

Topics:

- Jacobians/Matrix Calculus continued
- Backpropagation / Automatic Differentiation

CS 4644 / 7643-A

ZSOLT KIRA

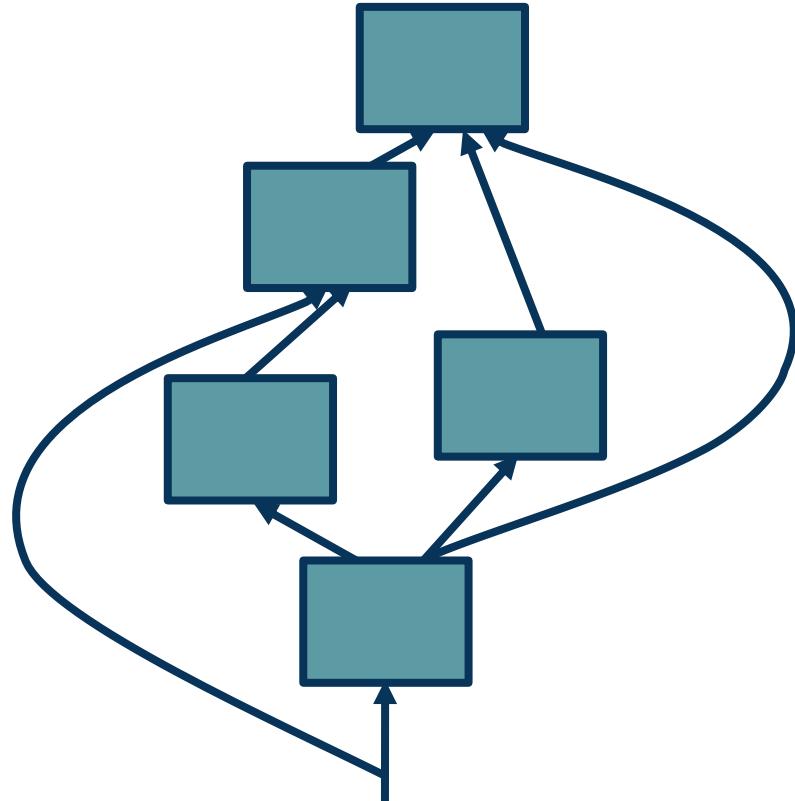
- **Assignment 1 out!**
 - Due Feb 4th
 - Start now, start now, start now!
 - Start now, start now, start now!
 - Start now, start now, start now!
- Resources:
 - These lectures
 - [Matrix calculus for deep learning](#)
 - [Gradients notes](#) and [MLP/ReLU Jacobian notes](#).
 - **Topic OH:** Assignment 1 and Matrix Calculus
- **In-class Quiz (30 mins) – Feb 11**
- Piazza: Project teaming thread
 - **Project Proposal: Feb. 14th, Project Check-in: Mar. 14th.**
 - Project proposal overview during my OH (Thursday 2pm ET, recorded)

To develop a general algorithm for this, we will view the function as a **computation graph**

Graph can be any **directed acyclic graph (DAG)**

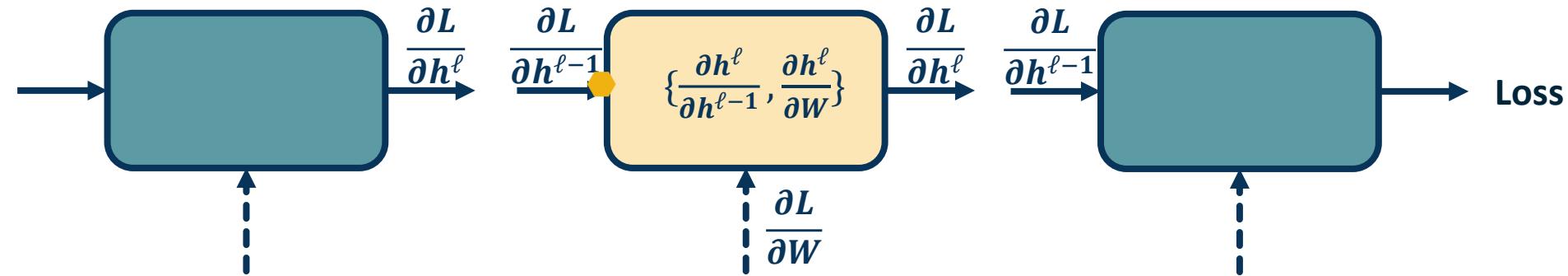
- ◆ Modules must be differentiable to support gradient computations for gradient descent

A **training algorithm** will then process this graph, **one module at a time**



Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

- ◆ We want to compute: $\left\{ \frac{\partial L}{\partial h^{\ell-1}}, \frac{\partial L}{\partial W} \right\}$



- ◆ We will use the *chain rule* to do this:

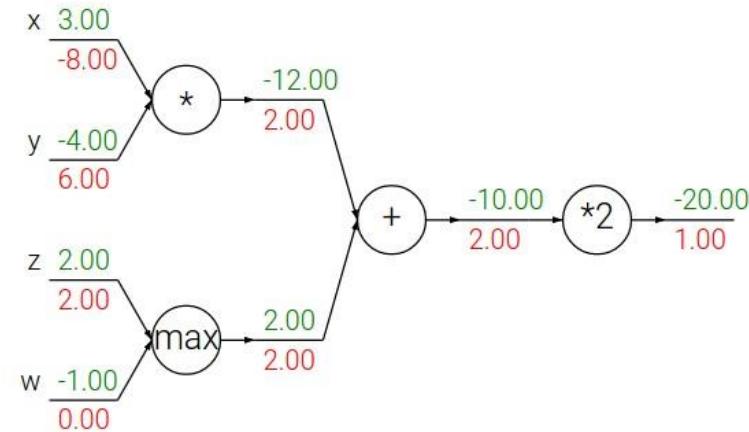
$$\text{Chain Rule: } \frac{\partial z}{\partial x} = \frac{\partial z}{\partial y} \cdot \frac{\partial y}{\partial x}$$

Patterns in backward flow

add gate: gradient distributor

max gate: gradient router

mul gate: gradient switcher



Conventions:

- Size of derivatives for scalars, vectors, and matrices:

Assume we have scalar $s \in \mathbb{R}^1$, vector $v \in \mathbb{R}^m$, i.e. $v = [v_1, v_2, \dots, v_m]^T$ and matrix $M \in \mathbb{R}^{k \times \ell}$

	s []	v []	M []
s	$\frac{\partial s_1}{\partial s_2}$ []	$\frac{\partial s}{\partial v}$ []	$\frac{\partial s}{\partial M}$ []
v	$\frac{\partial v}{\partial s}$ []	$\frac{\partial v_1}{\partial v_2}$ []	
M	$\frac{\partial M}{\partial s}$ []		Tensors

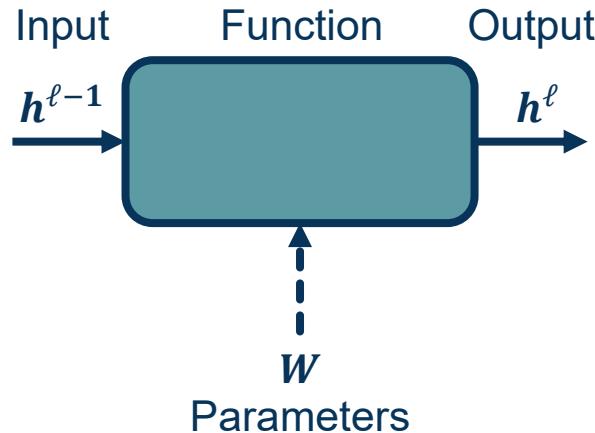
- ◆ What is the size of $\frac{\partial L}{\partial w}$?
- ◆ Remember that loss is a **scalar** and W is a matrix:

$$\begin{bmatrix} w_{11} & w_{12} & \cdots & w_{1m} & b_1 \\ w_{21} & w_{22} & \cdots & w_{2m} & b_2 \\ w_{31} & w_{32} & \cdots & w_{3m} & b_3 \end{bmatrix}$$

Jacobian is also a matrix:

W

$$\begin{bmatrix} \frac{\partial L}{\partial w_{11}} & \frac{\partial L}{\partial w_{12}} & \cdots & \frac{\partial L}{\partial w_{1m}} & \frac{\partial L}{\partial b_1} \\ \frac{\partial L}{\partial w_{21}} & \cdots & \cdots & \frac{\partial L}{\partial w_{2m}} & \frac{\partial L}{\partial b_2} \\ \cdots & \cdots & \cdots & \frac{\partial L}{\partial w_{3m}} & \frac{\partial L}{\partial b_3} \end{bmatrix}$$



