
Machine Learning Applications

CS 4644 / 7643-A
ZSOLT KIRA

Topics:

• Jacobians/Matrix Calculus continued

• Backpropagation / Automatic Differentiation

Administrivia

• Assignment 1 out!
• Due Feb 4th

• Start now, start now, start now!

• Start now, start now, start now!

• Start now, start now, start now!

• Resources:
• These lectures

• Matrix calculus for deep learning

• Gradients notes and MLP/ReLU Jacobian notes.

• Topic OH: Assignment 1 and Matrix Calculus

• In-class Quiz (30 mins) – Feb 11

• Piazza: Project teaming thread
• Project Proposal: Feb. 14th, Project Check-in: Mar. 14th.

• Project proposal overview during my OH (Thursday 2pm ET, recorded)

https://www.cc.gatech.edu/classes/AY2022/cs7643_spring/assets/L5_gradients_notes.pdf
https://www.cc.gatech.edu/classes/AY2022/cs7643_spring/assets/L5_gradients_notes.pdf
https://www.cc.gatech.edu/classes/AY2022/cs7643_spring/assets/L6_jacobian_notes.pdf
https://www.cc.gatech.edu/classes/AY2022/cs7643_spring/assets/L6_jacobian_notes.pdf
https://www.cc.gatech.edu/classes/AY2022/cs7643_spring/assets/L6_jacobian_notes.pdf

To develop a general algorithm for

this, we will view the function as a

computation graph

Graph can be any directed acyclic

graph (DAG)

⬣ Modules must be differentiable to

support gradient computations

for gradient descent

A training algorithm will then

process this graph, one module at a

time

A General Framework

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

⬣ We want to to compute: {
𝝏𝑳

𝝏𝒉ℓ−𝟏 ,
𝝏𝑳

𝝏𝑾
}

⬣ We will use the chain rule to do this:

 Chain Rule:
𝝏𝒛

𝝏𝒙
=

𝝏𝒛

𝝏𝒚
∙

𝝏𝒚

𝝏𝒙

Computing the Gradients of Loss

𝝏𝑳

𝝏𝒉ℓ−𝟏

𝝏𝑳

𝝏𝒉ℓ

𝝏𝑳

𝝏𝑾

𝝏𝑳

𝝏𝒉ℓ−𝟏

𝝏𝑳

𝝏𝒉ℓ
Loss⬣ {

𝝏𝒉ℓ

𝝏𝒉ℓ−𝟏 ,
𝝏𝒉ℓ

𝝏𝑾
}

add gate: gradient distributor

max gate: gradient router

mul gate: gradient switcher

Patterns in backward flow

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Dimensionality of Derivatives

Conventions:
⬣ Size of derivatives for scalars, vectors, and matrices:

Assume we have scalar 𝒔 ∈ ℝ𝟏, vector 𝒗 ∈ ℝ𝒎, i.e. 𝒗 = 𝒗𝟏, 𝒗𝟐, … , 𝒗𝒎
𝑻

and matrix 𝑴 ∈ ℝ𝒌×ℓ

𝑺

𝑽

M

𝑺 𝑽 M

𝝏𝒔𝟏

𝝏𝒔𝟐

𝝏𝒗

𝝏𝒔

𝝏𝑴

𝝏𝒔

𝝏𝒔

𝝏𝒗

𝝏𝒔

𝝏𝑴
𝝏𝒗𝟏

𝝏𝒗𝟐

Tensors

Dimensionality of Derivatives in ML

⬣ What is the size of
𝝏𝑳

𝝏𝑾
 ?

⬣ Remember that loss is a scalar and W is a matrix:

𝒘𝟏𝟏 𝒘𝟏𝟐 ⋯ 𝒘𝟏𝒎 𝒃𝟏
𝒘𝟐𝟏 𝒘𝟐𝟐 ⋯ 𝒘𝟐𝒎 𝒃𝟐
𝒘𝟑𝟏 𝒘𝟑𝟐 ⋯ 𝒘𝟑𝒎 𝒃𝟑

𝝏𝑳

𝝏𝒘𝟏𝟏

𝝏𝑳

𝝏𝒘𝟏𝟐
⋯

𝝏𝑳

𝝏𝒘𝟏𝒎

𝝏𝑳

𝝏𝒃𝟏

𝝏𝑳

𝝏𝒘𝟐𝟏
⋯ ⋯

𝝏𝑳

𝝏𝒘𝟐𝒎

𝝏𝑳

𝝏𝒃𝟐

⋯ ⋯ ⋯
𝝏𝑳

𝝏𝒘𝟑𝒎

𝝏𝑳

𝝏𝒃𝟑

WJacobian is also a matrix:

Fully Connected (FC) Layer: Forward Function

𝒉ℓ−𝟏 𝒉ℓ

𝑾

FunctionInput Output

Parameters

𝒉ℓ = 𝑾𝒉ℓ−𝟏

𝒘𝒊
𝑻

|𝒉ℓ| × 𝟏 |𝒉ℓ−𝟏| × 𝟏|𝒉ℓ| × |𝒉ℓ−𝟏 |

Define:

𝒉𝒊
ℓ = 𝒘𝒊

𝑻𝒉ℓ−𝟏

Fully Connected (FC) Layer

𝝏𝑳

𝝏𝒉ℓ−𝟏

𝝏𝑳

𝝏𝒉ℓ

𝝏𝑳

𝝏𝑾𝝏𝒉ℓ

𝝏𝒉ℓ−𝟏 = 𝑾

𝝏𝑳

𝝏𝒉ℓ−𝟏
=

𝝏𝑳

𝝏𝒉ℓ

𝝏𝒉ℓ

𝝏𝒉ℓ−𝟏

𝟏 × |𝒉ℓ−𝟏| |𝒉ℓ| × |𝒉ℓ−𝟏|𝟏 × |𝒉ℓ|

𝒉ℓ = 𝑾𝒉ℓ−𝟏

Define:

𝒉𝒊
ℓ = 𝒘𝒊

𝑻𝒉ℓ−𝟏

Fully Connected (FC) Layer

𝝏𝑳

𝝏𝒉ℓ−𝟏

𝝏𝑳

𝝏𝒉ℓ

𝝏𝑳

𝝏𝑾

Note doing this on full W
matrix would result in

Jacobian tensor!

But it is sparse – each

output only affected by

corresponding weight row𝝏𝒉ℓ

𝝏𝒉ℓ−𝟏 = 𝑾

𝝏𝑳

𝝏𝒘𝒊
𝑻 =

𝝏𝑳

𝝏𝒉ℓ

𝝏𝒉ℓ

𝝏𝒘𝒊
𝑻

𝝏𝒉𝒊
ℓ

𝝏𝒘𝒊
𝑻

𝟎

𝟎

𝟏 × |𝒉ℓ−𝟏| |𝒉ℓ| × |𝒉ℓ−𝟏|𝟏 × |𝒉ℓ|

𝒉ℓ = 𝑾𝒉ℓ−𝟏

𝝏𝒉𝒊
ℓ

𝝏𝒘𝒊
𝑻 = 𝒉 ℓ−𝟏 ,𝑻

Define:

𝒉𝒊
ℓ = 𝒘𝒊

𝑻𝒉ℓ−𝟏

𝝏𝑳

𝝏𝑾

Iterate and populate

Note can simplify/vectorize!

We can employ any differentiable

(or piecewise differentiable)

function

A common choice is the Rectified

Linear Unit

⬣ Provides non-linearity but better

gradient flow than sigmoid

⬣ Performed element-wise

How many parameters for this layer?

Rectified Linear Unit (ReLU)

ReLU

Logisti

c

2

1.

8
1.

6
1.

4
1.

2
1

0.

8
0.

6
0.

4
0.

2
0

-2 -

1.

5

-1 -

0.

5

0 0.

5

1 1.

