

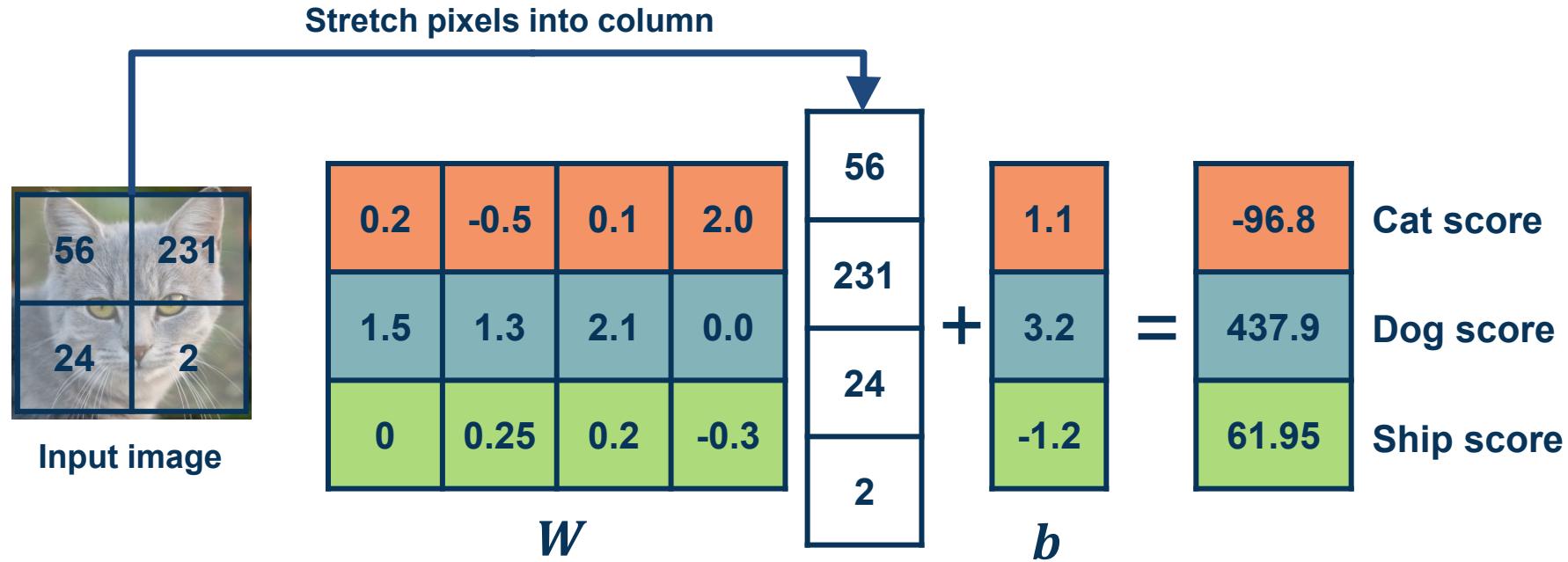
Topics:

- Backpropagation
- Matrix/Linear Algebra view

**CS 4644-DL / 7643-A
ZSOLT KIRA**

- **Assignment 1 out!**
 - Due Feb 4th
 - Start now, start now, start now!
 - Start now, start now, start now!
 - Start now, start now, start now!
- Resources:
 - These lectures
 - [Matrix calculus for deep learning](#)
 - [Gradients notes](#) and [MLP/ReLU Jacobian notes](#).
 - **Topic OH:** Assignment 1
- **In-class Quiz (30 mins) – Feb 11**
- Piazza: Project teaming thread
 - **Project Proposal: Feb. 14th, Project Check-in: Mar. 14th.**
 - Project proposal overview during my OH (Thursday 2pm ET, recorded)

Example with an image with 4 pixels, and 3 classes (cat/dog/ship)



Adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, from CS 231n

- ◆ If we use the softmax function to convert scores to probabilities, the right loss function to use is **cross-entropy**
- ◆ Can be derived by looking at the distance between two probability distributions (output of model and ground truth)
- ◆ Can also be derived from a maximum likelihood estimation perspective

$$s = f(x, W)$$

Scores

$$P(Y = k | X = x) = \frac{e^{s_k}}{\sum_j e^{s_j}}$$

Softmax Function

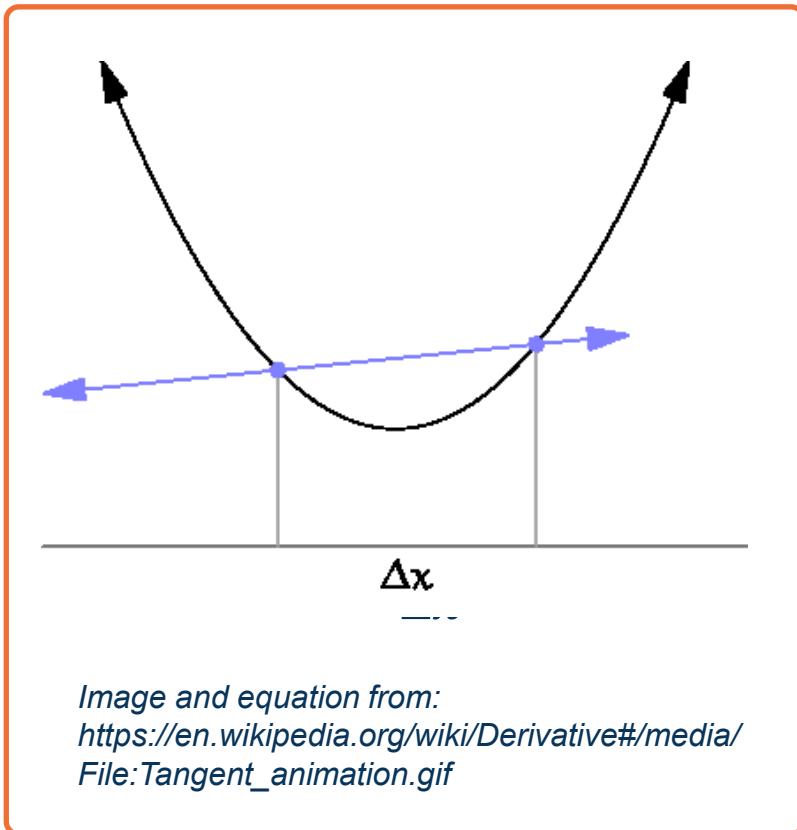
$$L_i = -\log P(Y = y_i | X = x_i)$$

Maximize log-prob of correct class =
 Maximize the log likelihood
 = Minimize the negative log likelihood

- ◆ We can find the steepest descent direction by computing the **derivative (gradient)**:

$$f'(a) = \lim_{h \rightarrow 0} \frac{f(a + h) - f(a)}{h}$$

- ◆ Steepest descent direction is the **negative gradient**
- ◆ **Intuitively:** Measures how the function changes as the argument a changes by a small step size
 - ◆ As step size goes to zero
- ◆ **In Machine Learning:** Want to know how the **loss function** changes as **weights** are varied
 - ◆ Can consider each parameter separately by taking **partial derivative** of loss function with respect to that parameter



- We can find the steepest descent direction by computing the **derivative (gradient)**:

$$f'(a) = \lim_{h \rightarrow 0} \frac{f(a + h) - f(a)}{h}$$

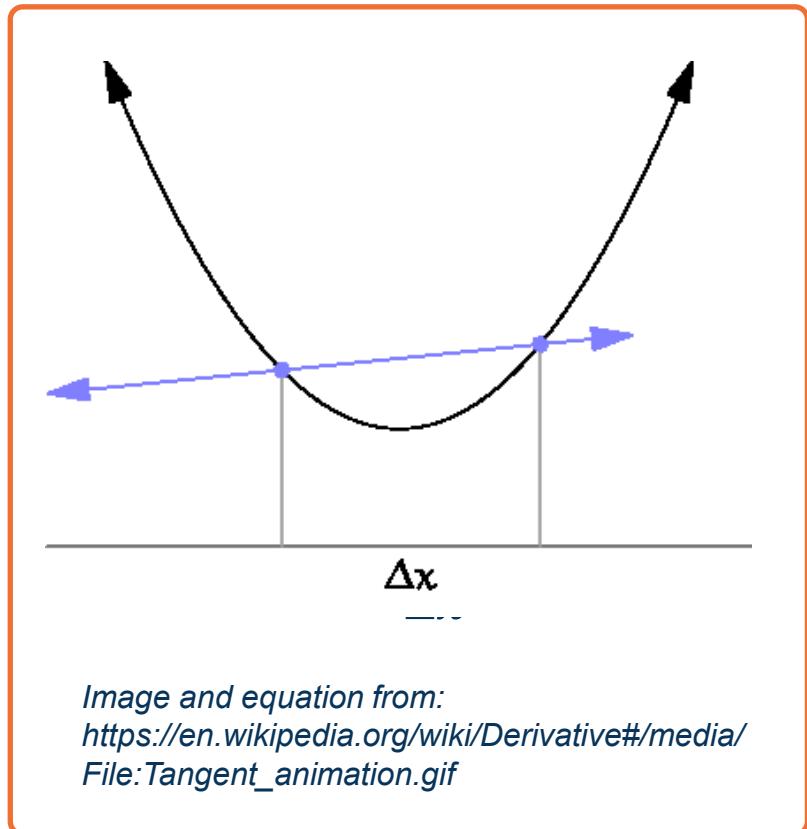
- In Deep Learning, gradient descent on **Loss** with respect to **parameters/weights**,

$$L \in \mathbb{R}, w \in \mathbb{R}^m$$

$$\frac{\partial L}{\partial w} = \left[\frac{\partial L}{\partial w_1}, \dots, \frac{\partial L}{\partial w_m} \right]$$