Define:

$$h_i^\ell = w_i^T h^{l-1}$$

$$h^\ell = Wh^{l-1}$$

$$\begin{bmatrix} & & & \end{bmatrix} \begin{bmatrix} & \xleftarrow{w_i^T} & \end{bmatrix} \begin{bmatrix} & & & \end{bmatrix}$$

$$|h^\ell| \times 1 \quad |h^\ell| \times |h^{l-1}| \quad |h^{l-1}| \times 1$$

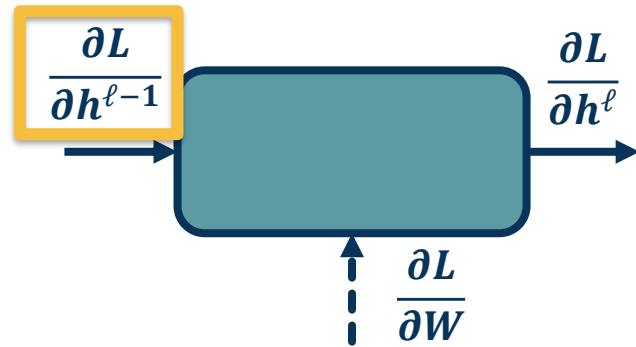
Fully Connected (FC) Layer: Forward Function

$$\mathbf{h}^\ell = \mathbf{W}\mathbf{h}^{\ell-1}$$

$$\frac{\partial \mathbf{h}^\ell}{\partial \mathbf{h}^{\ell-1}} = \mathbf{W}$$

Define:

$$\mathbf{h}_i^\ell = \mathbf{w}_i^T \mathbf{h}^{\ell-1}$$



$$\frac{\partial L}{\partial \mathbf{h}^{\ell-1}} = \frac{\partial L}{\partial \mathbf{h}^\ell} \frac{\partial \mathbf{h}^\ell}{\partial \mathbf{h}^{\ell-1}}$$

[] [] []

$$1 \times |\mathbf{h}^{\ell-1}| \quad 1 \times |\mathbf{h}^\ell| \quad |\mathbf{h}^\ell| \times |\mathbf{h}^{\ell-1}|$$

Fully Connected (FC) Layer

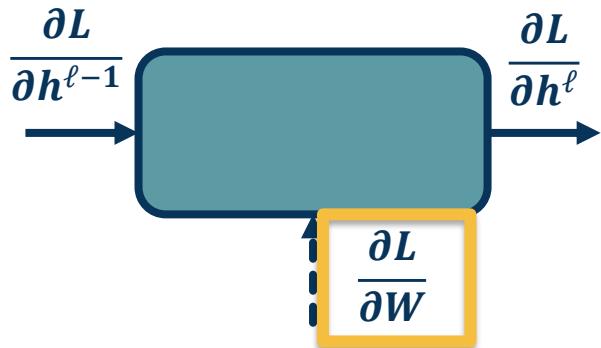
$$\mathbf{h}^\ell = \mathbf{W}\mathbf{h}^{\ell-1}$$

$$\frac{\partial \mathbf{h}^\ell}{\partial \mathbf{h}^{\ell-1}} = \mathbf{W}$$

Define:

$$\mathbf{h}_i^\ell = \mathbf{w}_i^T \mathbf{h}^{\ell-1}$$

$$\frac{\partial \mathbf{h}_i^\ell}{\partial \mathbf{w}_i^T} = \mathbf{h}^{(\ell-1),T}$$



Note doing this on full \mathbf{W} matrix would result in Jacobian tensor!

But it is *sparse* – each output only affected by corresponding weight row

$$\frac{\partial L}{\partial \mathbf{w}_i^T} = \frac{\partial L}{\partial \mathbf{h}^\ell} \frac{\partial \mathbf{h}^\ell}{\partial \mathbf{w}_i^T}$$

$$\left[\quad \right] \left[\quad \right] \left[\begin{array}{c} \leftarrow 0 \rightarrow \\ \leftarrow \frac{\partial \mathbf{h}_i^\ell}{\partial \mathbf{w}_i^T} \rightarrow \\ \leftarrow 0 \rightarrow \end{array} \right]$$

1 \times $|\mathbf{h}^{\ell-1}|$ 1 \times $|\mathbf{h}^\ell|$ $|\mathbf{h}^\ell| \times |\mathbf{h}^{\ell-1}|$

$$\frac{\partial L}{\partial \mathbf{W}}$$

$$\left[\quad \right]$$

Iterate and populate
Note can simplify/vectorize!

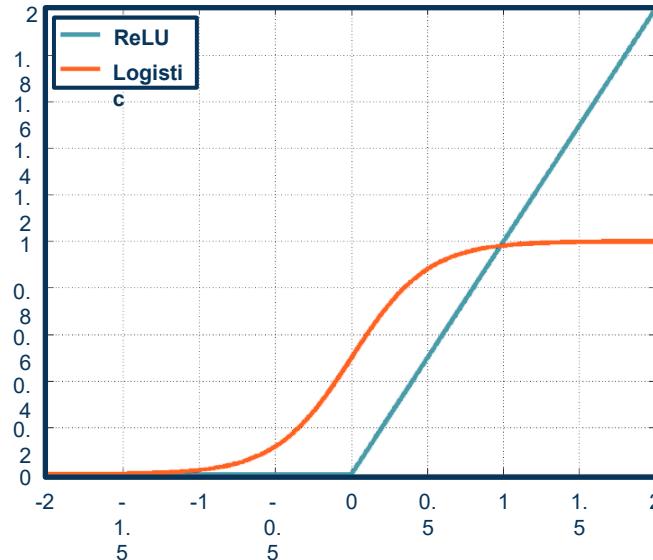
Fully Connected (FC) Layer

We can employ any differentiable (or piecewise differentiable) function

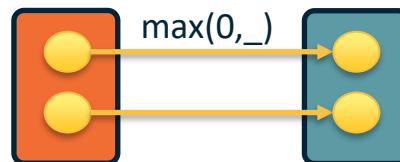
A common choice is the **Rectified Linear Unit**

- ◆ Provides non-linearity but better gradient flow than sigmoid
- ◆ Performed **element-wise**

How many parameters for this layer?



$$h^\ell = \max(0, h^{\ell-1})$$



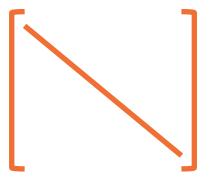
Rectified Linear Unit (ReLU)

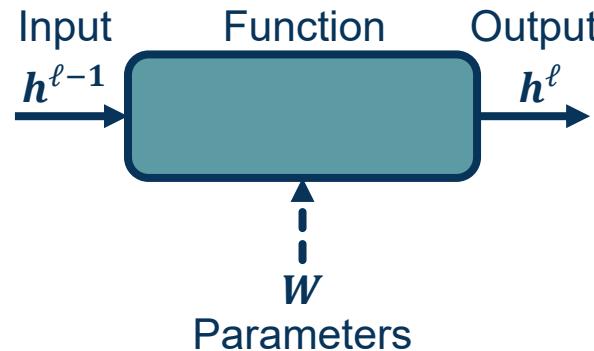
Full Jacobian of ReLU layer is **large**
(output dim x input dim)

- But again it is **sparse**
- Only **diagonal values non-zero** because it is element-wise
- An output value affected only by **corresponding input value**

Max function **funnels gradients** through **selected max**

- Gradient will be **zero** if input ≤ 0

$$|h^\ell \times h^{\ell-1}|$$




Forward: $h^\ell = \max(0, h^{\ell-1})$

Backward: $\frac{\partial L}{\partial h^{\ell-1}} = \frac{\partial L}{\partial h^\ell} \frac{\partial h^\ell}{\partial h^{\ell-1}}$

For diagonal

$$\frac{\partial h^\ell}{\partial h^{\ell-1}} = \begin{cases} 1 & \text{if } h^{\ell-1} > 0 \\ 0 & \text{otherwise} \end{cases}$$

4D input x:

$$\begin{bmatrix} 1 \\ -2 \\ 3 \\ -1 \end{bmatrix} \longrightarrow$$

$$f(x) = \max(0, x)$$

(elementwise)

4D output z:

$$\longrightarrow \begin{bmatrix} 1 \\ 0 \\ 3 \\ 0 \end{bmatrix}$$

4D dL/dx :

$$\begin{bmatrix} 4 \\ 0 \\ 5 \\ 0 \end{bmatrix} \longleftarrow \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 4 \\ -1 \\ 5 \\ 9 \end{bmatrix}$$

4D dL/dz :

$$\begin{bmatrix} 4 \\ -1 \\ 5 \\ 9 \end{bmatrix} \longleftarrow \begin{bmatrix} 4 \\ -1 \\ 5 \\ 9 \end{bmatrix}$$

Upstream
gradient

For element-wise ops, jacobian is **sparse**: off-diagonal entries always zero!
 Never **explicitly** form Jacobian -- instead use elementwise multiplication

