Topics:
* Jacobians/Matrix Calculus continued
* Backpropagation / Automatic Differentiation

CS 4644 / 7643-A
ZSOLT KIRA



Assignment 1 out!

*  Due Feb 4t

. Start now, start now, start now!
. Start now, start now, start now!
. Start now, start now, start now!

Resources:
. These lectures
. Matrix calculus for deep learning

. Gradients notes and MLP/RelLU Jacobian notes.

*  Topic OH: Assignment 1 and Matrix Calculus

In-class Quiz (30 mins) — Feb 11

Piazza: Project teaming thread
*  Project Proposal: Feb. 14t Project Check-in: Mar. 14th,
*  Project proposal overview during my OH (Thursday 2pm ET, recorded)


https://www.cc.gatech.edu/classes/AY2022/cs7643_spring/assets/L5_gradients_notes.pdf
https://www.cc.gatech.edu/classes/AY2022/cs7643_spring/assets/L5_gradients_notes.pdf
https://www.cc.gatech.edu/classes/AY2022/cs7643_spring/assets/L6_jacobian_notes.pdf
https://www.cc.gatech.edu/classes/AY2022/cs7643_spring/assets/L6_jacobian_notes.pdf
https://www.cc.gatech.edu/classes/AY2022/cs7643_spring/assets/L6_jacobian_notes.pdf

To develop a general algorithm for
this, we will view the function as a
computation graph

Graph can be any directed acyclic
graph (DAG)

Modules must be differentiable to
support gradient computations
for gradient descent

A training algorithm will then
process this graph, one module at a
time

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

) » A General Framework




JoL JdL

We want to to compute:
pute: {5377 aw}
aL aL
dh? ah{’ ll ah{) ahf’
ah"‘1 aw
- HE
' 1%

We will use the chain rule to do this:

0z dz 0y
Chain Rule: — .

dx dy O0x

)‘ Computing the Gradients of Loss

Loss



Patterns in backward flow

add gate: gradient distributor
max gate: gradient router

mul gate: gradient switcher

-m.oo@ -20.00
200 \_/ 1.00




Conventions:
Size of derivatives for scalars, vectors, and matrices:
T

Assume we have scalar s € R!, vector v € R™, i.e. v = [v1, V3, ..., U]
and matrix M € RF*¢

s [] VH M
s %107 9 1 9

ds, ov : oM

v | v,
V' % ] v, ‘
Mool Tensors

Georgia @

Tech

Dimensionality of Derivatives I




What is the size of 2= 2
ow

Remember that loss is a scalar and W is a matrix:

Wi1 Wiz 0 Wy b1
Wz1 Wiz * Wy b2
W31 W3z - Wgy, b3
Jacobian is also a matrix: W
- JdL oL oL OL
dwy, 0wy, 0wy, 0by
oL oL oL
w7 Fwe 3b)
oL oL
aW3m abg_

Dimensionality of Derivatives in ML Gegrata |

=



Input Function Output
h{’—l

W
Parameters
Define:
f __ £—1
0 _ o Typ—1 h* = Wh
hi i Wi h == ;_ T_; -
Wi

IR x1 |k x |hf~1| |Rf1|x 1

) Fully Connected (FC) Layer: Forward Function




h* = Wh*1

ah?

ahf—l — W

oL L oht

Define: She-1 3nf JRi-1

hi = wih [ JC ]

1x |ht~1| 1 x|h?| |h?| xR

) Fully Connected (FC) Layer




Note doing this on full W
matrix would result in
Jacobian tensor!

But it is sparse — each

h* = Wh1
an? : AW output only_affecte_d by
=W corresponding weight row
£—1
oh [ )
Define: aLT L oL ahT aL
h{ _ Wz‘h{)_l ow: oh’ ?Wi ) ] ow i
L I R R
1 oh! R
Ohi _ iy -2 :
ow; - T terate and populate
/-1 ’ P ¢—1, Iterate and populate
1X|R"77 1% [h7] |h7] x |R*7 Note can simplify/vectorize!

