Topics:
* Optimization

CS 4644-DL / 7643-A
ZSOLT KIRA

 Assignment 1 - Due today!!!
* DO NOT SEARCH FOR CODE!!!!

* Assignment 2
* Implement convolutional neural networks

* Quizon Feb 11t
* Practice Quiz out today

*Project Proposal: Out and due Feb 14th

* Meta OH: We will have OH with Meta researchers (joint w/ OMSCS)

OMSCS Lessons (videos) linked as dropbox
Full schedule and discussions on https://ai-learning.org/

https://ai-learning.org/
https://ai-learning.org/
https://ai-learning.org/

(RGN

Wi Wz o Wambs|| °

x
W11 Wi 0 Wi by xl
Wy1 Wi 0 Wz by 2

T
w x
! gis input :
; t layer hlldden
g * Gradient Descent ayer
§ e Compute gradients via
% 1 10 " : 1 ; ’ chain rule
5 5 * Backpropagation
* Computation
Graph + Automatic aL
. . ae W, =W;—«a
Differentiation ow;

f(xq,x2) = x1x, + sin(x,)

a;=—=1
3 6a3
g O _Of da3_ Of daitay) _ Of 4 _ o
1 6a1 6a3 6a1 6a3 aal aag 3
__ df Of daz __
2 = = = a3
aaz aag aaz
—p1 _ Of da; __
Xo" =— —=4aq Cos\x
2 6a1 axz 1 (2)
Gradients
£P2 =9 9a; _ 9f d(x1x2) -, from multiple
2 da,; 0dx; da, 0xy 271 paths
summed
__ f day
X1 =7 —=0ax
1 aaz 6x1 272

2
Georgi S
Teclﬂ S

A graph is created on the fly

torch.autograd Variable

X = Variable(torch.randn(1, 20))
prev_h = Variable(torch.randn(1, 20))
W_h = Variable(torch.randn(20, 20))
W_x = Variable(torch.randn(20, 20))

i2h = torch.mm(W_x, x.t())
h2h = torch.mm(W_h, prev_h.t())
next_h = i2h + h2h

(Note above)

) Computation Graphs in PyTorch

1 1
Ty = — }—]-1 L wlx o : » —lo —
whx og() — £®)
CII § 3

L=1

_ a1 1xd 1x1 1x1
P*a— _1_7

“dx1

where p = o(w'x) and o(x) = Hl?

_ L _aL ap

u=g= a—pa(l) w=— a(wa) o(wl x)(l a(w x))a”
oo oy (3 c1 01 C 3
B 1x1 1x1 1x1 1xd
We can do this in a combined way to see all terms :
together:
Wt o(wx)(1 - a (W) Computational / Tensor View Graph View
=- (1 —o(w' x))
This effectively shows gradient flow along path from aL aL
Ltow We want to to compute: { aht-1’ OW}

Computation Graph /

oL oL oL oL
Global View of Chain Rule i IO ‘—»3"" ah—-— Loss

: | o :
1 | OW 1

Backpropagation View
(Recursive Algorithm)

Different Views of Equivalent Ideas

Backpropagation, and automatic differentiation, allows us to optimize any
function composed of differentiable blocks

No need to modify the learning algorithm!

The complexity of the function is only limited by computation and memory

‘ X l g £ '| —log(p) lL*
Model
Input ﬂ Loss Function

» The Power of Deep Learning

A network with two or more hidden
layers is often considered a deep
model

Depth is important:

Structure the model to represent
an inherently compositional world

output
layer

Theoretical evidence that it leads
to parameter efficiency

input -
layer hidden hidden
layer 1 layer 2

Gentle dimensionality reduction
(if done right)

) Importance of Depth

There are still many design
decisions that must be made:

Architecture

Data Considerations

Training and
Optimization
Local
Machine Learning Minima
Considerations

) Designing Deep Neural Networks

Machine Learning
Considerations

The practice of machine learning
is complex: For your particular
application you have to trade off all
of the considerations together

Trade-off between model
capacity (e.g. measured by # of
parameters) and amount of data

Adding appropriate biases
based on knowledge of the
domain

Architectural

Considerations

4 'o
o

Geol &?