- Neural networks involves composing simple functions into a **computation graph**
- Optimization (updating weights) of this graph is through backpropagation
 - Recursive algorithm: Gradient descent (partial derivatives) plus chain rule
- Remaining questions:
 - How does this work with vectors, matrices, tensors?
 - Across a composed function? **This Time!**
 - How can we implement this algorithmically to make these calculations automatic? **Automatic Differentiation**

Vectorization in Function Compositions

Composition of Functions: $f(g(x)) = (f \circ g)(x)$

A complex function (e.g. defined by a neural network):

$$f(x) = g_\ell(g_{\ell-1}(\dots g_1(x)))$$

$$f(x) = g_\ell \circ g_{\ell-1} \dots \circ g_1(x)$$

(Many of these will be parameterized)

(Note you might find the opposite notation as well!)

$$x \in \mathbb{R}^1 \xrightarrow{g_1} z \in \mathbb{R}^1 \xrightarrow{g_2} y \in \mathbb{R}^1$$

$$y = g_2(g_1(x))$$

$$\frac{\partial y}{\partial x} = \frac{\partial y}{\partial z} * \frac{\partial z}{\partial x}$$

Scalar Multiplication

Scalar Case

$$\vec{x} \{ \in \mathbb{R}^d \longrightarrow \vec{z} \{ \in \mathbb{R}^m \longrightarrow \vec{y} \{ \in \mathbb{R}^c$$

$$g_1$$

$$g_2$$

$$\mathbb{R}^d \rightarrow \mathbb{R}^m$$

$$\mathbb{R}^m \rightarrow \mathbb{R}^c$$

$$\begin{bmatrix} \frac{\partial \vec{y}}{\partial \vec{x}} \\ J_{g_1 \circ g_2} \end{bmatrix} = \begin{bmatrix} \frac{\partial \vec{y}}{\partial \vec{z}} \\ J_{g_1} \end{bmatrix} \begin{bmatrix} \frac{\partial \vec{z}}{\partial \vec{x}} \\ J_{g_2} \end{bmatrix}$$

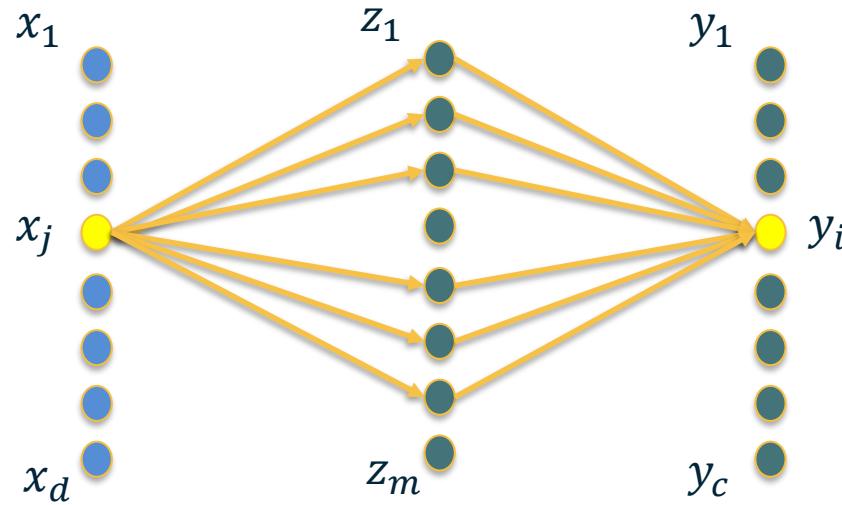
Matrix Multiplication

Vector Case

$$\left[\begin{array}{c} \frac{\partial y_i}{\partial x_j} \end{array} \right] = \left[\begin{array}{c} \frac{\partial y_i}{\partial z_k} \end{array} \right] \left[\begin{array}{c} \frac{\partial z_k}{\partial x_j} \end{array} \right]$$

$$\frac{\partial y_i}{\partial x_j} = \sum_k \frac{\partial y_i}{\partial z_k} * \frac{\partial z_k}{\partial x_j}$$

Jacobian View of Chain Rule



$$\frac{\partial y_i}{\partial x_j} = \sum_k \frac{\partial y_i}{\partial z_k} * \frac{\partial z_k}{\partial x_j}$$

k paths

Graphical View of Chain Rule

$$h^0 \in \mathbb{R}^d \longrightarrow h^1 \in \mathbb{R}^d \longrightarrow \dots \longrightarrow h^l \in \mathbb{R}^d$$

$$\frac{\partial h^l}{\partial h^1} = \frac{\partial h^l}{\partial h^{l-1}} \frac{\partial h^{l-1}}{\partial h^{l-2}} \dots \frac{\partial h^2}{\partial h^1}$$

$$\begin{bmatrix} & \end{bmatrix} = \begin{bmatrix} & \end{bmatrix} \begin{bmatrix} & \end{bmatrix} \begin{bmatrix} & \end{bmatrix} \begin{bmatrix} & \end{bmatrix}$$

$$h^0 \in \mathbb{R}^d \longrightarrow h^1 \in \mathbb{R}^d \longrightarrow \dots \longrightarrow h^l \in \mathbb{R}^d \longrightarrow L \in \mathbb{R}^1$$

$$\frac{\partial L}{\partial h^1} = \frac{\partial L}{\partial h^l} \frac{\partial h^l}{\partial h^{l-1}} \frac{\partial h^{l-1}}{\partial h^{l-2}} \dots \frac{\partial h^2}{\partial h^1}$$

$$\begin{bmatrix} & & & \end{bmatrix} = \begin{bmatrix} & & & \end{bmatrix} \begin{bmatrix} & & & \end{bmatrix} \begin{bmatrix} & & & \end{bmatrix} \begin{bmatrix} & & & \end{bmatrix}$$

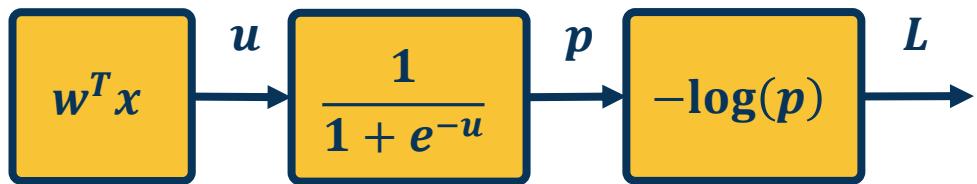
Which directions is more efficient to multiply?

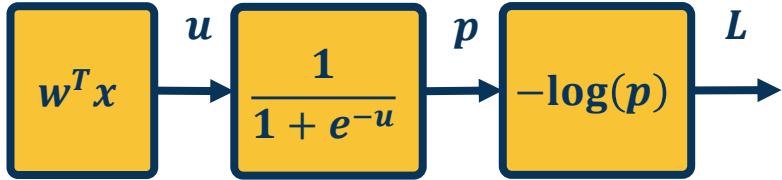
We have discussed **computation graphs for generic functions**

Machine Learning functions
(input -> model -> loss function)
is also a computation graph

We can use the **computed gradients from backprop/automatic differentiation** to update the weights!

$$-\log\left(\frac{1}{1 + e^{-w^T x}}\right)$$





$$\bar{L} = 1$$

$$\bar{p} = \frac{\partial L}{\partial p} = -\frac{1}{p}$$

where $p = \sigma(w^T x)$ and $\sigma(x) = \frac{1}{1+e^{-x}}$

$$\bar{u} = \frac{\partial L}{\partial u} = \frac{\partial L}{\partial p} \frac{\partial p}{\partial u} = \bar{p} \sigma(1 - \sigma)$$

$$\bar{w} = \frac{\partial L}{\partial w} = \frac{\partial L}{\partial u} \frac{\partial u}{\partial w} = \bar{u} x^T$$

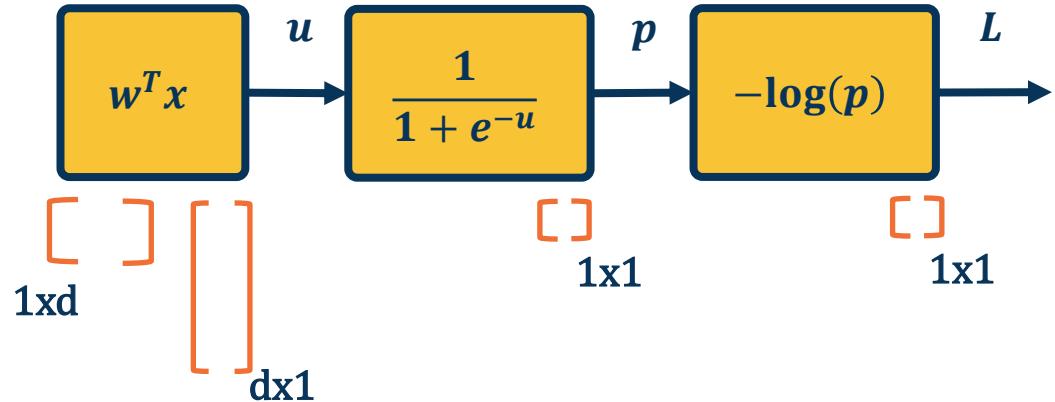
We can do this in a combined way to see all terms together:

$$\begin{aligned} \bar{w} &= \frac{\partial L}{\partial p} \frac{\partial p}{\partial u} \frac{\partial u}{\partial w} = \bar{L} \bar{p} \bar{u} = -\frac{1}{\sigma(w^T x)} \sigma(w^T x) (1 - \sigma(w^T x)) x^T \\ &= -\left(1 - \sigma(w^T x)\right) x^T \end{aligned}$$

This effectively shows gradient flow along path from L to w

Example Gradient Computations

The chain rule can be computed as a **series of scalar, vector, and matrix linear algebra operations**



Extremely efficient in graphics processing units (GPUs)

$$\bar{w} = -\frac{1}{\sigma(w^T x)} \sigma(w^T x) (1 - \sigma(w^T x)) x^T$$

Dimensions indicated by brackets:

- $\sigma(w^T x)$ (dimensions 1×1)
- $\sigma(w^T x) (1 - \sigma(w^T x))$ (dimensions 1×1)
- x^T (dimensions $1 \times d$)

Many standard regularization methods still apply!