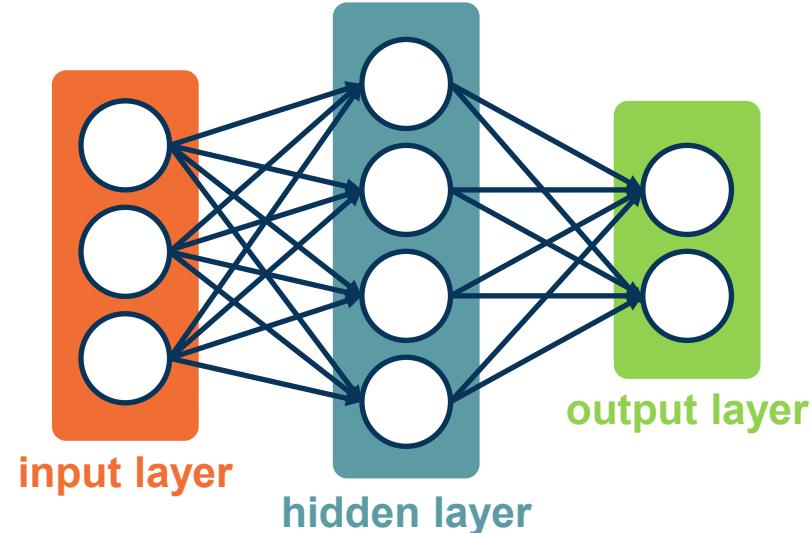
- Update rule is for each weight $w_i = w_i - \frac{\partial L}{\partial w_i}$

- (but of course we can vectorize operations)



The same two-layered neural network corresponds to adding another weight matrix

- ◆ We will prefer the linear algebra view, but use some terminology from neural networks (& biology)



$$x \quad W_1 \quad W_2$$

=

$$f(x, W_1, W_2) = \sigma(W_2 \sigma(W_1 x))$$

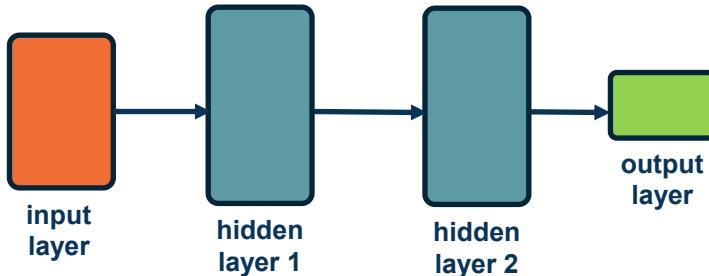
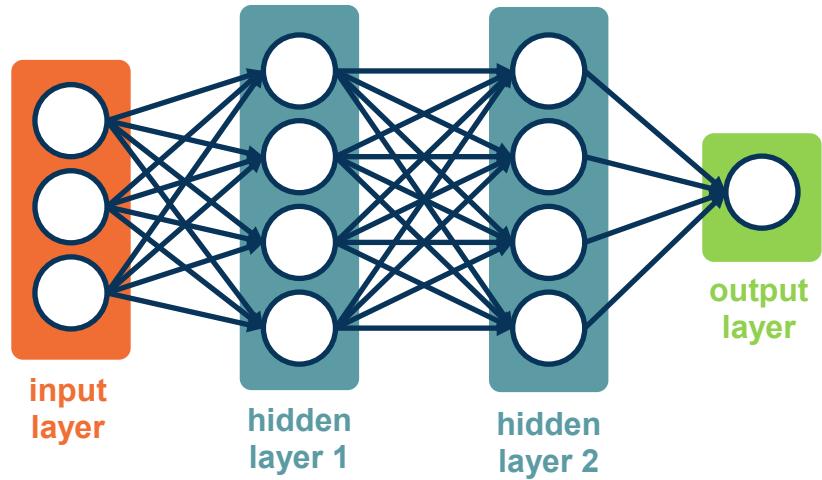
Figure adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Large (deep) networks can be built by adding more and more layers

Three-layered neural networks can represent **any function**

- ◆ The number of nodes could grow unreasonably (exponential or worse) with respect to the complexity of the function

We will show them **without edges**:

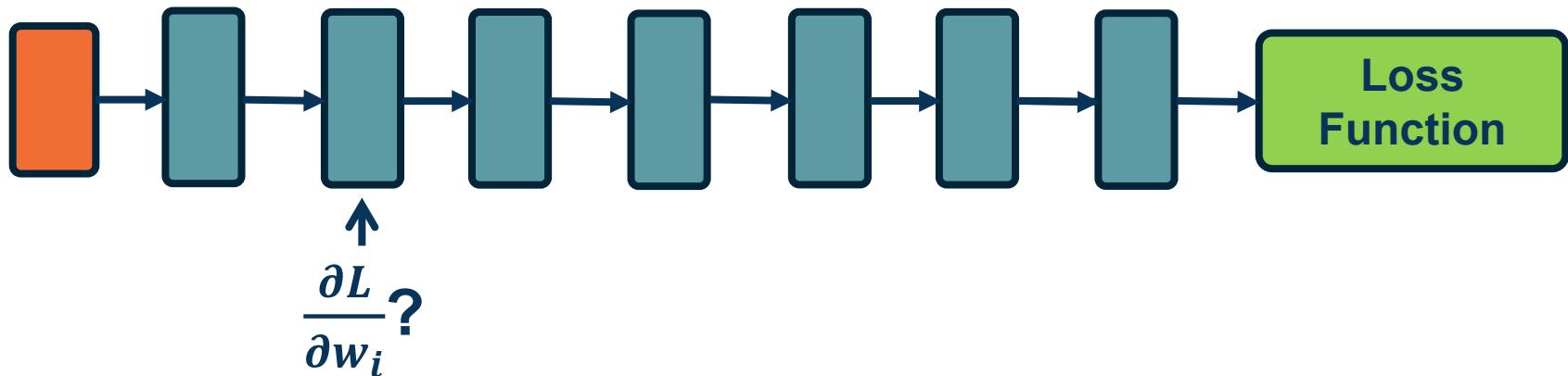


$$f(x, W_1, W_2, W_3) = \sigma(W_2 \sigma(W_1 x))$$

Figure adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Adding More Layers!

- ◆ We are learning **complex models** with significant amount of parameters (millions or billions)
- ◆ How do we compute the gradients of the **loss** (at the end) with respect to **internal** parameters?
- ◆ Intuitively, want to understand how **small changes** in weight deep inside are **propagated** to affect the **loss function** at the end



To develop a general algorithm for this, we will view the function as a **computation graph**

Graph can be any **directed acyclic graph (DAG)**

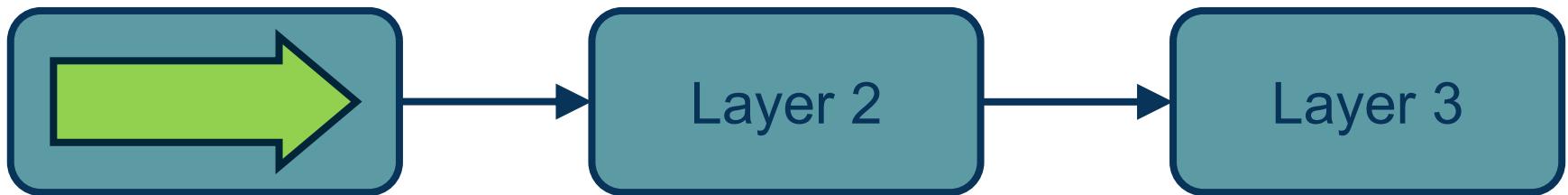
- ◆ Modules must be differentiable to support gradient computations for gradient descent