Tech|)

Determining what modules to use, and how to
connect them is part of the architectural
design
Guided by the type of data used and its
characteristics

Understanding your data is always the
first step!

Lots of data types (modalities) already
have good architectures

Start with what others have
discovered!

The flow of gradients is one of the key
principles to use when analyzing layers

) Designing the Architecture

Combination of linear and . .
non-linear layers wi(Wz(W3x)) = wyx

Combination of only linear .
layers has same wlx |—s)
representational power as one 1+e

linear layer

Non-linear layers are crucial 1 T ook

10
]

Composition of non-linear a6

layers enables complex 02
transformations of the o

data S

) Linear and Non-Linear Modules

Several aspects that we can analyze:
Min/Max

12
10
08
06
04
02 4
0.0 4

Correspondence between input &
output statistics

-1 T T T T T -0.2

Gradients 10]— am ; — e
At initialization (e.g. small 0o ;
values) :

At extremes

Computational complexity

) Analysis of Non-Linear Function

Min: O, Max: 1

Output always positive

Derivative

Saturates at both ends

Gradients
Vanishes at both end h! = ¢ (' 1)
Always positive
P o(x) = —— it . 7
- . 14+e™* 71 0L Qhn?
Computation: Exponential oh P
term

dL dL odh?

ow 9ht ow

) Sigmoid Function

Min: -1, Max: 1

Centered

Derivative

Saturates at both ends
Gradients
Vanishes at both end

Always positive

Still somewhat
computationally heavy

) Tanh Function

Min: O, Max: Infinity
Output always positive
No saturation on positive end!
Gradients
0 ifx < 0 (dead ReLU)

Constant otherwise (does
not vanish)

Cheap to compute (max)

) Rectified Linear Unit

h! = max(0, h*™1)

Min: -Infinity, Max: Infinity
Learnable parameter!
No saturation

Gradients

No dead neuron

Still cheap to compute

) Leaky RelLU

h’ = max(ah’~1, h* 1)

31 — GEWU
RelLU
— FELU

Activation functions is
still area of research!

Though many don't
catch on

In Transformer
architectures, other
activations such as
GeLU is common

From "Gaussian Error Linear Units (GELUSs)”, Hendrycks & Gimpel

) Variations: ELU, GelL U, etc.

Selecting a Non-Linearity

Which non-linearity should you
select?

Unfortunately, no one activation
function is best for all applications

ReLU is most common starting
point

Sometimes leaky RelLU can
make a big difference

Sigmoid is typically avoided
unless clamping to values from
[0,1] is needed

Demo
* http://playground.tensorflow.org

DATA FEATURES + — 2 HIDDEN LAYERS QUTPUT
Which dataset do Which properties do Test loss 0.511
you want to use? you want to feed in? + - + - Training loss 0.517

E 7 neurons 2 neurons
X1

[0 3 il
Ratio of training to
test data: 50% - o
— Lt
’l
Noise: 0
o 3
Batch size: 10
— o
REGENERATE Tl D
Colors shows
— data, neuron and | |
sin(Xz 3 Bl 0 1
D weight values
4

[Show test data [] Discretize output

http://playground.tensorflow.org/
http://playground.tensorflow.org/

Georgia
graia |

0

Deep learning involves complex,
compositional, non-linear functions

The loss landscape is extremely non-
convex as a result

o
MCL loss

There is little direct theory and a lot of
intuition/rules of thumbs instead

Some insight can be gained via
theory for simpler cases (e.g.
convex settings)

Georgia Jh

) Loss Landscape Tech |

It used to be thought that
existence of local minima is
the main issue in optimization

There are other more
impactful issues:

Noisy gradient estimates

Saddle points

lll-conditioned loss surface

) Loss Landscape

Saddle Point

From: Identifying and attacking the saddle point problem in high-
dimensional non-convex optimization, Dauphi et al., 2014.