L1 Regularization

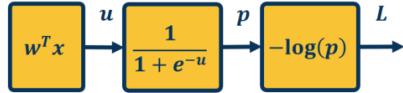
$$L = |y - Wx_i|^2 + \lambda|W|$$

where $|W|$ is element-wise

Example regularizations:

- ◆ L1/L2 on weights (encourage small values)
- ◆ L2: $L = |y - Wx_i|^2 + \lambda|W|^2$ (weight decay)
- ◆ Elastic L1/L2: $|y - Wx_i|^2 + \alpha|W|^2 + \beta|W|$

- We want to compute: $\left\{ \frac{\partial L}{\partial h^{\ell-1}}, \frac{\partial L}{\partial W} \right\}$



$$L = \frac{1}{p}$$

$$\bar{p} = \frac{\partial L}{\partial p} = -\frac{1}{p}$$

where $p = \sigma(w^T x)$ and $\sigma(x) = \frac{1}{1+e^{-x}}$

$$\bar{u} = \frac{\partial L}{\partial u} = \frac{\partial L}{\partial p} \frac{\partial p}{\partial u} = \bar{p} \sigma(1 - \sigma)$$

$$\bar{w} = \frac{\partial L}{\partial w} = \frac{\partial L}{\partial u} \frac{\partial u}{\partial w} = \bar{u} x^T$$

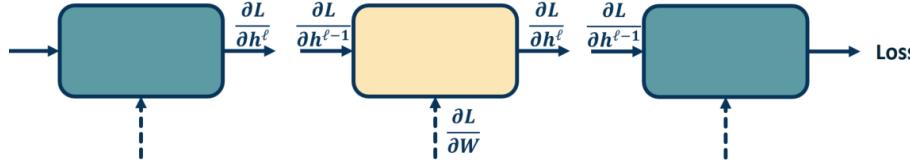
We can do this in a combined way to see all terms together:

$$\bar{w} = \frac{\partial L}{\partial p} \frac{\partial p}{\partial u} \frac{\partial u}{\partial w} = -\frac{1}{\sigma(w^T x)} \sigma(w^T x)(1 - \sigma(w^T x))x^T$$

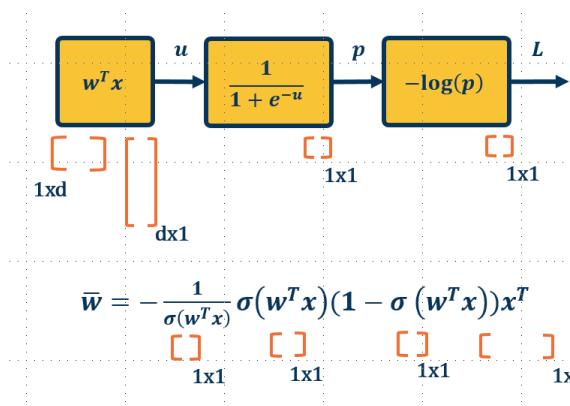
$$= -(\sigma(w^T x))^T x^T$$

This effectively shows gradient flow along path from L to w

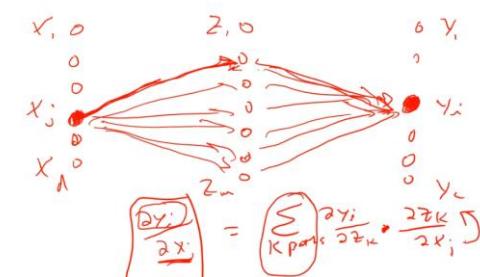
Computation Graph of primitives (automatic differentiation)



Backpropagation View (Recursive Algorithm)



Computational / Tensor View



Graph View

Different Views of Equivalent Ideas

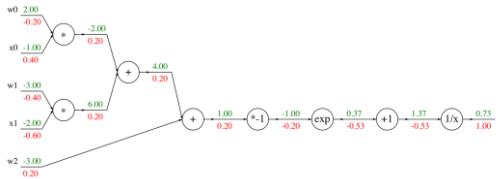
Backpropagation and Automatic Differentiation

Deep Learning = Differentiable Programming

- Computation = Graph
 - Input = Data + Parameters
 - Output = Loss
 - Scheduling = Topological ordering
- What do we need to do?
 - Generic code for representing the graph of modules
 - Specify modules (both forward and backward function)

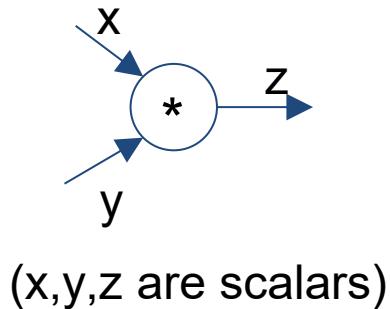
Modularized implementation: forward / backward API

Graph (or Net) object (*rough psuedo code*)



```
class ComputationalGraph(object):  
    ...  
    def forward(inputs):  
        # 1. [pass inputs to input gates...]  
        # 2. forward the computational graph:  
        for gate in self.graph.nodes_topologically_sorted():  
            gate.forward()  
        return loss # the final gate in the graph outputs the loss  
    def backward():  
        for gate in reversed(self.graph.nodes_topologically_sorted()):  
            gate.backward() # little piece of backprop (chain rule applied)  
        return inputs_gradients
```

Modularized implementation: forward / backward API



```
class MultiplyGate(object):  
    def forward(x,y):  
        z = x*y  
        return z  
    def backward(dz):  
        # dx = ... #todo  
        # dy = ... #todo  
        return [dx, dy]
```

$$\frac{\partial L}{\partial z}$$

$$\frac{\partial L}{\partial x}$$

Backpropagation does not really spell out how to **efficiently** carry out the necessary computations

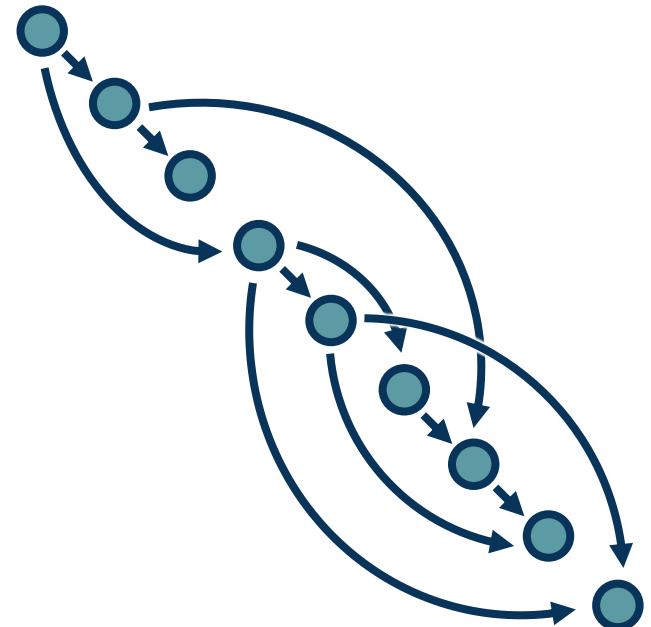
But the idea can be applied to **any directed acyclic graph (DAG)**

- Graph represents an **ordering constraining** which paths must be calculated first

Given an ordering, we can then iterate from the last module backwards, **applying the chain rule**

- We will store, for each node, its **local gradient function/computation for efficiency**
- We will do this **automatically** by computing backwards function for primitives and as you write code, express the function with them