5

2

𝒉ℓ = 𝐦𝐚𝐱 𝟎, 𝒉ℓ−𝟏

max(0,_)

Full Jacobian of ReLU layer is large

(output dim x input dim)

⬣ But again it is sparse

⬣ Only diagonal values non-zero

because it is element-wise

⬣ An output value affected only by

corresponding input value

Max function funnels gradients

through selected max

⬣ Gradient will be zero if input

<= 0

Jacobian of ReLU

𝒉ℓ−𝟏 𝒉ℓ

𝑾

FunctionInput Output

Parameters

Forward: 𝒉ℓ = 𝐦𝐚𝐱(𝟎, 𝒉ℓ−𝟏)

Backward:
𝝏𝑳

𝝏𝒉ℓ−𝟏 =
𝝏𝑳

𝝏𝒉ℓ
𝝏𝒉ℓ

𝝏𝒉ℓ−𝟏

|𝒉ℓ × 𝒉ℓ−𝟏|

𝝏𝒉ℓ

𝝏𝒉ℓ−𝟏
= ቊ

𝟏
𝟎

𝒊𝒇 𝒉ℓ−𝟏 > 𝟎
𝒐𝒕𝒉𝒆𝒓𝒘𝒊𝒔𝒆

For diagonal

For element-wise ops, jacobian is sparse: off-diagonal entries always zero!

Never explicitly form Jacobian -- instead use elementwise multiplication

Figure adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Summary

• Neural networks involves composing simple functions into a

computation graph

• Optimization (updating weights) of this graph is through backpropagation

• Recursive algorithm: Gradient descent (partial derivatives) plus chain

rule

• Remaining questions:

• How does this work with vectors, matrices, tensors?

• Across a composed function? This Time!

• How can we implement this algorithmically to make these

calculations automatic? Automatic Differentiation

Vectorization

in Function

Compositions

Composition of Functions & Chain Rule

𝒇 𝒙 = 𝒈ℓ (𝒈ℓ−𝟏 … 𝒈𝟏 𝒙)

Composition of Functions:

A complex function (e.g. defined by a neural network):

𝒇 𝒈 𝒙 = (𝒇 ∘ 𝒈)(𝒙)

(Note you might find the opposite notation as well!)

(Many of these will be parameterized)

𝒇 𝒙 = 𝒈ℓ ∘ 𝒈ℓ−𝟏 … ∘ 𝒈𝟏(𝒙)

Scalar Case

𝐱 ∈ ℝ𝟏 z ∈ ℝ𝟏 y ∈ ℝ𝟏

𝒈𝟏

𝒚 = 𝒈𝟐 𝒈𝟏 𝒙

𝒈𝟐

𝜕𝑦

𝜕𝑥
=

𝜕𝑦

𝜕𝑧
∗

𝜕𝑧

𝜕𝑥

Scalar Multiplication

Vector Case

𝒙{∈ ℝ𝒅 𝒛{∈ ℝ𝒎 𝒚{∈ ℝ𝒄

𝒈𝟏

ℝ𝒅 → ℝ𝒎

𝒈𝟐

ℝ𝒎 → ℝ𝒄

𝜕 Ԧ𝑦

𝜕 Ԧ𝑥

= 𝜕 Ԧ𝑦

𝜕 Ԧ𝑧

𝜕 Ԧ𝑧

𝜕 Ԧ𝑥

Matrix Multiplication

𝐽𝒈𝟏∘𝒈𝟐 𝐽𝒈𝟏 𝐽𝒈𝟐

Jacobian View of Chain Rule

𝜕𝑦𝑖

𝜕𝑥𝑗

= 𝜕𝑦𝑖

𝜕𝑧𝑘

𝜕𝑧𝑘

𝜕𝑥𝑗

𝜕𝑦𝑖

𝜕𝑥𝑗
= ෍

𝑘

𝜕𝑦𝑖

𝜕𝑧𝑘
∗

𝜕𝑧𝑘

𝜕𝑥𝑗

Graphical View of Chain Rule

𝑥1

𝑥𝑑

𝑥𝑗

𝑧1

𝑧𝑚

𝑦1

𝑦𝑖

𝑦𝑐

𝜕𝑦𝑖

𝜕𝑥𝑗
= ෍

𝑘

𝜕𝑦𝑖

𝜕𝑧𝑘
∗

𝜕𝑧𝑘

𝜕𝑥𝑗

𝑘 paths

Chain Rule: Cascaded

ℎ0 ∈ ℝ𝑑 h1 ∈ ℝ𝒅 h𝑙 ∈ ℝ𝒅…

𝜕ℎ𝑙

𝜕ℎ1 =
𝜕ℎ𝑙

𝜕ℎ𝑙−1

𝜕ℎ𝑙−1

𝜕ℎ𝑙−2
…

𝜕ℎ2

𝜕ℎ1

=

Chain Rule: Cascaded

ℎ0 ∈ ℝ𝑑 h1 ∈ ℝ𝒅 h𝑙 ∈ ℝ𝒅…

𝝏𝑳

𝝏𝒉𝟏 =
𝜕ℎ𝑙

𝜕ℎ𝑙−1

𝜕ℎ𝑙−1

𝜕ℎ𝑙−2
…

𝜕ℎ2

𝜕ℎ1

=

Which directions is more efficient to multiply?