Georgia

Tech

J&

=

We use a subset of the
data at each iteration to
calculate the loss (&
gradients)

1
L=223 L(f(xiW),3)

This is an unbiased
estimator but can have
high variance

This results in noisy steps
In gradient descent

) Noisy Gradients Georgia @

Several loss surface geometries
are difficult for optimization

Several types of minima: Local
minima, plateaus, saddle points

Saddle points are those where the
gradient of orthogonal directions
are zero

But they disagree (it's min for
one, max for another)

) Loss Surface Geometry

Saddle Point

Georgia

Tec

Al

=

Gradient descent takes a step in the
steepest direction (negative gradient) oL

Intuitive idea: Imagine a ball rolling
down loss surface, and use
momentum to pass flat surfaces

aL Update Velocity
ow;_, (startsas O, =0.99)

v, = pv_q+

Wi =W;_1 — av; Update Weights

Generalizes SGD (B = 0)

) Adding Momentum Gegrata |

=

Velocity term is an exponential moving average of the gradient

JdL
v =Pri4+ oW,
i
JdL JdL
Vi = BB V2 + 5~ 2) t 3)
l— l—
. aL oL
= pvi + P T

ow;_, 0w; 4

There is a general class of accelerated gradient methods, with
some theoretical analysis (under assumptions)

Georgia @

) Accelerated Descent Methods Toohl

Equivalent formulation:

oL _
Vi = ﬂvi_l —a— Update VGIOCIty

ow;_, (starts as 0)

Wi =W;_1t+7; Update Weights

ech

=

) Equivalent Momentum Update Gegrgia |

Key idea: Rather than combining velocity
with current gradient, go along velocity
first and then calculate gradient at new

point

We know velocity is probably a
reasonable direction

Wi_1=Wi_1+ Bv;_4
Momentum update: Nesterov Momentum

Gradient

dL
Velocity Velocity

a A\
wi_ 1 actual step

v, = pv_q+

actual step

Wi — Wi—l —_ a vi Gradient
Figure Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Georgia Jh

) Nesterov Momentum Toch

Momentum

Note there are several equivalent
formulations across deep learning
frameworks!

Resource:
https://medium.com/the-artificial-
impostor/sgd-implementation-in-
pytorch-4115bcb9f02c

Georgia
Tec

Al

https://medium.com/the-artificial-impostor/sgd-implementation-in-pytorch-4115bcb9f02c
https://medium.com/the-artificial-impostor/sgd-implementation-in-pytorch-4115bcb9f02c
https://medium.com/the-artificial-impostor/sgd-implementation-in-pytorch-4115bcb9f02c
https://medium.com/the-artificial-impostor/sgd-implementation-in-pytorch-4115bcb9f02c
https://medium.com/the-artificial-impostor/sgd-implementation-in-pytorch-4115bcb9f02c
https://medium.com/the-artificial-impostor/sgd-implementation-in-pytorch-4115bcb9f02c
https://medium.com/the-artificial-impostor/sgd-implementation-in-pytorch-4115bcb9f02c
https://medium.com/the-artificial-impostor/sgd-implementation-in-pytorch-4115bcb9f02c
https://medium.com/the-artificial-impostor/sgd-implementation-in-pytorch-4115bcb9f02c
https://medium.com/the-artificial-impostor/sgd-implementation-in-pytorch-4115bcb9f02c
https://medium.com/the-artificial-impostor/sgd-implementation-in-pytorch-4115bcb9f02c
https://medium.com/the-artificial-impostor/sgd-implementation-in-pytorch-4115bcb9f02c
https://medium.com/the-artificial-impostor/sgd-implementation-in-pytorch-4115bcb9f02c