This is called reverse-mode **automatic differentiation**



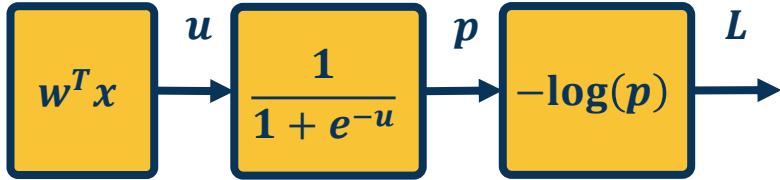
Computation = Graph

- ◆ Input = Data + Parameters
- ◆ Output = Loss
- ◆ Scheduling = Topological ordering

Auto-Diff

- ◆ A family of algorithms for implementing chain-rule on computation graphs

Deep Learning = Differentiable Programming



$$\bar{L} = 1$$

$$\bar{p} = \frac{\partial L}{\partial p} = -\frac{1}{p}$$

where $p = \sigma(w^T x)$ and $\sigma(x) = \frac{1}{1+e^{-x}}$

$$\bar{u} = \frac{\partial L}{\partial u} = \frac{\partial L}{\partial p} \frac{\partial p}{\partial u} = \bar{p} \sigma(1 - \sigma)$$

$$\bar{w} = \frac{\partial L}{\partial w} = \frac{\partial L}{\partial u} \frac{\partial u}{\partial w} = \bar{u} x^T$$

We can do this in a combined way to see all terms together:

$$\begin{aligned}\bar{w} &= \frac{\partial L}{\partial p} \frac{\partial p}{\partial u} \frac{\partial u}{\partial w} = -\frac{1}{\sigma(w^T x)} \sigma(w^T x)(1 - \sigma(w^T x))x^T \\ &= -(1 - \sigma(w^T x))x^T\end{aligned}$$

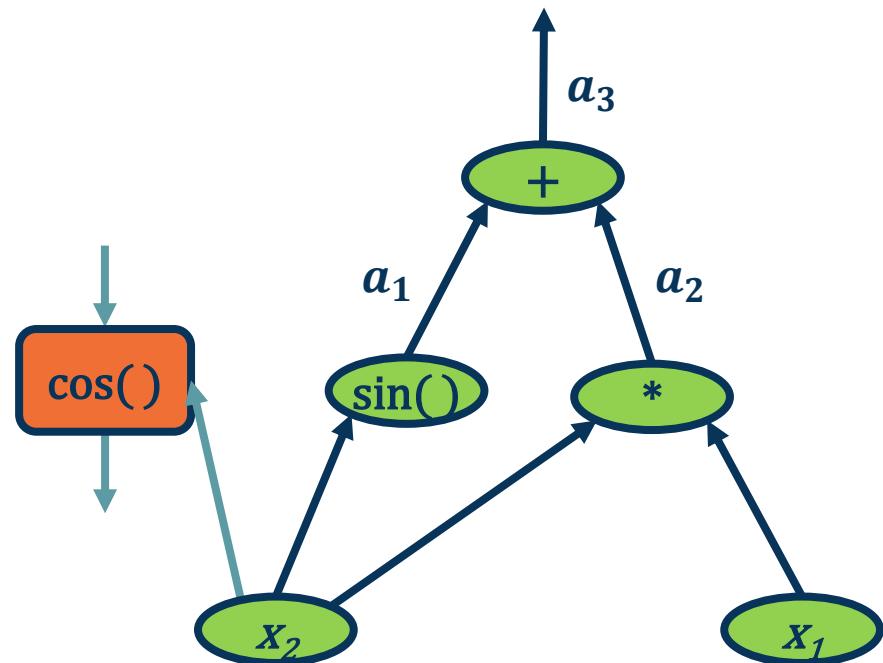
This effectively shows gradient flow along path from L to w

Example Gradient Computations

- Key idea is to **explicitly store computation graph** in memory and **corresponding gradient functions**

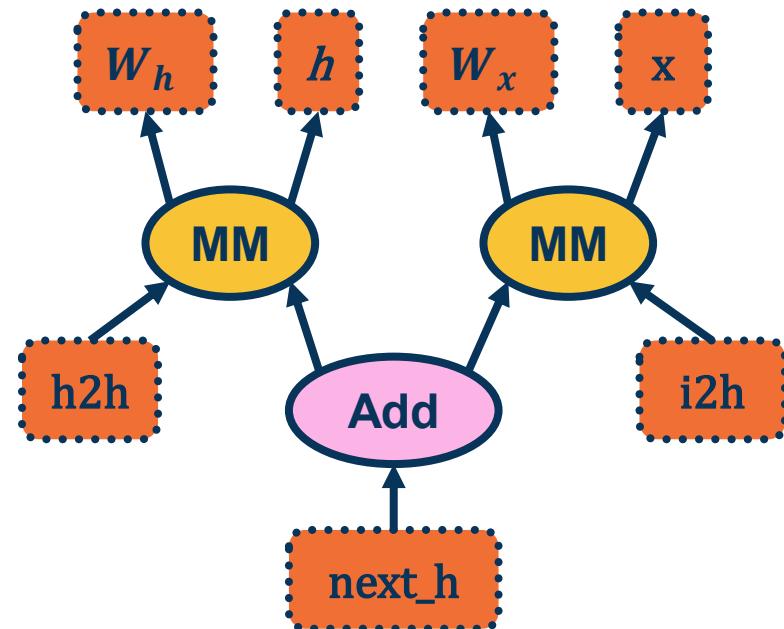
- Nodes broken down to **basic primitive computations** (addition, multiplication, log, etc.) for which **corresponding derivative is known**

$$\overline{x_2} = \frac{\partial f}{\partial a_1} \frac{\partial a_1}{\partial x_2} = \overline{a_1} \cos(x_2)$$



A graph is created on the fly

```
from torch.autograd import Variable  
  
x = Variable(torch.randn(1, 20))  
prev_h = Variable(torch.randn(1, 20))  
W_h = Variable(torch.randn(20, 20))  
W_x = Variable(torch.randn(20, 20))  
  
i2h = torch.mm(W_x, x.t())  
h2h = torch.mm(W_h, prev_h.t())  
next_h = i2h + h2h
```



(Note above)

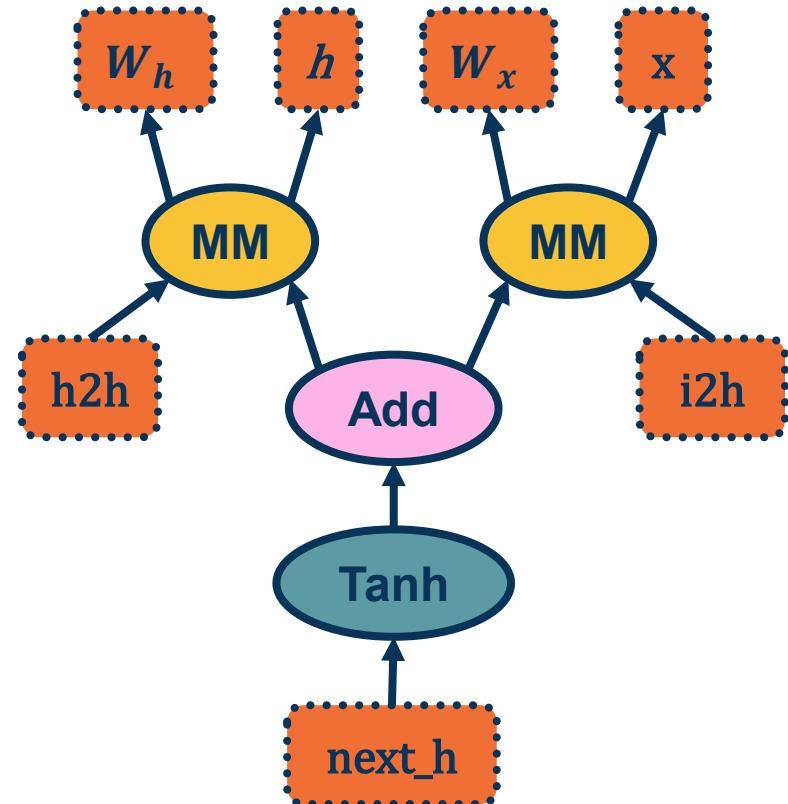
Back-propagation uses the dynamically built graph

```
from torch.autograd import Variable
```

```
x = Variable(torch.randn(1, 20))
prev_h = Variable(torch.randn(1, 20))
W_h = Variable(torch.randn(20, 20))
W_x = Variable(torch.randn(20, 20))

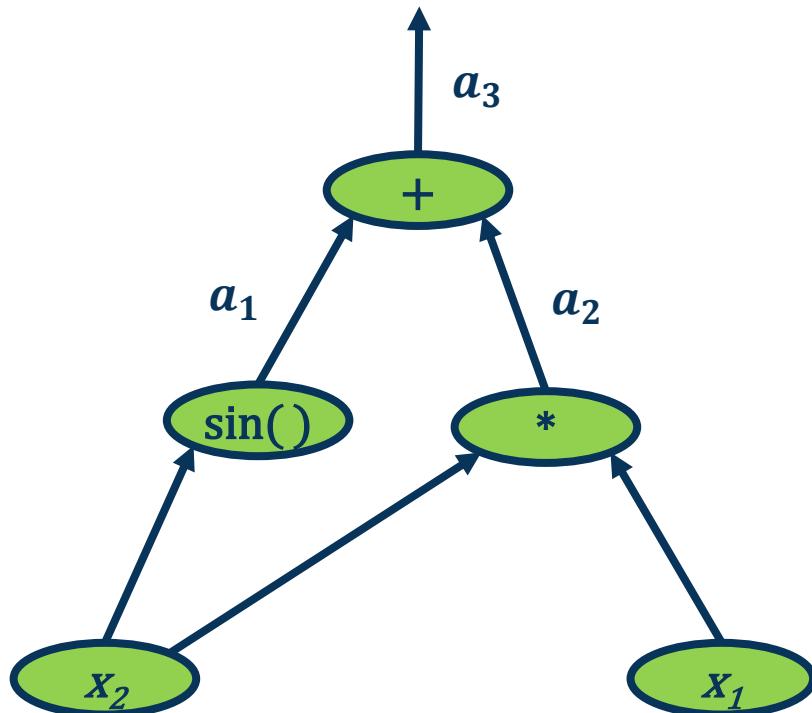
i2h = torch.mm(W_x, x.t())
h2h = torch.mm(W_h, prev_h.t())
next_h = i2h + h2h
next_h = next_h.tanh()

next_h.backward(torch.ones(1, 20))
```