A **training algorithm** will then process this graph, **one module at a time**



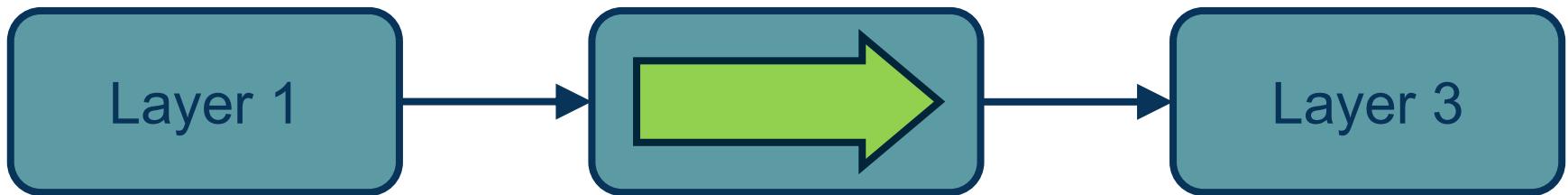
Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

Step 1: Compute Loss on Mini-Batch: **Forward Pass**



Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

Step 1: Compute Loss on Mini-Batch: **Forward Pass**



Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

Step 1: Compute Loss on Mini-Batch: **Forward Pass**

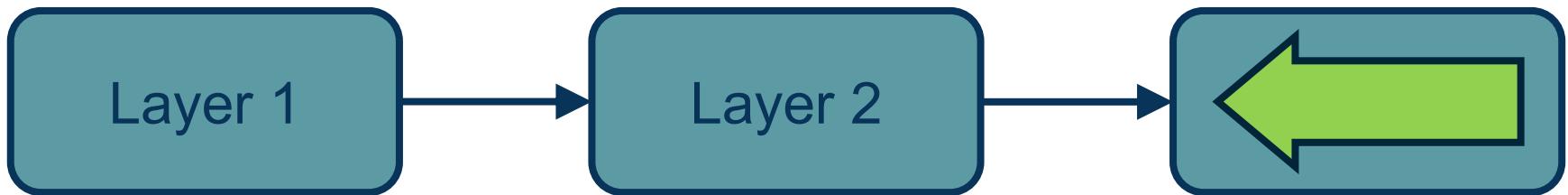
Note that we must store the **intermediate outputs of all layers!**

- ◆ This is because we will need them to **compute the gradients** (the gradient equations will have terms with the output values in them)

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

Step 1: Compute Loss on Mini-Batch: Forward Pass

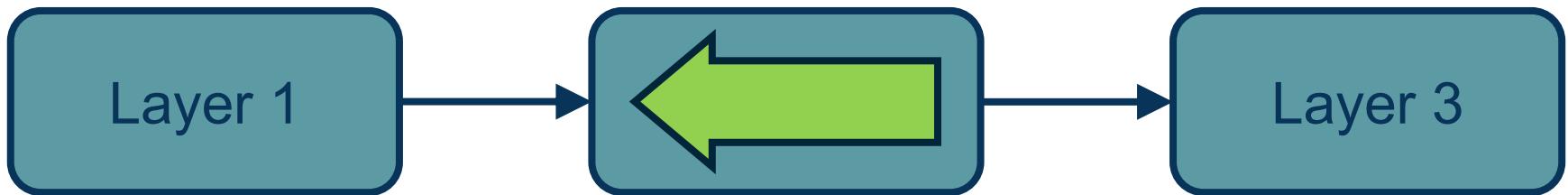
Step 2: Compute Gradients wrt parameters: Backward Pass



Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

Step 1: Compute Loss on Mini-Batch: Forward Pass

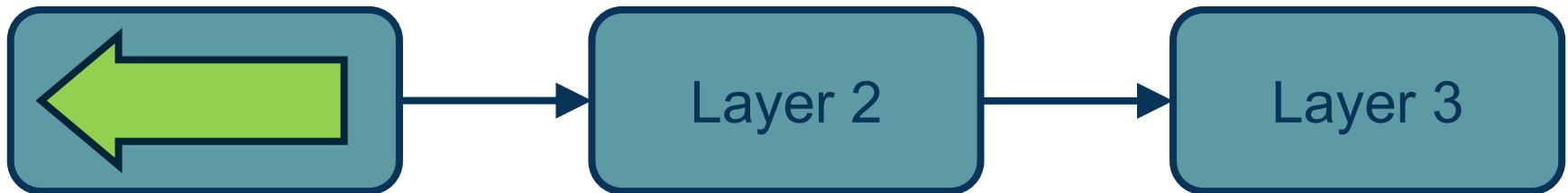
Step 2: Compute Gradients wrt parameters: Backward Pass



Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

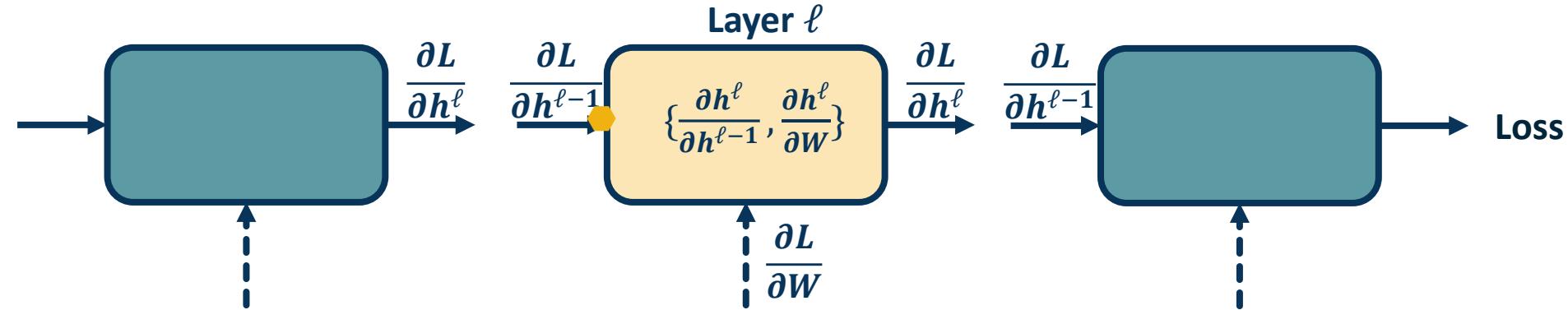
Step 1: Compute Loss on Mini-Batch: Forward Pass

Step 2: Compute Gradients wrt parameters: Backward Pass



Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

- We want to compute: $\left\{ \frac{\partial L}{\partial h^{\ell-1}}, \frac{\partial L}{\partial W} \right\}$



- We will use the *chain rule* to do this:

$$\text{Chain Rule: } \frac{\partial z}{\partial x} = \frac{\partial z}{\partial y} \cdot \frac{\partial y}{\partial x}$$

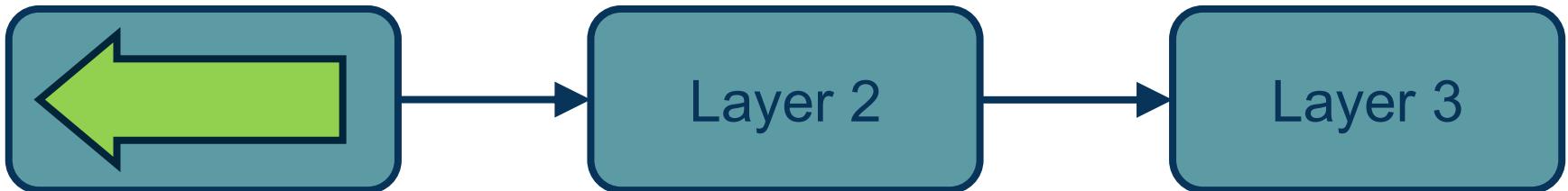
$$\frac{\partial L}{\partial h^{\ell-1}} = \frac{\partial L}{\partial h^\ell} \frac{\partial h^\ell}{\partial h^{\ell-1}}$$

$$\frac{\partial L}{\partial W} = \frac{\partial L}{\partial h^\ell} \frac{\partial h^\ell}{\partial W}$$

Step 1: Compute Loss on Mini-Batch: Forward Pass

Step 2: Compute Gradients wrt parameters: Backward Pass

Step 3: Use gradient to update all parameters at the end



$$w_i = w_i - \alpha \frac{\partial L}{\partial w_i}$$

Backpropagation is the application of gradient descent to a computation graph via the chain rule!