𝑳 ∈ ℝ𝟏

𝝏𝑳

𝝏𝒉𝒍

We have discussed computation

graphs for generic functions

Machine Learning functions

(input -> model -> loss function)

is also a computation graph

We can use the computed

gradients from

backprop/automatic

differentiation to update the

weights!

Neural Network Computation Graph

𝒘𝑻𝒙
𝟏

𝟏 + 𝒆−𝒖
−𝐥𝐨𝐠 𝒑

𝒖 𝒑 𝑳

− 𝐥𝐨𝐠
𝟏

𝟏 + 𝒆−𝒘𝑻𝒙

Example Gradient Computations

𝒘𝑻𝒙
𝟏

𝟏 + 𝒆−𝒖
−𝐥𝐨𝐠 𝒑

𝒖 𝒑 𝑳
ത𝑳 = 𝟏

ഥ𝒑 =
𝝏𝑳

𝝏𝒑
= −

𝟏

𝒑

where 𝒑 = 𝝈 𝒘𝑻𝒙 and 𝝈 𝒙 =
𝟏

𝟏+𝒆−𝒙

ഥ𝒖 =
𝝏𝑳

𝝏𝒖
=

𝝏𝑳

𝝏𝒑

𝝏𝒑

𝝏𝒖
= ഥ𝒑 𝝈 𝟏 − 𝝈

ഥ𝒘 =
𝝏𝑳

𝝏𝒘
=

𝝏𝑳

𝝏𝒖

𝝏𝒖

𝝏𝒘
= ഥ𝒖𝒙𝑻

We can do this in a combined way to see all terms

together:

ഥ𝒘 =
𝝏𝑳

𝝏𝒑

𝝏𝒑

𝝏𝒖

𝝏𝒖

𝝏𝒘
= ത𝑳 ഥ𝒑 ഥ𝒖 = −

𝟏

𝝈 𝒘𝑻𝒙
𝝈 𝒘𝑻𝒙 (𝟏 − 𝝈 𝒘𝑻𝒙)𝒙𝑻

 = − 𝟏 − 𝝈 𝒘𝑻𝒙 𝒙𝑻

This effectively shows gradient flow along path from

L to w

The chain rule can be

computed as a series of

scalar, vector, and matrix

linear algebra operations

Extremely efficient in

graphics processing units

(GPUs)

Vectorized Computations

𝒘𝑻𝒙
𝟏

𝟏 + 𝒆−𝒖
−𝐥𝐨𝐠 𝒑

𝒖 𝒑 𝑳

1xd

dx1

1x1 1x1

ഥ𝒘 = −
𝟏

𝝈 𝒘𝑻𝒙
𝝈 𝒘𝑻𝒙 (𝟏 − 𝝈 𝒘𝑻𝒙)𝒙𝑻

1xd1x11x11x1

Example regularizations:

⬣ L1/L2 on weights (encourage small values)

⬣ L2: 𝑳 = 𝒚 − 𝑾𝒙𝒊|
𝟐 + 𝝀 𝑾|𝟐 (weight decay)

⬣ Elastic L1/L2: 𝒚 − 𝑾𝒙𝒊|
𝟐 + 𝜶 𝑾|𝟐 + 𝜷|𝑾|

Regularization

Many standard regularization methods still apply!

L1 Regularization

𝑳 = |𝒚 − 𝑾𝒙𝒊|
𝟐 + 𝝀|𝑾|

where |𝑾| is element-wise

Computation Graph of
primitives (automatic
differentiation) Computational / Tensor View

Backpropagation View
(Recursive Algorithm)

Graph View

Different Views of Equivalent Ideas

Backpropagation

and Automatic

Differentiation

Deep Learning = Differentiable Programming

• Computation = Graph

– Input = Data + Parameters

– Output = Loss

– Scheduling = Topological ordering

• What do we need to do?