From pytorch.org

$$f(x_1, x_2) = x_1 x_2 + \sin(x_2)$$



We want to find the **partial derivative of output f (output)** with respect to **all intermediate variables**

- ◆ Assign intermediate variables

Simplify notation:

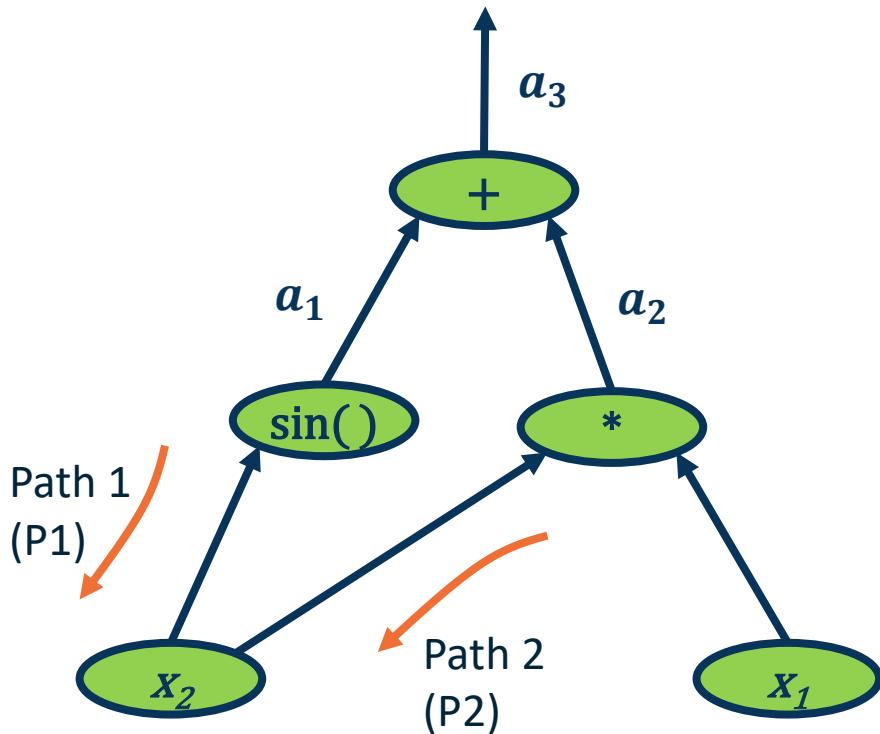
Denote bar as: $\bar{a}_3 = \frac{\partial f}{\partial a_3}$

- ◆ Start at **end** and move **backward**

Example

$$f(x_1, x_2) = x_1 x_2 + \sin(x_2)$$

$$\overline{a_3} = \frac{\partial f}{\partial a_3} = 1$$



$$\overline{a_1} = \frac{\partial f}{\partial a_1} = \frac{\partial f}{\partial a_3} \frac{\partial a_3}{\partial a_1} = \frac{\partial f}{\partial a_3} \frac{\partial (a_1 + a_2)}{\partial a_1} = \frac{\partial f}{\partial a_3} 1 = \overline{a_3}$$

$$\overline{a_2} = \frac{\partial f}{\partial a_2} = \frac{\partial f}{\partial a_3} \frac{\partial a_3}{\partial a_2} = \overline{a_3}$$

$$\overline{x_2^{P1}} = \frac{\partial f}{\partial a_1} \frac{\partial a_1}{\partial x_2} = \overline{a_1} \cos(x_2)$$

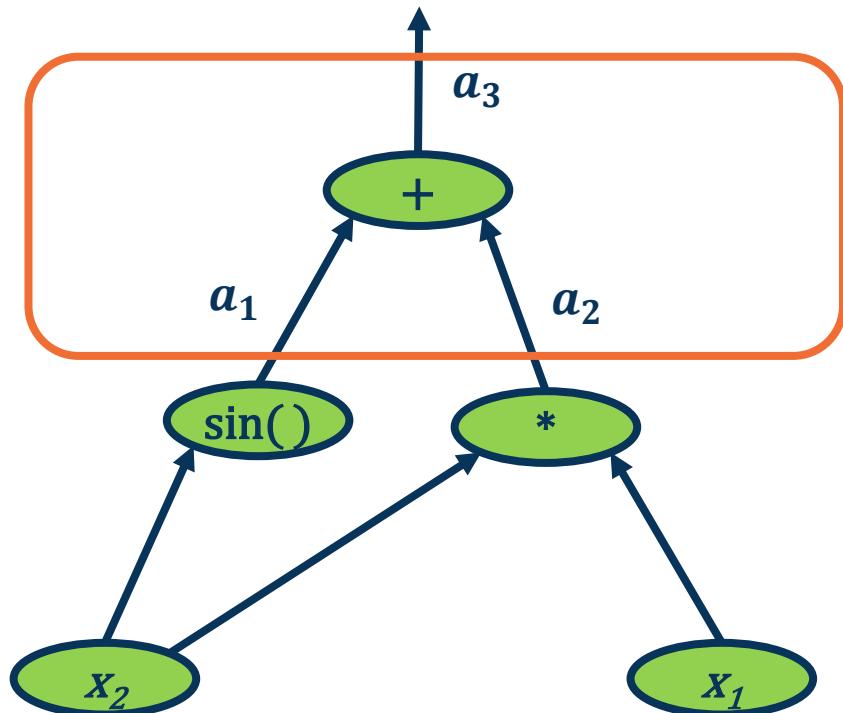
$$\overline{x_2^{P2}} = \frac{\partial f}{\partial a_2} \frac{\partial a_2}{\partial x_2} = \frac{\partial f}{\partial a_2} \frac{\partial (x_1 x_2)}{\partial x_2} = \overline{a_2} x_1$$

Gradients from multiple paths summed

$$\overline{x_1} = \frac{\partial f}{\partial a_2} \frac{\partial a_2}{\partial x_1} = \overline{a_2} x_2$$

Example

$$f(x_1, x_2) = x_1 x_2 + \sin(x_2)$$

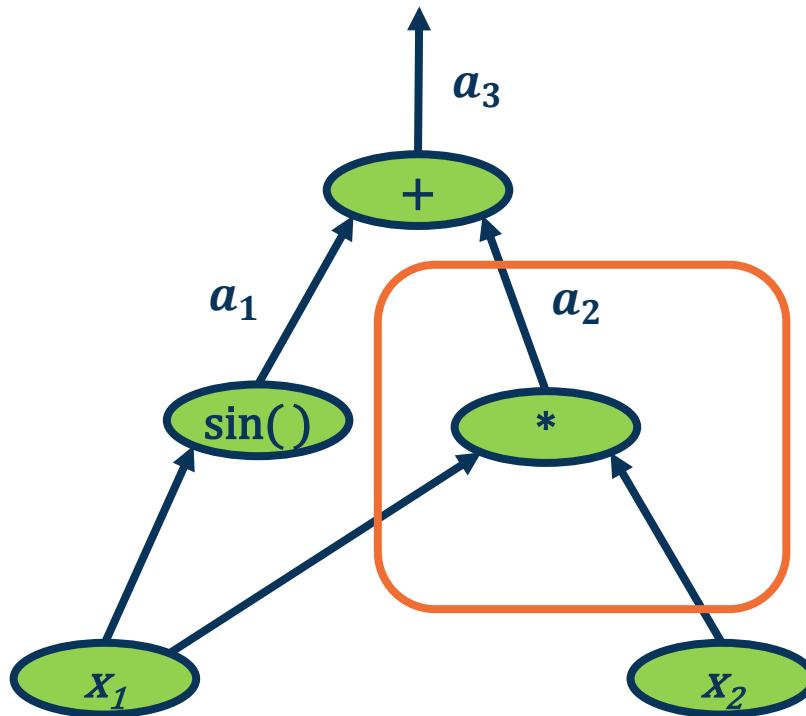


$$\overline{a_1} = \frac{\partial f}{\partial a_1} = \frac{\partial f}{\partial a_3} \frac{\partial a_3}{\partial a_1} = \frac{\partial f}{\partial a_3} \frac{\partial (a_1 + a_2)}{\partial a_1} = \frac{\partial f}{\partial a_3} 1 = \overline{a_3}$$

$$\overline{a_2} = \frac{\partial f}{\partial a_2} = \frac{\partial f}{\partial a_3} \frac{\partial a_3}{\partial a_2} = \overline{a_3}$$