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

Backpropagation: a simple example

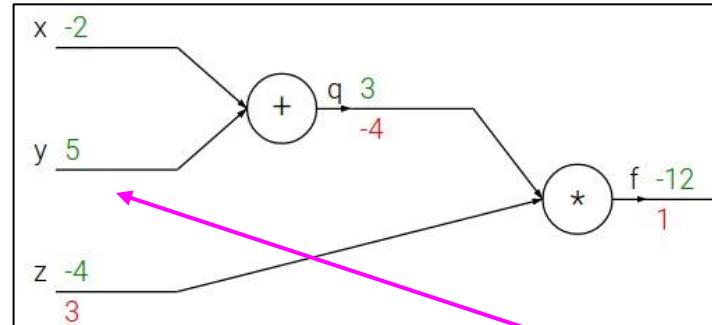
$$f(x, y, z) = (x + y)z$$

e.g. $x = -2$, $y = 5$, $z = -4$

$$q = x + y \quad \frac{\partial q}{\partial x} = 1, \frac{\partial q}{\partial y} = 1$$

$$f = qz \quad \frac{\partial f}{\partial q} = z, \frac{\partial f}{\partial z} = q$$

Want: $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}$



Chain rule:

$$\frac{\partial f}{\partial y} = \frac{\partial f}{\partial q} \frac{\partial q}{\partial y}$$

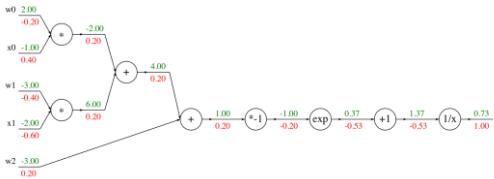
Upstream gradient Local gradient

Deep Learning = Differentiable Programming

- Computation = Graph
 - Input = Data + Parameters
 - Output = Loss
 - Scheduling = Topological ordering
- What do we need to do?
 - Generic code for representing the graph of modules
 - Specify modules (both forward and backward function)
 - Backpropagation implementation on the graph

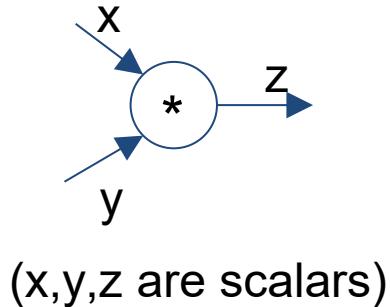
Modularized implementation: forward / backward API

Graph (or Net) object (*rough psuedo code*)



```
class ComputationalGraph(object):  
    #...  
    def forward(inputs):  
        # 1. [pass inputs to input gates...]  
        # 2. forward the computational graph:  
        for gate in self.graph.nodes_topologically_sorted():  
            gate.forward()  
        return loss # the final gate in the graph outputs the loss  
    def backward():  
        for gate in reversed(self.graph.nodes_topologically_sorted()):  
            gate.backward() # little piece of backprop (chain rule applied)  
        return inputs_gradients
```

Modularized implementation: forward / backward API

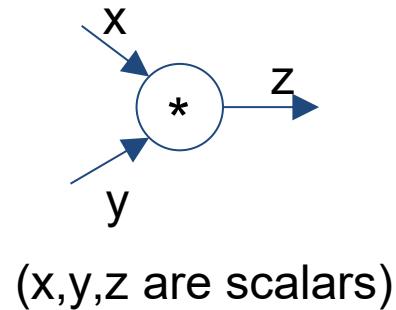


```
class MultiplyGate(object):  
    def forward(x,y):  
        z = x*y  
        return z  
    def backward(dz):  
        # dx = ... #todo  
        # dy = ... #todo  
        return [dx, dy]
```

$$\frac{\partial L}{\partial z}$$

$$\frac{\partial L}{\partial x}$$

Modularized implementation: forward / backward API



```
class MultiplyGate(object):  
    def forward(x,y):  
        z = x*y  
        self.x = x # must keep these around!  
        self.y = y  
        return z  
    def backward(dz):  
        dx = self.y * dz # [dz/dx * dL/dz]  
        dy = self.x * dz # [dz/dy * dL/dz]  
        return [dx, dy]
```

Example: Caffe layers

Branch: master → [caffe](#) / [src](#) / [caffe](#) / [layers](#) /

[Create new file](#) [Upload files](#) [Find file](#) [History](#)

shelhamer committed on GitHub Merge pull request #4630 from BiGene/load_hdf5_fix ...	Latest commit e687a71 21 days ago
..	
absval_layer.cpp dismantle layer headers	a year ago
absval_layer.cu dismantle layer headers	a year ago
accuracy_layer.cpp dismantle layer headers	a year ago
argmax_layer.cpp dismantle layer headers	a year ago
base_conv_layer.cpp enable dilated deconvolution	a year ago
base_data_layer.cpp Using default from proto for prefetch	3 months ago
base_data_layer.cu Switched multi-GPU to NCCL	3 months ago
batch_norm_layer.cpp Add missing spaces besides equal signs in batch_norm_layer.cpp	4 months ago
batch_norm_layer.cu dismantle layer headers	a year ago
batch_reindex_layer.cpp dismantle layer headers	a year ago
batch_reindex_layer.cu dismantle layer headers	a year ago
bias_layer.cpp Remove incorrect cast of gemm int arg to Dtype in BiasLayer	a year ago
bias_layer.cu Separation and generalization of ChannelwiseAffineLayer into BiasLayer	a year ago
bnll_layer.cpp dismantle layer headers	a year ago
bnll_layer.cu dismantle layer headers	a year ago
concat_layer.cpp dismantle layer headers	a year ago
concat_layer.cu dismantle layer headers	a year ago
contrastive_loss_layer.cpp dismantle layer headers	a year ago
contrastive_loss_layer.cu dismantle layer headers	a year ago
conv_layer.cpp add support for 2D dilated convolution	a year ago
conv_layer.cu dismantle layer headers	a year ago
crop_layer.cpp remove redundant operations in Crop layer (#5138)	2 months ago
crop_layer.cu remove redundant operations in Crop layer (#5138)	2 months ago
cudnn_conv_layer.cpp dismantle layer headers	a year ago
cudnn_conv_layer.cu Add cuDNN v5 support, drop cuDNN v3 support	11 months ago

cudnn_lcn_layer.cpp	dismantle layer headers	a year ago
cudnn_lcn_layer.cu	dismantle layer headers	a year ago
cudnn_lrn_layer.cpp	dismantle layer headers	a year ago
cudnn_lrn_layer.cu	dismantle layer headers	a year ago
cudnn_pooling_layer.cpp	dismantle layer headers	a year ago
cudnn_pooling_layer.cu	dismantle layer headers	a year ago
cudnn_relu_layer.cpp	Add cuDNN v5 support, drop cuDNN v3 support	11 months ago
cudnn_relu_layer.cu	Add cuDNN v5 support, drop cuDNN v3 support	11 months ago
cudnn_sigmoid_layer.cpp	Add cuDNN v5 support, drop cuDNN v3 support	11 months ago
cudnn_sigmoid_layer.cu	Add cuDNN v5 support, drop cuDNN v3 support	11 months ago
cudnn_softmax_layer.cpp	dismantle layer headers	a year ago
cudnn_softmax_layer.cu	dismantle layer headers	a year ago
cudnn_tanh_layer.cpp	Add cuDNN v5 support, drop cuDNN v3 support	11 months ago
cudnn_tanh_layer.cu	Add cuDNN v5 support, drop cuDNN v3 support	11 months ago
data_layer.cpp	Switched multi-GPU to NCCL	3 months ago
deconv_layer.cpp	enable dilated deconvolution	a year ago
deconv_layer.cu	dismantle layer headers	a year ago
dropout_layer.cpp	supporting N-D Blobs in Dropout layer Reshape	a year ago
dropout_layer.cu	dismantle layer headers	a year ago
dummy_data_layer.cpp	dismantle layer headers	a year ago
eltwise_layer.cpp	dismantle layer headers	a year ago
eltwise_layer.cu	dismantle layer headers	a year ago
elu_layer.cpp	ELU layer with basic tests	a year ago
elu_layer.cu	ELU layer with basic tests	a year ago
embed_layer.cpp	dismantle layer headers	a year ago
embed_layer.cu	dismantle layer headers	a year ago
euclidean_loss_layer.cpp	dismantle layer headers	a year ago
euclidean_loss_layer.cu	dismantle layer headers	a year ago
exp_layer.cpp	Solving issue with exp layer with base e	a year ago
exp_layer.cu	dismantle layer headers	a year ago