– Generic code for representing the graph of modules

– Specify modules (both forward and backward function)

(C) Dhruv Batra 29

30

Graph (or Net) object (rough psuedo code)

Modularized implementation: forward / backward API

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

31

(x,y,z are scalars)

x

y

z
*

Modularized implementation: forward / backward API

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Backpropagation does not really spell out how to efficiently

carry out the necessary computations

But the idea can be applied to any directed acyclic graph

(DAG)

⬣ Graph represents an ordering constraining which paths

must be calculated first

Given an ordering, we can then iterate from the last module

backwards, applying the chain rule

⬣ We will store, for each node, its local gradient

function/computation for efficiency

⬣ We will do this automatically by computing backwards

function for primitives and as you write code, express the

function with them

This is called reverse-mode automatic differentiation

A General Framework

Computation = Graph

⬣ Input = Data + Parameters

⬣ Output = Loss

⬣ Scheduling = Topological ordering

Auto-Diff

⬣ A family of algorithms for

implementing chain-rule on computation graphs

Deep Learning = Differentiable Programming

Automatic differentiation:

⬣ Carries out this procedure for us

on arbitrary graphs

⬣ Knows derivatives of primitive

functions

⬣ As a result, we just define these

(forward) functions and don’t

even need to specify the

gradient (backward) functions!

Example Gradient Computations

𝒘𝑻𝒙
𝟏

𝟏 + 𝒆−𝒖
−𝐥𝐨𝐠 𝒑

𝒖 𝒑 𝑳
ത𝑳 = 𝟏

ഥ𝒑 =
𝝏𝑳

𝝏𝒑
= −

𝟏

𝒑

where 𝒑 = 𝝈 𝒘𝑻𝒙 and 𝝈 𝒙 =
𝟏

𝟏+𝒆−𝒙

ഥ𝒖 =
𝝏𝑳

𝝏𝒖
=

𝝏𝑳

𝝏𝒑

𝝏𝒑

𝝏𝒖
= ഥ𝒑 𝝈 𝟏 − 𝝈

ഥ𝒘 =
𝝏𝑳

𝝏𝒘
=

𝝏𝑳

𝝏𝒖

𝝏𝒖

𝝏𝒘
= ഥ𝒖𝒙𝑻

We can do this in a combined way to see all terms

together:

ഥ𝒘 =
𝝏𝑳

𝝏𝒑

𝝏𝒑

𝝏𝒖

𝝏𝒖

𝝏𝒘
= −

𝟏

𝝈 𝒘𝑻𝒙
𝝈 𝒘𝑻𝒙 (𝟏 − 𝝈 𝒘𝑻𝒙)𝒙𝑻

 = − 𝟏 − 𝝈 𝒘𝑻𝒙 𝒙𝑻

This effectively shows gradient flow along path from

L to w

⬣ Key idea is to explicitly store

computation graph in

memory and corresponding

gradient functions

⬣ Nodes broken down to basic

primitive computations

(addition, multiplication, log,

etc.) for which

corresponding derivative is

known

Computational Implementation

𝒙𝟐 =
𝝏𝒇

𝝏𝒂𝟏

𝝏𝒂𝟏

𝝏𝒙𝟐
= 𝒂𝟏 𝐜𝐨𝐬(𝒙𝟐)

+

sin()

x1

*

𝒂𝟑

𝒂𝟐𝒂𝟏

cos()

x2

Computation Graphs in PyTorch

A graph is created on the fly

from torch.autograd import Variable

x = Variable(torch.randn(1, 20))
prev_h = Variable(torch.randn(1, 20))
W_h = Variable(torch.randn(20, 20))
W_x = Variable(torch.randn(20, 20))

i2h = torch.mm(W_x, x.t())
h2h = torch.mm(W_h, prev_h.t())
next_h = i2h + h2h

𝑾𝒉 h 𝑾𝒙 x

h2h i2h

MM MM

next_h

Add

(Note above)