Addition operation distributes gradients along all paths!

$$f(x_1, x_2) = x_1 x_2 + \sin(x_2)$$



Multiplication operation is a gradient switcher (multiplies it by the values of the other term)

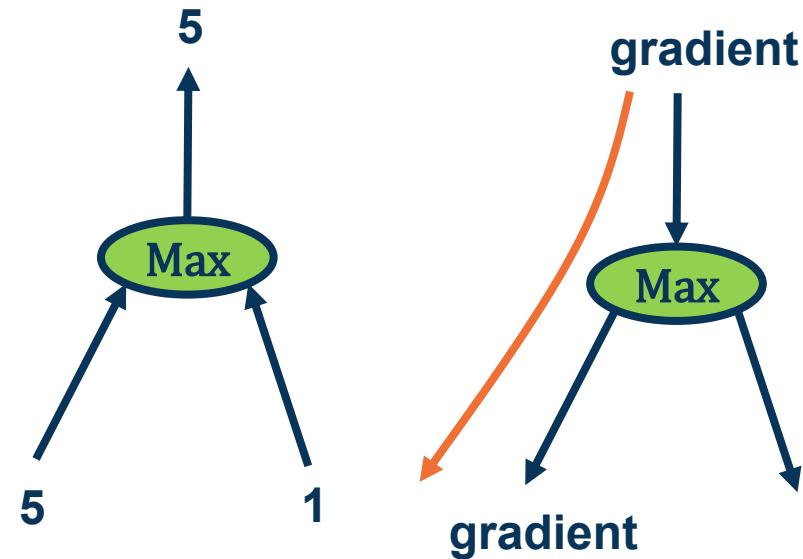
$$\overline{x_2} = \frac{\partial f}{\partial a_2} \frac{\partial a_2}{\partial x_2} = \frac{\partial f}{\partial a_2} \frac{\partial (x_1 x_2)}{\partial x_2} = \overline{a_2} x_1$$

$$\overline{x_1} = \frac{\partial f}{\partial a_2} \frac{\partial a_2}{\partial x_1} = \overline{a_2} x_2$$

Several other patterns as well, e.g.:

Max operation **selects** which path to push the gradients through

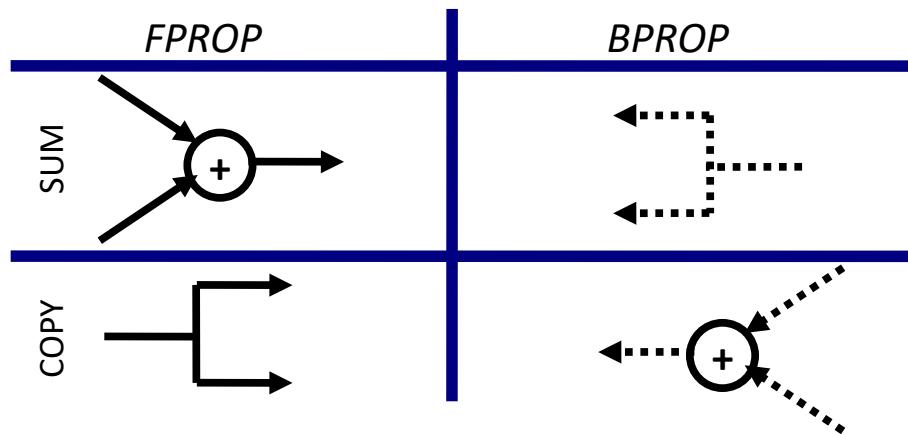
- Gradient flows along the path that was “selected” to be max
- This information must be recorded in the forward pass



The **flow of gradients** is one of the **most important aspects** in deep neural networks

- If gradients **do not flow backwards properly**, learning slows or stops!

Duality in Fprop and Bprop

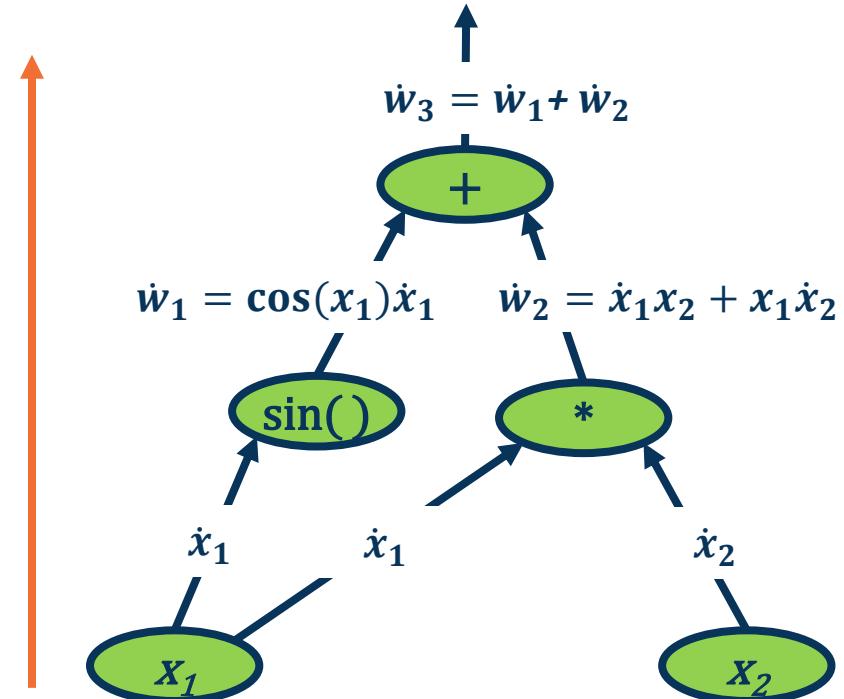


Note that we can also do **forward mode** automatic differentiation

Start from **inputs** and propagate gradients forward

Complexity is proportional to input size

- Memory savings (all forward pass, no need to store activations)
- However, in most cases our **inputs** (images) are large and **outputs** (loss) are small



Convolutional network (AlexNet)

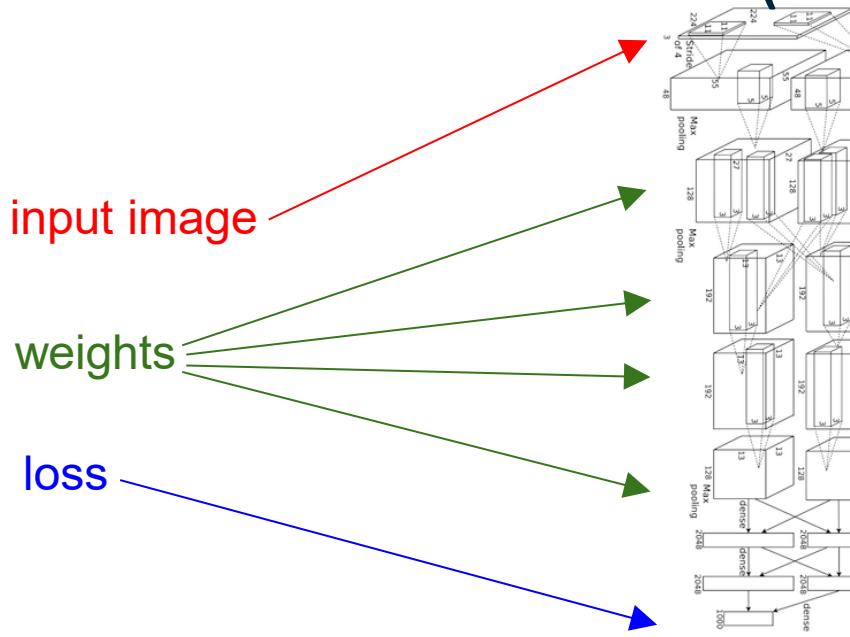


Figure copyright Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton, 2012. Reproduced with permission.