Caffe Sigmoid Layer

```
1 #include <cmath>
2 #include <vector>
3
4 #include "caffe/layers/sigmoid_layer.hpp"
5
6 namespace caffe {
7
8     template <typename Dtype>
9     inline Dtype sigmoid(Dtype x) {
10         return 1. / (1. + exp(-x));
11     }
12
13     template <typename Dtype>
14     void SigmoidLayer<Dtype>::Forward_cpu(const vector<Blob<Dtype>>& bottom,
15         const vector<Blob<Dtype>>& top) {
16         const Dtype* bottom_data = bottom[0]->cpu_data();
17         Dtype* top_data = top[0]->mutable_cpu_data();
18         const int count = bottom[0]->count();
19         for (int i = 0; i < count; ++i) {
20             top_data[i] = sigmoid(bottom_data[i]);
21         }
22     }
23
24     template <typename Dtype>
25     void SigmoidLayer<Dtype>::Backward_cpu(const vector<Blob<Dtype>>& top,
26         const vector<blob>& propagate_down,
27         const vector<Blob<Dtype>>& bottom) {
28         if (propagate_down[0]) {
29             const Dtype* top_data = top[0]->cpu_data();
30             const Dtype* top_diff = top[0]->cpu_diff();
31             Dtype* bottom_diff = bottom[0]->mutable_cpu_diff();
32             const int count = bottom[0]->count();
33             for (int i = 0; i < count; ++i) {
34                 const Dtype sigmoid_x = top_data[i];
35                 bottom_diff[i] = top_diff[i] * sigmoid_x * (1. - sigmoid_x);
36             }
37         }
38     }
39
40 #ifdef CPU_ONLY
41 STUB_GPU(SigmoidLayer);
42#endif
43
44 INSTANTIATE_CLASS(SigmoidLayer);
45
46
47 } // namespace caffe
```

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

$$(1 - \sigma(x)) \sigma(x) * \text{top_diff} \text{ (chain rule)}$$

- Neural networks involves composing simple functions into a **computation graph**
- Optimization (updating weights) of this graph is through backpropagation
 - Recursive algorithm: Gradient descent (partial derivatives) plus chain rule
- Remaining questions:
 - How does this work with vectors, matrices, tensors?
 - Across a composed function?
 - How can we implement this algorithmically to make these calculations automatic? **Automatic Differentiation**

Linear Algebra View: Vector and Matrix Sizes

$$\begin{bmatrix} w_{11} & w_{12} & \cdots & w_{1m} & b_1 \\ w_{21} & w_{22} & \cdots & w_{2m} & b_2 \\ w_{31} & w_{32} & \cdots & w_{3m} & b_3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_m \\ 1 \end{bmatrix}$$

W

x

Sizes: $[c \times (m + 1)]$ $[(m + 1) \times 1]$

Where c is number of classes

m is dimensionality of input

Conventions:

- Size of derivatives for scalars, vectors, and matrices:

Assume we have scalar $s \in \mathbb{R}^1$, vector $v \in \mathbb{R}^m$, i.e. $v = [v_1, v_2, \dots, v_m]^T$ and matrix $M \in \mathbb{R}^{m_1 \times m_2}$

	s []	v []	M []
s	$\frac{\partial s_1}{\partial s_2}$ []	$\frac{\partial s}{\partial v}$ []	$\frac{\partial s}{\partial M}$ []
v	$\frac{\partial v}{\partial s}$ []	$\frac{\partial v_1}{\partial v_2}$ []	
M	$\frac{\partial M}{\partial s}$ []		

Tensors

Conventions:

- ◆ Size of derivatives for scalars, vectors, and matrices:
Assume we have scalar $s \in \mathbb{R}^1$, vector $\nu \in \mathbb{R}^m$, i.e. $\nu = [\nu_1, \nu_2, \dots, \nu_m]^T$ and matrix $M \in \mathbb{R}^{m_1 \times m_2}$
- ◆ What is the size of $\frac{\partial \nu}{\partial s}$? $\mathbb{R}^{m \times 1}$ (column vector of size m)
- ◆ What is the size of $\frac{\partial s}{\partial \nu}$? $\mathbb{R}^{1 \times m}$ (row vector of size m)

$$\begin{bmatrix} \frac{\partial \nu_1}{\partial s} \\ \frac{\partial \nu_2}{\partial s} \\ \vdots \\ \frac{\partial \nu_m}{\partial s} \end{bmatrix}$$

$$\left[\frac{\partial s}{\partial \nu_1} \frac{\partial s}{\partial \nu_2} \dots \frac{\partial s}{\partial \nu_m} \right]$$

Conventions:

- What is the size of $\frac{\partial v^1}{\partial v^2}$? A matrix:

Row i

Col j

$$\begin{bmatrix} \frac{\partial v_1^1}{\partial v_1^2} & \cdots & \cdots & \cdots & \cdots \\ \cdots & \cdots & \cdots & \cdots & \cdots \\ \frac{\partial v_i^1}{\partial v_1^2} & \cdots & \frac{\partial v_i^1}{\partial v_j^2} & \cdots & \frac{\partial v_i^1}{\partial v_{m_2}^2} \\ \cdots & \cdots & \cdots & \cdots & \cdots \\ \cdots & \cdots & \cdots & \cdots & \cdots \end{bmatrix} \quad m_1 \times m_2$$

- This matrix of partial derivatives is called a **Jacobian**

(Note this is slightly different convention than on [Wikipedia](#)). Also, computationally other conventions are used.

Conventions:

- ◆ What is the size of $\frac{\partial s}{\partial M}$? A matrix:

$$\begin{bmatrix} \frac{\partial s}{\partial m_{[1,1]}} & \cdots & \cdots & \cdots & \cdots \\ \cdots & \cdots & \cdots & \cdots & \cdots \\ \cdots & \cdots & \frac{\partial s}{\partial m_{[i,j]}} & \cdots & \cdots \\ \cdots & \cdots & \cdots & \cdots & \cdots \\ \cdots & \cdots & \cdots & \cdots & \cdots \end{bmatrix}$$

(Note this is slightly different convention than on [Wikipedia](#)). Also, computationally other conventions are used.

Example 1:

$$y = \begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = \begin{bmatrix} x \\ x^2 \end{bmatrix} \quad \frac{\partial y}{\partial x} = \begin{bmatrix} 1 \\ 2x \end{bmatrix}$$

Example 2:

$$y = \mathbf{w}^T \mathbf{x} = \sum_k w_k x_k$$

$$\begin{aligned} \frac{\partial y}{\partial x} &= \left[\frac{\partial y}{\partial x_1}, \dots, \frac{\partial y}{\partial x_m} \right] \\ &= [\mathbf{w}_1, \dots, \mathbf{w}_m] \quad \text{because} \\ &= \mathbf{w}^T \end{aligned}$$

$$\frac{\partial (\sum_k w_k x_k)}{\partial x_i} = w_i$$

Examples

Example 3:

$$y = Wx \quad \frac{\partial y}{\partial x} = W$$

Row i
$$\begin{bmatrix} \frac{\partial y_1}{\partial x_1} & \dots & \dots & \dots & \dots \\ \dots & \dots & \dots & \dots & \dots \\ \dots & \dots & \frac{\partial y_i}{\partial x_j} & \dots & \dots \\ \dots & \dots & \dots & \dots & \dots \\ \dots & \dots & \dots & \dots & \dots \end{bmatrix} = \begin{bmatrix} \dots & \dots & \dots & \dots & \dots & \dots \\ \dots & \dots & \dots & \dots & \dots & \dots \\ \dots & \dots & \mathbf{w}_{ij} & \dots & \dots & \dots \\ \dots & \dots & \dots & \dots & \dots & \dots \\ \dots & \dots & \dots & \dots & \dots & \dots \end{bmatrix}$$

$$y_i = \sum_j w_{ij} x_j$$

Example 4:

$$\frac{\partial (w^T A w)}{\partial w} = 2w^T A \text{ (assuming A is symmetric)}$$

Examples

- ◆ What is the size of $\frac{\partial L}{\partial w}$?
- ◆ Remember that loss is a **scalar** and W is a matrix:

$$\begin{bmatrix} w_{11} & w_{12} & \cdots & w_{1m} & b_1 \\ w_{21} & w_{22} & \cdots & w_{2m} & b_2 \\ w_{31} & w_{32} & \cdots & w_{3m} & b_3 \end{bmatrix}$$

Jacobian is also a matrix:

W

$$\begin{bmatrix} \frac{\partial L}{\partial w_{11}} & \frac{\partial L}{\partial w_{12}} & \cdots & \frac{\partial L}{\partial w_{1m}} & \frac{\partial L}{\partial b_1} \\ \frac{\partial L}{\partial w_{21}} & \cdots & \cdots & \frac{\partial L}{\partial w_{2m}} & \frac{\partial L}{\partial b_2} \\ \cdots & \cdots & \cdots & \frac{\partial L}{\partial w_{3m}} & \frac{\partial L}{\partial b_3} \end{bmatrix}$$