Various mathematical ways to
characterize the loss landscape

If you liked Jacobians... meet: Second

i _ order
0’ f o f 0 f
Ox? Oz Oz Oz, Oxy,
o f & f o f
= Oxa 04 33:3 Ozq Oz,
o2 f o f o2 f
| Oz, 0z; Oz, Ox» Ox2

Gives us information about the
curvature of the loss surface

Tech

=

) Hessian and Loss Curvature Georgia @

Condition number is the ratio of
the largest and smallest eigenvalue

Tells us how different the
curvature is along different
dimensions

If this is high, SGD will make big
steps in some dimensions and
small steps in other dimension

Second-order optimization methods
divide steps by curvature, but
expensive to compute

) Condition Number Georg-aQ

Per-Parameter Learning Rate

Idea: Have a dynamic learning rate
for each weight

Several flavors of optimization
algorithms:

RMSProp
Adagrad
Adam

SGD can achieve similar results in
many cases but with much more
tuning

Q

Georgia

Tec

Al

Idea: Use gradient statistics
to reduce learning rate across
iterations

Denominator: Sum up
gradients over iterations

As gradients are
accumulated learning
rate will go to zero

Directions with high
curvature will have higher
gradients, and learning rate
will reduce

Duchi, et al., “Adaptive Subgradient Methods for Online
Learning and Stochastic Optimization”

) Adagrad Gegrgia |

=

Solution: Keep a moving
average of squared
gradients!

Does not saturate the
learning rate

) RMSProp

aL \’
Gi=pGi-1+(1-p) (aw-_l)

Georgia
Tech

J&

=

JdL
Vi=ﬂ1vi—1+(1—31)<)

ow;_q

Combines ideas from
above algorithms

L \°
G; = B> Gi—1+(1—ﬁ2)< >

ow;_4
. . . a vi
Maintains both first W;=w;_q — ———
and second moment VGt €

statistics for gradients But unstable in the beginning

(one or both of moments will be
tiny values)

Kingma and Ba, “Adam: A method for stochastic optimization”,
ICLR 2015

) Adam Gograta |

JdL
Vi=ﬂ1vi—1+(1—ﬁ1)()

Solution: Time-varying bias ow;_,
i

correction

L \
G; = B> Gi—1+(1—ﬁz)()

Typlcally Bl = 0. 9, ﬁz = 0.999 aWi_l

So v; will be small number

1% _ G
divided by (1-0.9=0.1) resulting D= Gi=—
in more reasonable values (and
G, larger av;

¢ larger) Wi =Wi 1~ = l
Gi + €

) Adam Gegroia |

Optimizers behave differently g

depending on landscape

Different behaviors such as
overshooting, stagnating, etc.

Plain SGD+Momentum can
generalize better than adaptive
methods, but requires more tuning

See: Luo et al., Adaptive
Gradient Methods with
Dynamic Bound of Learning

1’37’"7'7}' w—— Gradient Descent

/””” " [, === Momentum
””'f"ll,, ," e Nesterov
v "Il""ll

/,,

Il

) '&'c':',l,' NN

&'o,, AR ""l"
LAIHKAAL 003 'O"I':'
) _'0

Rate, ICLR 2019

).

Behavior of Optimizers

From: https://mlfromscratch.com/optimizers-explained/#/

Tech

Georgia @

https://openreview.net/pdf?id=Bkg3g2R9FX

First order optimization methods have
learning rates

.) Trainin
Theoretical results rely on annealed ' Loss i

learning rate :

0 200 400 &00 300 1k

Several schedules that are typical:

Maximum bound

Graduate student! (max_ir)

Step scheduler

Exponential scheduler Minimum bound

(base_lIr)

stepsize

Cosine scheduler

From: Leslie Smith, “Cyclical Learning Rates for Training Neural Networks”

) Learning Rate Schedules Gegroia |

=

Proper Methodology

Always start with proper methodology!

Not uncommon even in published papers
to get this wrong

Separate data into: Training, validation, test
set

Do not look at test set performance until
you have decided on everything (including
hyper-parameters)

Use cross-validation to decide on hyper-
parameters if amount of data is an issue

Many hyper-parameters to tune!