Neural Turing Machine

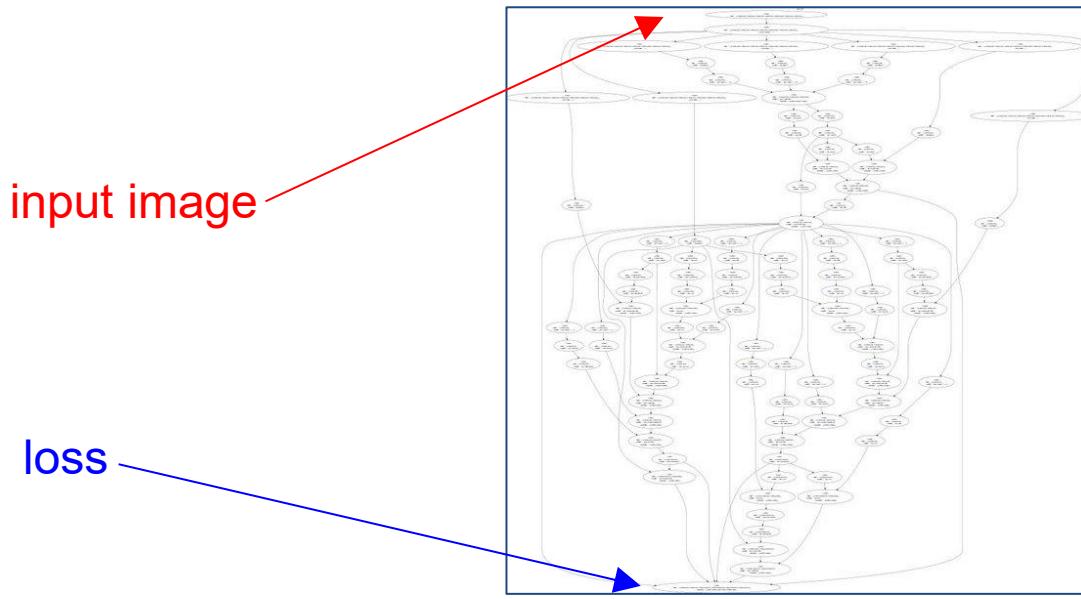
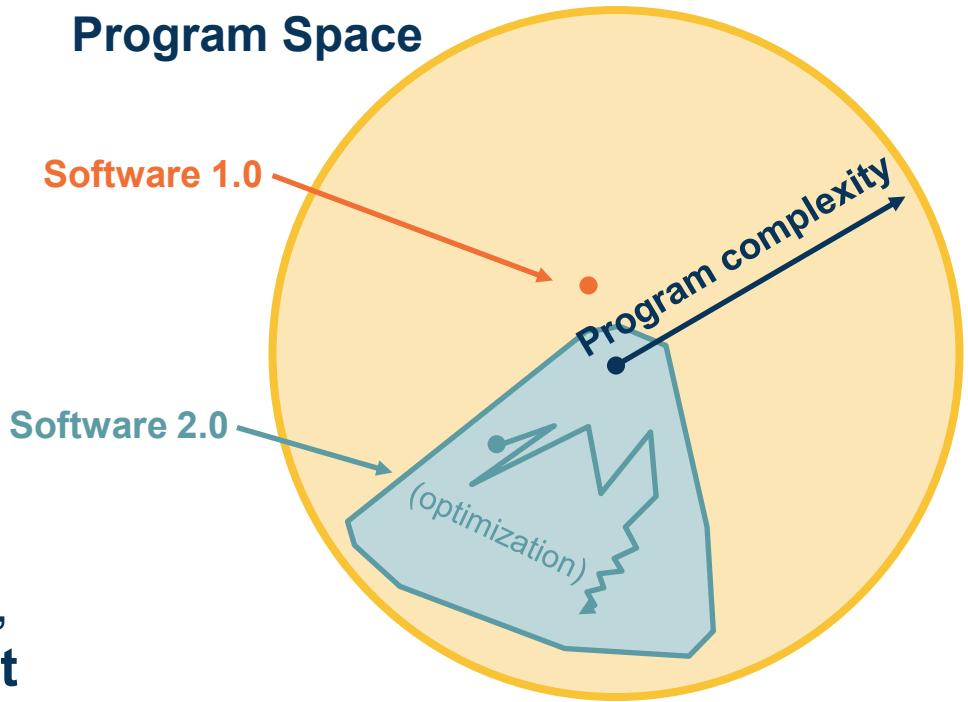


Figure reproduced with permission from a [Twitter post](#) by Andrej Karpathy.

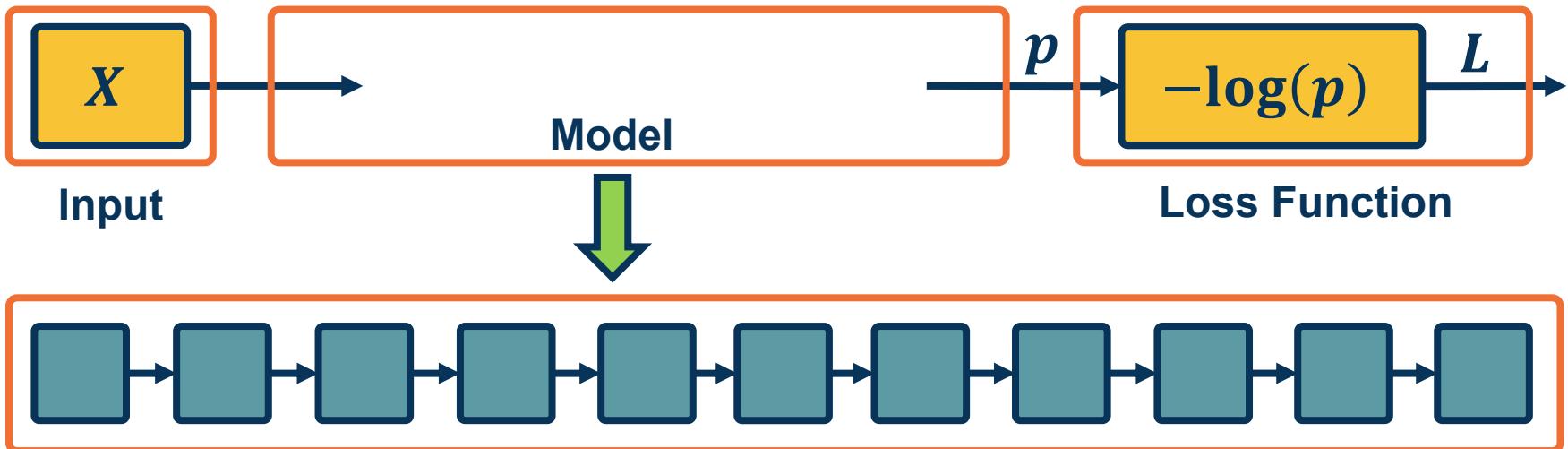
- ◆ Computation graphs are **not** limited to mathematical functions!
- ◆ Can have **control flows** (if statements, loops) and **backpropagate** through algorithms!
- ◆ Can be done **dynamically** so that **gradients are computed**, then **nodes are added**, repeat
- ◆ **Differentiable programming**



Adapted from figure by Andrej Karpathy

Backpropagation, and automatic differentiation, allows us to optimize any function composed of differentiable blocks

- ◆ **No need to modify** the learning algorithm!
- ◆ The complexity of the function is only limited by **computation and memory**

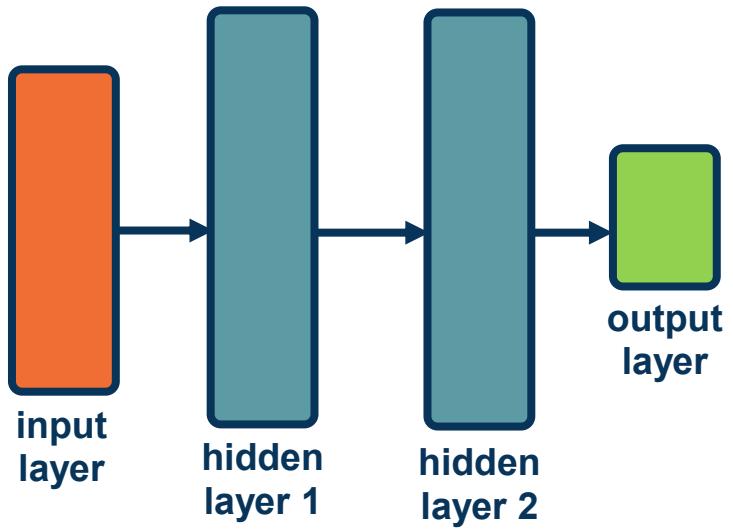


The Power of Deep Learning

A network with two or more hidden layers is often considered a **deep** model

Depth is important:

- ◆ Structure the model to represent an inherently compositional world
- ◆ Theoretical evidence that it leads to parameter efficiency
- ◆ Gentle dimensionality reduction (if done right)



There are still many design decisions that must be made:

- ◆ **Architecture**
- ◆ **Data Considerations**
- ◆ **Training and Optimization**
- ◆ **Machine Learning Considerations**