) - Fully Connected (FC) Layer



We can employ any differentiable
(or piecewise differentiable)
function

N

ANy r"o "o
T T T T

A common choice is the Rectified
Linear Unit

Provides non-linearity but better
gradient flow than sigmoid

oNCPr PP e
!
T T T T

Performed element-wise | e . inaX(O he 1)

. 0,
How many parameters for this layer? E — a

) Rectified Linear Unit (RelLU)




Full Jacobian of ReLU layer is large
(output dim x input dim)

But again it is sparse

Only diagonal values non-zero
because it is element-wise

An output value affected only by
corresponding input value

Max function funnels gradients
through selected max

Gradient will be zero if input
<=0

) Jacobian of RelLU

Input Function Output

w

W
Parameters

Forward: h* = max(0, h‘™1)

aL dL  ohnf
Backward: =
For diagonal

dht-1 ~ gn’ @ht-1
[\ on’ _{1 if R=1> 0

ihtx nt-1]  Ohf~1 |0 otherwise

Geo 1

Tech




Figure adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

4D input x: 4D output z:
1] — — 1
2 1 f(x) =max(0,x) | L V|
; 31: | (elementwise) Tl 8 :
4D dL/dx: [dz/dx] [dL/dZ] 4D dL/dz:
4] [ 4] ~—[4]—
[0 ] (00 ][-1] <+ [ -1]*+—— Upstream
(5] < 10][5 ] < (5 ]+ gradient
0] < [0000][9] <+~ [9]-

For element-wise ops, jacobian is sparse: off-diagonal entries always zero!
Never explicitly form Jacobian -- instead use elementwise multiplication

Georgia ﬂ
Tech ||



Neural networks involves composing simple functions into a
computation graph

Optimization (updating weights) of this graph is through backpropagation
Recursive algorithm: Gradient descent (partial derivatives) plus chain
rule

Remaining questions:
How does this work with vectors, matrices, tensors?
Across a composed function? This Time!

How can we implement this algorithmically to make these
calculations automatic? Automatic Differentiation

) Summary Gegr;gciﬁ&




Vectorization

in Function
Compositions

4
Georgi <
oroiad| &



Composition of Functions: f(g®) = (f° 9)(x)

A complex function (e.g. defined by a neural network):
fx) =g (ge-1(--91(x)))
fX)=9r°9¢-1--°91(%)

(Many of these will be parameterized)

(Note you might find the opposite notation as well!)

) Composition of Functions & Chain Rule Gegrata |

=




xER! ——— ze Rl =—— yeR!
91 92

y =92(91(x))

dy 0y 0z

= *k
dx 0z O0Ox

|

Scalar Multiplication

) Scalar Case Gegrgia |

=



x{€ R4 —— Z{e R™ y{€ R€

g1 g2
R4 - R™ R™ — R¢
3y _ 97 07
0x 0z 0x
]g1°92 ]g1 ‘ ]92

Matrix Multiplication

=

) Vector Case Gegrgia |



dy;

) Jacobian View of Chain Rule

dy;

aX] B

dy;
aZk
ayi aZk
X
- 0z, 0x;

aZk

Georgia
Tech

J&

=



=
[y

N
=y

Y1

) O o

[ O [

o o o
X (R 0 BO Vi

) o o

o O o

) 0 o
Xd © Zm. Ve e

Graphical View of Chain Rule Gegrata |

=



ho € R hfe RE{— .. —— hle R4
ont oh! ghl-1 dh?
ont ~—  9nl-1 ohi-2 " 9ht

) Chain Rule: Cascaded Gegrala |

=



ho € R4 heRl—— .. —— hleR4——[cRl
oL 0L 9rt  gnl Oh?
dhl~ 9h! gpi-t ont-2 " ant

B R O O B

Which directions is more efficient to multiply?

) Chain Rule: Cascaded Gegrala |

=



We have discussed computation
graphs for generic functions

Machine Learning functions _10g< 1 _ >

(input -> model -> loss function) 1+e™*

is also a computation graph ‘

We can use the computed u 1 p L
gradients from wlix p—» — [ “logp) —
backprop/automatic R

differentiation to update the
weights!

) Neural Network Computation Graph




w

T aw 6u 6w

L=1
p L _dL 1
1+e™ 1
where p = g(w'x) and o(x) = —;
_ _ oL _9dL 9p _
u=_ =3 po(l1—o0)
oL 9L ou_ oo

We can do this in a combined way to see all terms

together:
_ 0L dp ou _ ~
w= ap ou ow L

o(wix)(1— o (Wwhx))x"

a(wT )

This effectively shows gradient flow along path from

Lto w

Example Gradient Computations




The chain rule can be
computed as a series of
scalar, vector, and matrix
linear algebra operations

Extremely efficient in
graphics processing units
(GPUs)

)

u p L
wix p—> L —> —log(p) pP—>
1+e™™
C I [] (]
1xd 1x1 1x1
“dx1
W= s o(wlx)(1— o (wlx))x

] L] ()] [ ]

1x1 1x1 1x1 1xd

Vectorized Computations



Many standard regularization methods still apply!