Learning rate, weight decay
crucial

Grid Layout Random Layout

Momentum, others more stable

Unimportant
parameter
Unimportant
parameter

Always tune hyper-parameters;

even a good idea will fail un-

Important Important
|
tuned! parameter parameter

Start with coarser search:

From: Bergstra et al., “Random Search for Hyper-Parameter Optimization”,

E.g. learning rate of {0.1, 0.05, LR, 2012
0.03, 0.01, 0.003, 0.001, 0.0005,

0.0001} Automated methods are OK, but
Perform finer search around good intuition (or random) can do well given
values enough of a tuning budget

) Hyper-Parameter Tuning

Initialization

4 'o
o

Geol &?

Tech|)

Initializing the Parameters

The parameters of our model must be
initialized to something

Initialization is extremely important!

Determines how statistics of outputs
(given inputs) behave

Determines how well gradients flow in
the beginning of training (important)

Could limit use of full capacity of the
model if done improperly

Initialization that is close to a good (local)
minima will converge faster and to a better
solution

Initializing values to a constant value leads to a degenerate solution!

What happens to the
weight updates? w;=c Vi

Each node has the same
input from previous layers
so gradients will be the
same

output
layer

input hidden hidden
As a results, all weights layer layer 1 layer 2

will be updated to the
same exact values

) A Poor Initialization

Common approach is small normally distributed random numbers

=
=

E.g. N(u,0) whereu = 0,0 = 0.01 3

Small weights are preferred since
no feature/input has prior
importance

Keeps the model within the linear
region of most activation
functions

) Gaussian/Normal Initialization

Deeper networks (with many layers) are more sensitive to
initialization

15 = I
With a deep network, | e
. . 101 ! ‘ : : : . il—Layer 3| |
activations (outputs of W e
IS DN SNSRI NS RS (5. SRS N A Layer 5|
nodes) get smaller ’ A '
Standard deviation reduces | % o5 s o+ 02 o 02 o 06 o5 1
significantl . .

9 y Distribution of activation values
Leads to small updates — of a network with tanh non-
smaller values multiplied by linearities, for increasingly deep
upstream gradients layers

From "Understanding the difficulty of training deep
feedforward neural networks." AISTATS, 2010.

) Limitation of Small Weights

Ideally, we’d like to maintain the variance at the output to be similar

to that of input!

This condition leads to a
simple initialization rule,
sampling from uniform
distribution:

Uniform(— Ve -+ ve)

nj+njy’ nj+njgq
Where n; is fan-in
(number of input nodes)
and n;, 4 is fan-out
(number of output nodes)

Xavier Initialization

08 -06 -04 -02 0 02 0.4 0.6 0.8 1

Activation value

Distribution of activation values
of a network with tanh non-
linearities, for increasingly deep
layers

From "Understanding the difficulty of training deep
feedforward neural networks." AISTATS, 2010.

In practice, simpler versions perform empirically well:

MO, 1) *an,

This analysis holds for tanh or similar activations.

Similar analysis for ReLU activations leads to:

N(,1) * |—
\]

"Delving Deep into Rectifiers:Surpassing Human-Level Performance on ImageNet Classification®, ICCV, 2015.

) (Simpler) Xavier and Xavier2 Initialization

Summary

Key takeaway: Initialization matters!

Determines the activation (output)
statistics, and therefore gradient
statistics

If gradients are small, no learning
will occur and no improvement is
possible!

Important to reason about
output/gradient statistics and
analyze them for new layers and
architectures

Activation Functions: Use ReLU, GelLU, etc.

Initialization: Important for initial activation and gradient statistics

Optimization: Use momentum (helps w/ local minima, etc.)

Next: More sophisticated gradient history/statistics in update rule

) Summary Gegrola)

=

	Slide 1: CS 4644-DL / 7643-A Zsolt Kira
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21: Demo
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51

