

Jacobian View of Chain Rule

𝜕𝑦𝑖

𝜕𝑥𝑗

= 𝜕𝑦𝑖

𝜕𝑧𝑘

𝜕𝑧𝑘

𝜕𝑥𝑗

𝜕𝑦𝑖

𝜕𝑥𝑗
= ෍

𝑘

𝜕𝑦𝑖

𝜕𝑧𝑘
∗

𝜕𝑧𝑘

𝜕𝑥𝑗

Graphical View of Chain Rule

𝑥1

𝑥𝑑

𝑥𝑗

𝑧1

𝑧𝑚

𝑦1

𝑦𝑖

𝑦𝑐

𝜕𝑦𝑖

𝜕𝑥𝑗
= ෍

𝑘

𝜕𝑦𝑖

𝜕𝑧𝑘
∗

𝜕𝑧𝑘

𝜕𝑥𝑗

𝑘 paths

Chain Rule: Cascaded

ℎ0 ∈ ℝ𝑑 h1 ∈ ℝ𝒅 h𝑙 ∈ ℝ𝒅…

𝜕ℎ𝑙

𝜕ℎ1 =
𝜕ℎ𝑙

𝜕ℎ𝑙−1

𝜕ℎ𝑙−1

𝜕ℎ𝑙−2
…

𝜕ℎ2

𝜕ℎ1

=

Chain Rule: Cascaded

ℎ0 ∈ ℝ𝑑 h1 ∈ ℝ𝒅 h𝑙 ∈ ℝ𝒅…

𝝏𝑳

𝝏𝒉𝟏 =
𝜕ℎ𝑙

𝜕ℎ𝑙−1

𝜕ℎ𝑙−1

𝜕ℎ𝑙−2
…

𝜕ℎ2

𝜕ℎ1

=

Which directions is more efficient to multiply?

𝑳 ∈ ℝ𝟏

𝝏𝑳

𝝏𝒉𝒍

Example Gradient Computations

𝒘𝑻𝒙
𝟏

𝟏 + 𝒆−𝒖
−𝐥𝐨𝐠 𝒑

𝒖 𝒑 𝑳
ത𝑳 = 𝟏

ഥ𝒑 =
𝝏𝑳

𝝏𝒑
= −

𝟏

𝒑

where 𝒑 = 𝝈 𝒘𝑻𝒙 and 𝝈 𝒙 =
𝟏

𝟏+𝒆−𝒙

ഥ𝒖 =
𝝏𝑳

𝝏𝒖
=

𝝏𝑳

𝝏𝒑

𝝏𝒑

𝝏𝒖
= ഥ𝒑 𝝈 𝟏 − 𝝈

ഥ𝒘 =
𝝏𝑳

𝝏𝒘
=

𝝏𝑳

𝝏𝒖

𝝏𝒖

𝝏𝒘
= ഥ𝒖𝒙𝑻

We can do this in a combined way to see all terms

together:

ഥ𝒘 =
𝝏𝑳

𝝏𝒑

𝝏𝒑

𝝏𝒖

𝝏𝒖

𝝏𝒘
= −

𝟏

𝝈 𝒘𝑻𝒙
𝝈 𝒘𝑻𝒙 (𝟏 − 𝝈 𝒘𝑻𝒙)𝒙𝑻

 = − 𝟏 − 𝝈 𝒘𝑻𝒙 𝒙𝑻

This effectively shows gradient flow along path from

L to w

The chain rule can be

computed as a series of

scalar, vector, and matrix

linear algebra operations

Extremely efficient in

graphics processing units

(GPUs)

Vectorized Computations

𝒘𝑻𝒙
𝟏

𝟏 + 𝒆−𝒖
−𝐥𝐨𝐠 𝒑

𝒖 𝒑 𝑳

1xd

dx1

1x1 1x1

ഥ𝒘 = −
𝟏

𝝈 𝒘𝑻𝒙
𝝈 𝒘𝑻𝒙 (𝟏 − 𝝈 𝒘𝑻𝒙)𝒙𝑻

1xd1x11x11x1

Computation Graph /
Global View of Chain Rule

Computational / Tensor View

Backpropagation View
(Recursive Algorithm)

Graph View

Different Views of Equivalent Ideas

Summary

• Backpropagation: Recursive, modular algorithm for chain rule + gradient descent

• When we move to vectors and matrices:

• Composition of functions (scalar)

• Composition of functions (vectors/matrices)

• Jacobian view of chain rule

• Can view entire set of calculations as linear algebra operations (matrix-vector or

matrix-matrix multiplication)

• Automatic differentiation:

• Reduction of modules to simple operations we know (simple multiplication, etc.)

• Automatically build computation graph in background as write code

• Automatically compute gradients via backward pass

	Slide 1: CS 4644-DL / 7643-A Zsolt Kira
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20: Deep Learning = Differentiable Programming
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57