Batches of data are **matrices** or **tensors** (multi-dimensional matrices)

Examples:

- Each instance is a vector of size m , our batch is of size $[B \times m]$
- Each instance is a matrix (e.g. grayscale image) of size $W \times H$, our batch is $[B \times W \times H]$
- Each instance is a multi-channel matrix (e.g. color image with R,B,G channels) of size $C \times W \times H$, our batch is $[B \times C \times W \times H]$

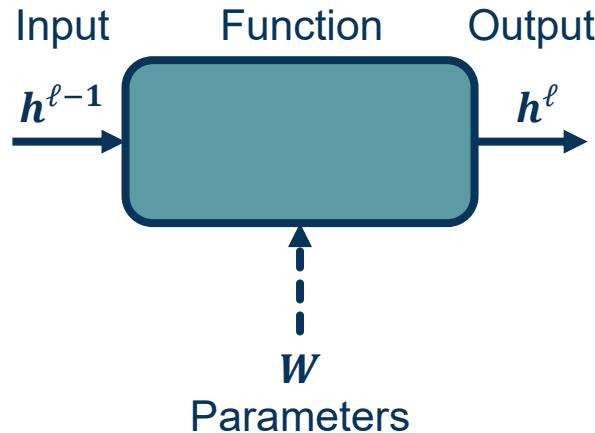
Jacobians become tensors which is complicated

- Instead, flatten input to a vector and get a vector of derivatives!
- This can also be done for partial derivatives between two vectors, two matrices, or two tensors

$$\begin{bmatrix} x_{11} & x_{12} & \cdots & x_{1n} \\ x_{21} & x_{22} & \cdots & x_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ x_{n1} & x_{n2} & \cdots & x_{nn} \end{bmatrix}$$

Flatten

$$\begin{bmatrix} x_{11} \\ x_{12} \\ \vdots \\ x_{21} \\ x_{22} \\ \vdots \\ x_{n1} \\ \vdots \\ x_{nn} \end{bmatrix}$$



Define:

$$h_i^\ell = w_i^T h^{l-1}$$

$$h^\ell = Wh^{l-1}$$

$$\begin{bmatrix} & & & \end{bmatrix} \begin{bmatrix} & \xleftarrow{w_i^T} & \end{bmatrix} \begin{bmatrix} & & & \end{bmatrix}$$

$$|h^\ell| \times 1 \quad |h^\ell| \times |h^{l-1}| \quad |h^{l-1}| \times 1$$

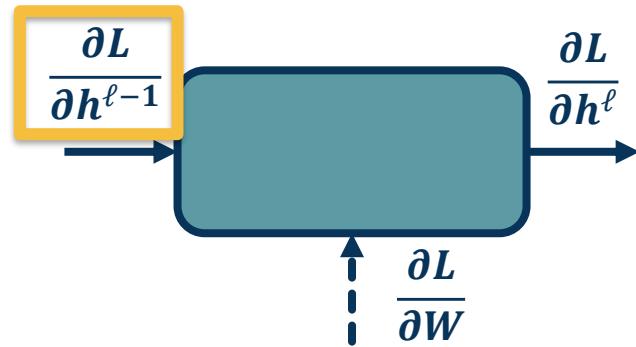
Fully Connected (FC) Layer: Forward Function

$$\mathbf{h}^\ell = \mathbf{W}\mathbf{h}^{\ell-1}$$

$$\frac{\partial \mathbf{h}^\ell}{\partial \mathbf{h}^{\ell-1}} = \mathbf{W}$$

Define:

$$\mathbf{h}_i^\ell = \mathbf{w}_i^T \mathbf{h}^{\ell-1}$$



$$\frac{\partial L}{\partial \mathbf{h}^{\ell-1}} = \frac{\partial L}{\partial \mathbf{h}^\ell} \frac{\partial \mathbf{h}^\ell}{\partial \mathbf{h}^{\ell-1}}$$

[] [] []

$$1 \times |\mathbf{h}^{\ell-1}| \quad 1 \times |\mathbf{h}^\ell| \quad |\mathbf{h}^\ell| \times |\mathbf{h}^{\ell-1}|$$

Fully Connected (FC) Layer

$$h^\ell = Wh^{\ell-1}$$

$$\frac{\partial h^\ell}{\partial h^{\ell-1}} = W$$

Define:

$$h_i^\ell = w_i^T h^{\ell-1}$$

Note doing this on full W matrix would result in Jacobian tensor!

But it is *sparse* – each output only affected by corresponding weight row

A large purple 'X' is drawn across the equation $\frac{\partial L}{\partial W} = \frac{\partial L}{\partial h^\ell} \frac{\partial h^\ell}{\partial W}$. The term $\frac{\partial L}{\partial W}$ is highlighted with a yellow box. This visualizes that the Jacobian tensor is sparse, as only the row of weights corresponding to the output unit h^ℓ contributes to the loss function's derivative with respect to the weights W .

$$\frac{\partial L}{\partial W} = \frac{\partial L}{\partial h^\ell} \frac{\partial h^\ell}{\partial W}$$

Note doing this on full W matrix would result in Jacobian tensor!

But it is *sparse* – each output only affected by corresponding weight row

$$\frac{\partial h^\ell}{\partial h^{\ell-1}} = W$$

Define:

$$h_i^\ell = w_i^T h^{\ell-1}$$

~~$$\frac{\partial L}{\partial W} \neq \frac{\partial L}{\partial h^\ell} \frac{\partial h^\ell}{\partial W}$$~~

Find $\frac{\partial h^\ell}{\partial w_i^T}$

$$\begin{bmatrix} & & \end{bmatrix} = \begin{bmatrix} & & \end{bmatrix} \xleftarrow{w_i^T} \begin{bmatrix} & & \end{bmatrix} = W \quad h^{\ell-1}$$

Fully Connected (FC) Layer

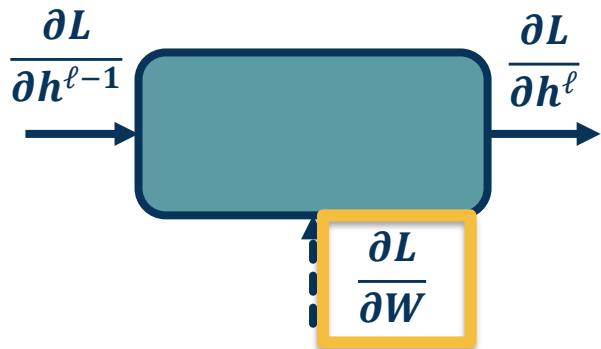
$$\mathbf{h}^\ell = \mathbf{W}\mathbf{h}^{\ell-1}$$

$$\frac{\partial \mathbf{h}^\ell}{\partial \mathbf{h}^{\ell-1}} = \mathbf{W}$$

Define:

$$\mathbf{h}_i^\ell = \mathbf{w}_i^T \mathbf{h}^{\ell-1}$$

$$\frac{\partial \mathbf{h}_i^\ell}{\partial \mathbf{w}_i^T} = \mathbf{h}^{(\ell-1),T}$$



Note doing this on full \mathbf{W} matrix would result in Jacobian tensor!

But it is *sparse* – each output only affected by corresponding weight row

$$\frac{\partial L}{\partial \mathbf{w}_i^T} = \frac{\partial L}{\partial \mathbf{h}^\ell} \frac{\partial \mathbf{h}^\ell}{\partial \mathbf{w}_i^T}$$
$$\left[\quad \right] \left[\quad \right] \left[\begin{array}{c} \leftarrow 0 \rightarrow \\ \leftarrow \frac{\partial \mathbf{h}_i^\ell}{\partial \mathbf{w}_i^T} \rightarrow \\ \leftarrow 0 \rightarrow \end{array} \right]$$

$$\frac{\partial L}{\partial \mathbf{W}}$$
$$\left[\quad \right]$$

Iterate and populate
Note can simplify/vectorize!