Computation Graphs in PyTorch

from torch.autograd import Variable

x = Variable(torch.randn(1, 20))
prev_h = Variable(torch.randn(1, 20))
W_h = Variable(torch.randn(20, 20))
W_x = Variable(torch.randn(20, 20))

i2h = torch.mm(W_x, x.t())
h2h = torch.mm(W_h, prev_h.t())
next_h = i2h + h2h
next_h = next_h.tanh()

next_h.backward(torch.ones(1, 20))

𝑾𝒉 h 𝑾𝒙 x

h2h i2h

MM MM

Add

next_h

Tanh

A graph is created on the fly
Back-propagation uses the

dynamically built graph

From pytorch.org

+

sin()

x2 x1

*

𝒇 𝒙𝟏, 𝒙𝟐 = 𝒙𝟏𝒙𝟐 + 𝐬𝐢𝐧 𝒙𝟐 We want to find the partial

derivative of output f (output)

with respect to all intermediate

variables

⬣ Assign intermediate variables

 Simplify notation:

 Denote bar as: 𝑎3 =
𝜕𝑓

𝜕𝑎3

⬣ Start at end and move

backward

Example

𝒂𝟑

𝒂𝟐𝒂𝟏

Example

+

sin()

x2 x1

*

𝒇 𝒙𝟏, 𝒙𝟐 = 𝒙𝟏𝒙𝟐 + 𝐬𝐢𝐧 𝒙𝟐

𝒂𝟑

𝒂𝟐𝒂𝟏

𝒂𝟑 =
𝝏𝒇

𝝏𝒂𝟑
= 𝟏

𝒂𝟏 =
𝝏𝒇

𝝏𝒂𝟏
=

𝝏𝒇

𝝏𝒂𝟑

𝝏𝒂𝟑

𝝏𝒂𝟏
=

𝝏𝒇

𝝏𝒂𝟑

𝝏(𝒂𝟏+𝒂𝟐)

𝝏𝒂𝟏
=

𝝏𝒇

𝝏𝒂𝟑
 𝟏 = 𝒂𝟑

𝒂𝟐 =
𝝏𝒇

𝝏𝒂𝟐
=

𝝏𝒇

𝝏𝒂𝟑

𝝏𝒂𝟑

𝝏𝒂𝟐
= 𝒂𝟑

𝒙𝟐
𝑷𝟏 =

𝝏𝒇

𝝏𝒂𝟏

𝝏𝒂𝟏

𝝏𝒙𝟐
= 𝒂𝟏 𝐜𝐨𝐬 𝒙𝟐

𝒙𝟐
𝑷𝟐 =

𝝏𝒇

𝝏𝒂𝟐

𝝏𝒂𝟐

𝝏𝒙𝟐
=

𝝏𝒇

𝝏𝒂𝟐

𝝏(𝒙𝟏𝒙𝟐)

𝝏𝒙𝟐
= 𝒂𝟐𝒙𝟏

𝒙𝟏 =
𝝏𝒇

𝝏𝒂𝟐

𝝏𝒂𝟐

𝝏𝒙𝟏
= 𝒂𝟐𝒙𝟐

Gradients

from multiple

paths

summed

Path 1
(P1)

Path 2
(P2)

Patterns of Gradient Flow: Addition

+

sin()

x2 x1

*

𝒇 𝒙𝟏, 𝒙𝟐 = 𝒙𝟏𝒙𝟐 + 𝐬𝐢𝐧 𝒙𝟐

𝒂𝟑

𝒂𝟐𝒂𝟏

𝒂𝟏 =
𝝏𝒇

𝝏𝒂𝟏
=

𝝏𝒇

𝝏𝒂𝟑

𝝏𝒂𝟑

𝝏𝒂𝟏
=

𝝏𝒇

𝝏𝒂𝟑

𝝏(𝒂𝟏+𝒂𝟐)

𝝏𝒂𝟏
=

𝝏𝒇

𝝏𝒂𝟑
 𝟏 = 𝒂𝟑

𝒂𝟐 =
𝝏𝒇

𝝏𝒂𝟐
=

𝝏𝒇

𝝏𝒂𝟑

𝝏𝒂𝟑

𝝏𝒂𝟐
= 𝒂𝟑

Addition operation distributes gradients

along all paths!