L1 Regularization

L=|y—Wx;|*>+ W]

where |W| is element-wise

Example regularizations:
L1/L2 on weights (encourage small values)
L2: L = |y —Wx;|? + 4|W|? (weight decay)
Elastic L1/L2: |y — Wx;|? + a|W|? + B|W|

) Regularization




JdL dL

We want to to compute: {m ) 6_W}

aL aL aL aL
L W E W W Loss
wix |—» ; —pb —log(p) —
1+e H 1 L :
i | ow i
P p Backpropagation View
where p = a(w"x) and o(x) = H:_, ( Recu rSive A|gO rith m)
ﬁ:%:% %:Ea’(lfa')
We can do this in a combined way to see all terms v - 1+e™ - —log(p) "
together: ” E _'_| |: :|
= ou = o O X)L -0 (Wt L ] 1x1 1x1
=- (1 - a(wrx))xT 1xd
This effectively shows gradient flow along path from “dx1
Ltow ’ ’ ’ ’
w=——" o(Wwix)(1 — o (wTx))xT
H o(wlx)
Co-mfn.xtatlon Graph.of 1 SRR
primitives (automatic I 1"1 1xd
differentiation) Computational / Tensor View Graph View

Different Views of Equivalent Ideas




Backpropagation

and Automatic
Differentiation

4
Georgi <
oroiad| &



Deep Learning = Differentiable Programming

 Computation = Graph
— Input = Data + Parameters
— QOutput = Loss
— Scheduling = Topological ordering

e What do we need to do?

— Generic code for representing the graph of modules
— Specify modules (both forward and backward function)

)




Modularized implementation: forward / backward API

~ o3 TN 1
xp ) {41 =
CFENG

W 0T
- m) -
TR 0

Graph (or Net) object (rough psuedo code)

class ComputationalGraph(object):

#...

def forward(inputs):
# 1. [pass inputs to input gates...]
# 2. forward the computational graph:
for gate in self.graph.nodes topologically sorted():

gate.forward()

return loss # the final gate in the graph outputs the loss

def backward():
for gate in reversed(self.graph.nodes topologically sorted()):

gate.backward() # little piece of backprop (chain rule applied)

return inputs_gradients




Modularized implementation: forward / backward API

class MultiplyGate(object):

X def forward(x,y):
z = xX*y
return z
def backward(dz):
#AR = e #toz\
y #dy = ... #todo g—L
return [dx, dy] 4
(x,y,z are scalars) \
OL
Ox

)



Backpropagation does not really spell out how to efficiently
carry out the necessary computations

But the idea can be applied to any directed acyclic graph
(DAG)

Graph represents an ordering constraining which paths
must be calculated first

Given an ordering, we can then iterate from the last module
backwards, applying the chain rule

We will store, for each node, its local gradient
function/computation for efficiency

We will do this automatically by computing backwards
function for primitives and as you write code, express the
function with them

This is called reverse-mode automatic differentiation

) A General Framework



Computation = Graph
Input = Data + Parameters
Output = Loss
Scheduling = Topological ordering

Auto-Diff

A family of algorithms for
Implementing chain-rule on computation graphs

) Deep Learning = Differentiable Programming Ge‘%&%ﬂ?



L=1

u p L oL 1

1 p = — =
1+e™ 1

where p = g(w'x) and o(x) = —;

o = G=5 P00

Automatic differentiation:
Carries out this procedure for us Weow“omoaw WX

on arbitrary graphs We can do this in a combined way to see all terms

Knows derivatives of primitive together:
functions u
_ _ w —Z—; Z—Z Z—W = a(wa) o(wix)(1— o (wlx))xT
As a result, we just define these (1 ( ))
. = — — 0 W X
(forward) functions and don’t
even need to specify the This effectively shows gradient flow along path from
gradient (backward) functions! Lto w

) Example Gradient Computations



. 9f day

2 =5~ o

Key idea is to explicitly store da; ox, — T COS(x2)
computation graph in
memory and corresponding
gradient functions

Nodes broken down to basic
primitive computations
(addition, multiplication, log,
etc.) for which
corresponding derivative is
known

) Computational Implementation



A graph is created on the fly

torch.autograd Variable

X = Variable(torch.randn(1, 20))
prev_h = Variable(torch.randn(1, 20))
W_h = Variable(torch.randn(20, 20))
W_x = Variable(torch.randn(20, 20))

i2h = torch.mm(W_x, x.t())
h2h = torch.mm(W_h, prev_h.t())
next_h = i2h + h2h

(Note above)

)  Computation Graphs in PyTorch




Back-propagation uses the
dynamically built graph

torch.autograd Variable

X = Variable(torch.randn(1, 20))
prev_h = Variable(torch.randn(1, 20))
W_h = Variable(torch.randn(20, 20))
W_x = Variable(torch.randn(20, 20))

i2h = torch.mm(W_x, x.t())

h2h = torch.mm(W_h, prev_h.t())
next_h = i2h + h2h

next_h = next_h.tanh()

next_h.backward(torch.ones(1, 20))