$1 \times |\mathbf{h}^{\ell-1}| \quad 1 \times |\mathbf{h}^\ell| \quad |\mathbf{h}^\ell| \times |\mathbf{h}^{\ell-1}|$

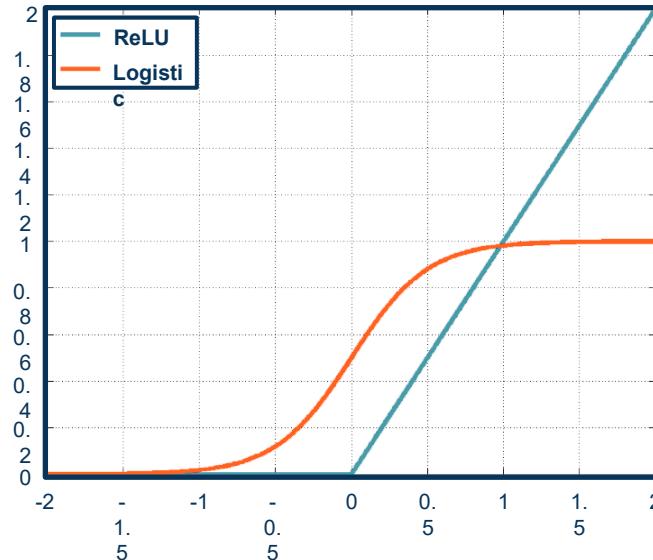
Fully Connected (FC) Layer

We can employ any differentiable (or piecewise differentiable) function

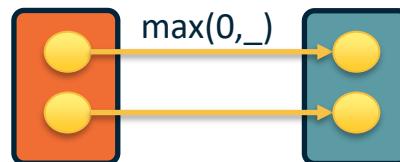
A common choice is the **Rectified Linear Unit**

- ◆ Provides non-linearity but better gradient flow than sigmoid
- ◆ Performed **element-wise**

How many parameters for this layer?



$$h^\ell = \max(0, h^{\ell-1})$$



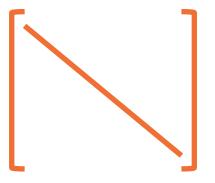
Rectified Linear Unit (ReLU)

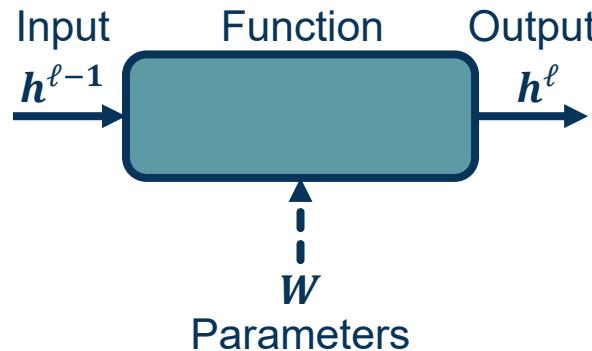
Full Jacobian of ReLU layer is **large**
(output dim x input dim)

- But again it is **sparse**
- Only **diagonal values non-zero** because it is element-wise
- An output value affected only by **corresponding input value**

Max function **funnels gradients** through **selected max**

- Gradient will be **zero** if input ≤ 0

$$|h^\ell \times h^{\ell-1}|$$




Forward: $h^\ell = \max(0, h^{\ell-1})$

Backward: $\frac{\partial L}{\partial h^{\ell-1}} = \frac{\partial L}{\partial h^\ell} \frac{\partial h^\ell}{\partial h^{\ell-1}}$

For diagonal

$$\frac{\partial h^\ell}{\partial h^{\ell-1}} = \begin{cases} 1 & \text{if } h^{\ell-1} > 0 \\ 0 & \text{otherwise} \end{cases}$$

4D input x:

$\begin{bmatrix} 1 \\ -2 \\ 3 \\ -1 \end{bmatrix}$

$$f(x) = \max(0, x)$$

(elementwise)

4D output z:

 $\begin{bmatrix} 1 \\ 0 \\ 3 \\ 0 \end{bmatrix}$

What does $\frac{\partial z}{\partial x}$ look like?

4D dL/dz :

Upstream gradient

4D input x:

$$\begin{bmatrix} 1 \\ -2 \\ 3 \\ -1 \end{bmatrix} \longrightarrow$$

$$f(x) = \max(0, x)$$

(elementwise)

4D output z:

$$\longrightarrow \begin{bmatrix} 1 \\ 0 \\ 3 \\ 0 \end{bmatrix}$$

4D dL/dx :

$$\begin{bmatrix} 4 \\ 0 \\ 5 \\ 0 \end{bmatrix} \longleftarrow \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 4 \\ -1 \\ 5 \\ 9 \end{bmatrix}$$

4D dL/dz :

$$\begin{bmatrix} 4 \\ -1 \\ 5 \\ 9 \end{bmatrix} \longleftarrow \begin{bmatrix} 4 \\ -1 \\ 5 \\ 9 \end{bmatrix}$$

Upstream
gradient

For element-wise ops, jacobian is **sparse**: off-diagonal entries always zero!
 Never **explicitly** form Jacobian -- instead use elementwise multiplication

- Neural networks involves composing simple functions into a **computation graph**
- Optimization (updating weights) of this graph is through backpropagation
 - Recursive algorithm: Gradient descent (partial derivatives) plus chain rule
- Remaining questions:
 - How does this work with vectors, matrices, tensors?
 - Across a composed function? **Next!**
 - How can we implement this algorithmically to make these calculations automatic? **Automatic Differentiation**

Composition of Functions: $f(g(x)) = (f \circ g)(x)$

A complex function (e.g. defined by a neural network):

$$f(x) = g_\ell(g_{\ell-1}(\dots g_1(x)))$$

$$f(x) = g_\ell \circ g_{\ell-1} \dots \circ g_1(x)$$

(Many of these will be parameterized)

(Note you might find the opposite notation as well!)

$$x \in \mathbb{R}^1 \xrightarrow{g_1} z \in \mathbb{R}^1 \xrightarrow{g_2} y \in \mathbb{R}^1$$

$$y = g_2(g_1(x))$$

$$\frac{\partial y}{\partial x} = \frac{\partial y}{\partial z} * \frac{\partial z}{\partial x}$$

Scalar Multiplication

Scalar Case

$$\vec{x} \{ \in \mathbb{R}^d \longrightarrow \vec{z} \{ \in \mathbb{R}^m \longrightarrow \vec{y} \{ \in \mathbb{R}^c$$

$$g_1$$

$$g_2$$

$$\mathbb{R}^d \rightarrow \mathbb{R}^m$$

$$\mathbb{R}^m \rightarrow \mathbb{R}^c$$

$$\begin{bmatrix} \frac{\partial \vec{y}}{\partial \vec{x}} \\ J_{g_1 \circ g_2} \end{bmatrix} = \begin{bmatrix} \frac{\partial \vec{y}}{\partial \vec{z}} \\ J_{g_1} \end{bmatrix} \begin{bmatrix} \frac{\partial \vec{z}}{\partial \vec{x}} \\ J_{g_2} \end{bmatrix}$$

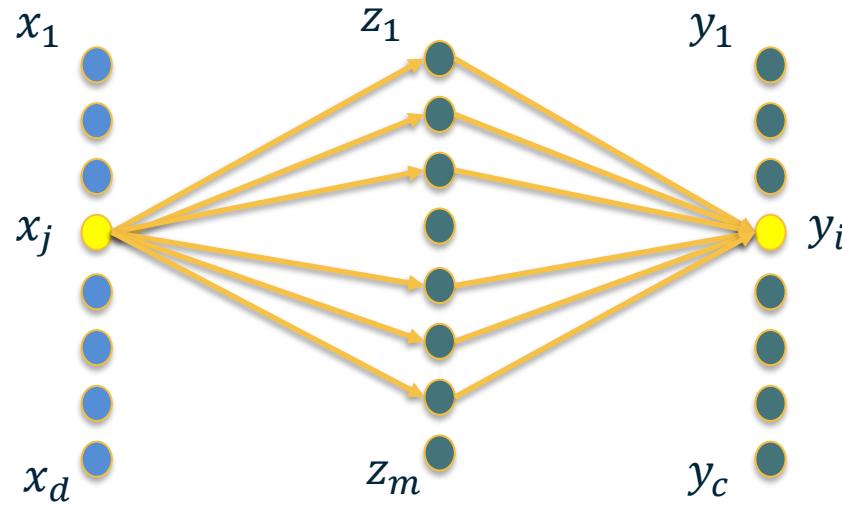
Matrix Multiplication

Vector Case

$$\left[\begin{array}{c} \frac{\partial y_i}{\partial x_j} \end{array} \right] = \left[\begin{array}{c} \frac{\partial y_i}{\partial z_k} \end{array} \right] \left[\begin{array}{c} \frac{\partial z_k}{\partial x_j} \end{array} \right]$$

$$\frac{\partial y_i}{\partial x_j} = \sum_k \frac{\partial y_i}{\partial z_k} * \frac{\partial z_k}{\partial x_j}$$