Patterns of Gradient Flow: Multiplication

+

sin()

x1 x2

*

𝒇 𝒙𝟏, 𝒙𝟐 = 𝒙𝟏𝒙𝟐 + 𝐬𝐢𝐧 𝒙𝟐

𝒂𝟑

𝒂𝟐𝒂𝟏

𝒙𝟐 =
𝝏𝒇

𝝏𝒂𝟐

𝝏𝒂𝟐

𝝏𝒙𝟐
=

𝝏𝒇

𝝏𝒂𝟐

𝝏(𝒙𝟏𝒙𝟐)

𝝏𝒙𝟐
= 𝒂𝟐𝒙𝟏

𝒙𝟏 =
𝝏𝒇

𝝏𝒂𝟐

𝝏𝒂𝟐

𝝏𝒙𝟏
= 𝒂𝟐𝒙𝟐

Multiplication operation is a gradient

switcher (multiplies it by the values of

the other term)

Several other patterns as well, e.g.:

Max operation selects which path to

push the gradients through

⬣ Gradient flows along the path

that was “selected” to be max

⬣ This information must be

recorded in the forward pass

Patterns of Gradient Flow: Other

The flow of gradients is one of the most important aspects in deep

neural networks

⬣ If gradients do not flow backwards properly, learning slows or stops!

Max

5 1

5

Max

gradient

gradient

Duality in Fprop and Bprop

(C) Dhruv Batra 43

+

+

FPROP BPROP

SU
M

C
O

P
Y

Note that we can also do forward mode

automatic differentiation

Start from inputs and propagate gradients

forward

Complexity is proportional to input size

⬣ Memory savings (all forward pass, no

need to store activations)

⬣ However, in most cases our inputs

(images) are large and outputs

(loss) are small

Forward Automatic Differentiation

+

sin()

x1 x2

*

ሶ𝒘𝟑 = ሶ𝒘𝟏+ ሶ𝒘𝟐

ሶ𝒙𝟏 ሶ𝒙𝟏 ሶ𝒙𝟐

ሶ𝒘𝟏 = 𝐜𝐨𝐬(𝒙𝟏) ሶ𝒙𝟏 ሶ𝒘𝟐 = ሶ𝒙𝟏𝒙𝟐 + 𝒙𝟏 ሶ𝒙𝟐

input image

loss

weights

Figure copyright Alex Krizhevsky, Ilya Sutskever, and

Geoffrey Hinton, 2012. Reproduced with permission.

Convolutional network (AlexNet)

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Figure reproduced with permission from a Twitter post by Andrej Karpathy.

input image

loss

Neural Turing Machine

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

https://twitter.com/karpathy/status/597631909930242048?lang=en

⬣ Computation graphs are not

limited to mathematical

functions!

⬣ Can have control flows (if

statements, loops) and

backpropagate through

algorithms!

⬣ Can be done dynamically so

that gradients are computed,

then nodes are added, repeat

⬣ Differentiable programming

Power of Automatic Differentiation

Adapted from figure by Andrej Karpathy

Program Space

Software 1.0

Software 2.0

Backpropagation, and automatic differentiation, allows us to optimize any

function composed of differentiable blocks

⬣ No need to modify the learning algorithm!

⬣ The complexity of the function is only limited by computation and memory

The Power of Deep Learning

−𝐥𝐨𝐠 𝒑
𝒑 𝑳

𝑿

Input

Model

Loss Function

A network with two or more hidden

layers is often considered a deep

model

Depth is important:

⬣ Structure the model to represent

an inherently compositional world

⬣ Theoretical evidence that it leads

to parameter efficiency

⬣ Gentle dimensionality reduction

(if done right)

Importance of Depth

input
layer hidden

layer 1
hidden
layer 2

output
layer

Designing Deep Neural Networks

There are still many design

decisions that must be made:

⬣ Architecture

⬣ Data Considerations

⬣ Training and

Optimization

⬣ Machine Learning

Considerations

?

Local

Minima

	Slide 1: CS 4644 / 7643-A Zsolt Kira
	Slide 2
	Slide 3
	Slide 4
	Slide 5: Patterns in backward flow
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29: Deep Learning = Differentiable Programming
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43: Duality in Fprop and Bprop
	Slide 44
	Slide 45: Convolutional network (AlexNet)
	Slide 46: Neural Turing Machine
	Slide 47
	Slide 48
	Slide 49
	Slide 50