From pytorch.org

)* Computation Graphs in PyTorch




f(x1,22) = X127 + sin(x;) We want to find the partial
derivative of output f (output)
with respect to all intermediate

o variables

a, a, Assign intermediate variables

Simplify notation:
Gin(D (O Py of

Denote bar as: a; = P
3

Start at end and move

C x, ) C x, D backward

2
Georgi S
Teclﬂg \y




f(xq,x2) = x1x, + sin(x,)

a;=—=1
3 6a3
g O _Of da3_ Of daitay) _ Of 4 _ o
1 6a1 6a3 6a1 6a3 aal aag 3
__  df Of daz __
2 = = = a3
aaz aag aaz
—p1 _ Of da;  __
Xo" =— —=4aq Cos\x
2 6a1 axz 1 ( 2)
Gradients
£P2 =9 9a; _ 9f d(x1x2) -, from multiple
2 da,; 0dx; da, 0xy 271 paths
summed
__ f day
X1 =7 —=0ax
1 aaz 6x1 272

2
Georgi S
Teclﬂ S



f(xq,x2) = x1x, + sin(x,)

____df _ Oof daz _ Of d(aytay) _ Of L
a; = = = =21 1=a3
6a1 6a3 6a1 6a3 6a1 6a3
G = _9f day_
2 aaz 6a3 aaz 3

Addition operation distributes gradients
along all paths!

Patterns of Gradient Flow: Addition




f(xq,x2) = x1x, + sin(x,)

Multiplication operation is a gradient
switcher (multiplies it by the values of
the other term)

__ df day _ of 0(x1x2) _

= = =a,X
2 aaz axz aaz axz 271

Patterns of Gradient Flow: Multiplication




Several other patterns as well, e.g.: 5 gradient

Max operation selects which path to
push the gradients through

Gradient flows along the path ( Max 3 (Max )

that was “selected” to be max

This information must be

recorded in the forward pass 5 gradient

The flow of gradients is one of the most important aspects in deep
neural networks

If gradients do not flow backwards properly, learning slows or stops!

) Patterns of Gradient Flow: Other




Duality in Fprop and Bprop

FPROP BPROP
- : > LERT
o ) @  rFEmmEEs
(%]
S LERT

COPY
A

.Q
.
‘e
L 4




Note that we can also do forward mode
automatic differentiation

t

Start from inputs and propagate gradients W3 = Wi+ W,

forward @

Complexity is proportional to input size _ : , . .
Wi =cos(x1)Xx;y Wy = X1X3 +X1Xo

Memory savings (all forward pass, no
need to store activations)

However, in most cases our inputs X1 X1 X2
(images) are large and outputs
(loss) are small

) Forward Automatic Differentiation




Convolutional network (AlexNet)




Neural Turing Machine

//

input image

loss \

Georgia ﬂ
Tech ||



https://twitter.com/karpathy/status/597631909930242048?lang=en

Computation graphs are not
limited to mathematical
functions!

Software 1.0 \e,,;\\‘%
Can have control flows (if \

statements, loops) and
backpropagate through
algorithms! Software 2.0\

Program Space

Can be done dynamically so
that gradients are computed,
then nodes are added, repeat

Differentiable programming

Adapted from figure by Andrej Karpathy

) Power of Automatic Differentiation



Backpropagation, and automatic differentiation, allows us to optimize any
function composed of differentiable blocks

No need to modify the learning algorithm!

The complexity of the function is only limited by computation and memory

‘ X l g £ '| —log(p) lL*
Model
Input ﬂ Loss Function

» The Power of Deep Learning



A network with two or more hidden
layers is often considered a deep
model

Depth is important:

Structure the model to represent
an inherently compositional world

output
layer

Theoretical evidence that it leads
to parameter efficiency

input -
layer hidden hidden
layer 1 layer 2

Gentle dimensionality reduction
(if done right)

) Importance of Depth



There are still many design
decisions that must be made:

Architecture

Data Considerations

Training and
Optimization
Local
Machine Learning Minima
Considerations

) Designing Deep Neural Networks



	Slide 1: CS 4644 / 7643-A Zsolt Kira
	Slide 2
	Slide 3
	Slide 4
	Slide 5: Patterns in backward flow
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29: Deep Learning = Differentiable Programming
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43: Duality in Fprop and Bprop
	Slide 44
	Slide 45: Convolutional network (AlexNet)
	Slide 46: Neural Turing Machine
	Slide 47
	Slide 48
	Slide 49
	Slide 50