Jacobian View of Chain Rule



$$\frac{\partial y_i}{\partial x_j} = \sum_k \frac{\partial y_i}{\partial z_k} * \frac{\partial z_k}{\partial x_j}$$

k paths

Graphical View of Chain Rule

$$h^0 \in \mathbb{R}^d \longrightarrow h^1 \in \mathbb{R}^d \longrightarrow \dots \longrightarrow h^l \in \mathbb{R}^d$$

$$\frac{\partial h^l}{\partial h^1} = \frac{\partial h^l}{\partial h^{l-1}} \frac{\partial h^{l-1}}{\partial h^{l-2}} \dots \frac{\partial h^2}{\partial h^1}$$

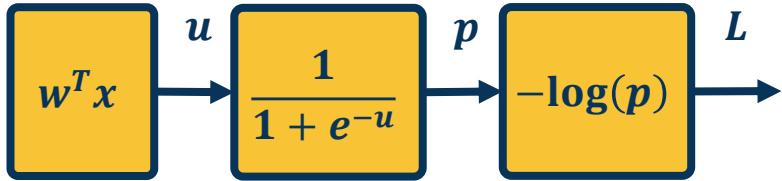
$$\begin{bmatrix} & \end{bmatrix} = \begin{bmatrix} & \end{bmatrix} \begin{bmatrix} & \end{bmatrix} \begin{bmatrix} & \end{bmatrix} \begin{bmatrix} & \end{bmatrix}$$

$$h^0 \in \mathbb{R}^d \longrightarrow h^1 \in \mathbb{R}^d \longrightarrow \dots \longrightarrow h^l \in \mathbb{R}^d \longrightarrow L \in \mathbb{R}^1$$

$$\frac{\partial L}{\partial h^1} = \frac{\partial L}{\partial h^l} \frac{\partial h^l}{\partial h^{l-1}} \frac{\partial h^{l-1}}{\partial h^{l-2}} \dots \frac{\partial h^2}{\partial h^1}$$

$$\begin{bmatrix} & & & \end{bmatrix} = \begin{bmatrix} & & & \end{bmatrix} \begin{bmatrix} & & & \end{bmatrix} \begin{bmatrix} & & & \end{bmatrix} \begin{bmatrix} & & & \end{bmatrix}$$

Which directions is more efficient to multiply?



$$\bar{L} = 1$$

$$\bar{p} = \frac{\partial L}{\partial p} = -\frac{1}{p}$$

where $p = \sigma(w^T x)$ and $\sigma(x) = \frac{1}{1+e^{-x}}$

$$\bar{u} = \frac{\partial L}{\partial u} = \frac{\partial L}{\partial p} \frac{\partial p}{\partial u} = \bar{p} \sigma(1 - \sigma)$$

$$\bar{w} = \frac{\partial L}{\partial w} = \frac{\partial L}{\partial u} \frac{\partial u}{\partial w} = \bar{u} x^T$$

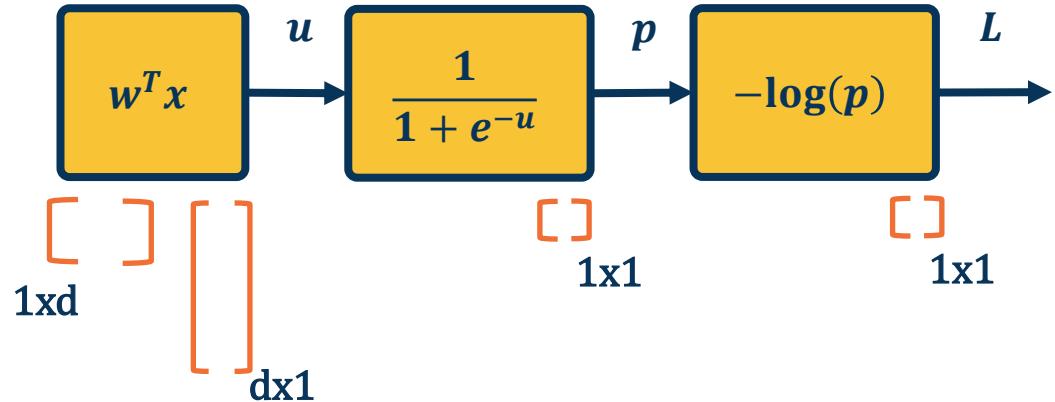
We can do this in a combined way to see all terms together:

$$\begin{aligned}\bar{w} &= \frac{\partial L}{\partial p} \frac{\partial p}{\partial u} \frac{\partial u}{\partial w} = -\frac{1}{\sigma(w^T x)} \sigma(w^T x) (1 - \sigma(w^T x)) x^T \\ &= -\left(1 - \sigma(w^T x)\right) x^T\end{aligned}$$

This effectively shows gradient flow along path from L to w

Example Gradient Computations

The chain rule can be computed as a **series of scalar, vector, and matrix linear algebra operations**

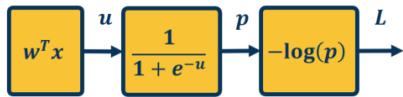


Extremely efficient in graphics processing units (GPUs)

$$\bar{w} = -\frac{1}{\sigma(w^T x)} \sigma(w^T x) (1 - \sigma(w^T x)) x^T$$

Dimensions indicated by brackets:

- $\sigma(w^T x)$ (dimensions 1×1)
- $\sigma(w^T x) (1 - \sigma(w^T x))$ (dimensions 1×1)
- x^T (dimensions $1 \times d$)



$$\bar{p} = \frac{\partial L}{\partial p} = -\frac{1}{p}$$

where $p = \sigma(w^T x)$ and $\sigma(x) = \frac{1}{1+e^{-x}}$

$$\bar{u} = \frac{\partial L}{\partial u} = \frac{\partial L}{\partial p} \frac{\partial p}{\partial u} = \bar{p} \sigma(1 - \sigma)$$

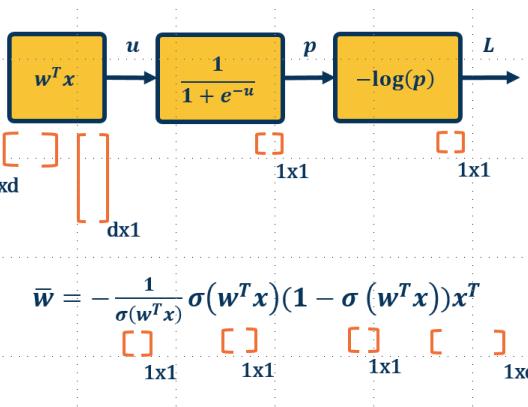
$$\bar{w} = \frac{\partial L}{\partial w} = \frac{\partial L}{\partial u} \frac{\partial u}{\partial w} = \bar{u}x^T$$

We can do this in a combined way to see all terms together:

$$\begin{aligned}\bar{w} &= \frac{\partial L}{\partial p} \frac{\partial p}{\partial u} \frac{\partial u}{\partial w} = -\frac{1}{\sigma(w^T x)} \sigma(w^T x) (\mathbf{1} - \sigma(w^T x)) x^T \\ &= -(\mathbf{1} - \sigma(w^T x)) x^T\end{aligned}$$

This effectively shows gradient flow along path from l to w .

Computation Graph / Global View of Chain Rule



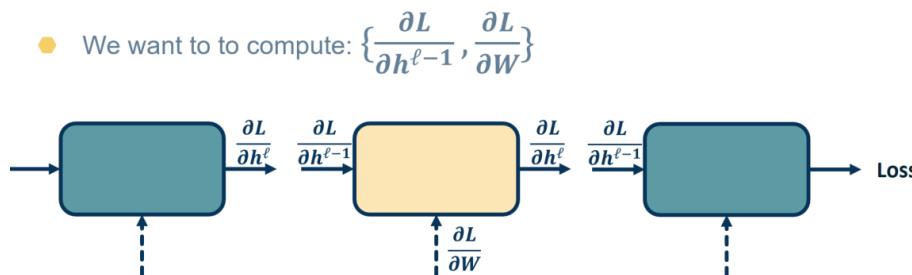
$$\bar{w} = -\frac{1}{\sigma(w^T x)} \sigma(w^T x) (1 - \sigma(w^T x)) x^T$$

[] [] [] [] []

1×1 1×1 1×1 1×1 1×1

Computational / Tensor View

Graph View



Backpropagation View (Recursive Algorithm)

- **Backpropagation:** Recursive, modular algorithm for chain rule + gradient descent
- **When we move to vectors and matrices:**
 - Composition of functions (scalar)
 - Composition of functions (vectors/matrices)
 - Jacobian view of chain rule
 - Can view entire set of calculations as linear algebra operations (matrix-vector or matrix-matrix multiplication)
- **Automatic differentiation:**
 - Reduction of modules to simple operations we know (simple multiplication, etc.)
 - Automatically build computation graph in background as write code
 - Automatically compute gradients via backward pass